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Summary The amino acid composition and the physicochemical and functional properties of quinoa flour proteins

(QFP) were evaluated during storage (at 20, 30 and 40 �C). Quinoa flour showed a protein content of

14.2 ± 0.1 g 100 g)1 and high levels of essential amino acids as lysine. SDS–PAGE of the QFP presented

ten major band, and native-PAGE of the QFP showed similar banding; there was a little variation due to

time-temperature. TCA-protein solubility variation (%) was small and the values of water activity were low,

a non-significant endogenous hydrolysis was observed. Differential scanning calorimetry flour analysis

allowed determining two endotherms, starch and protein. Important structural changes of protein soluble

fractions were not detected by UV and fluorescence spectroscopy due to temperature and time of storage. It

was found during storage time loss of protein solubility and water absorption. These changes could be to

influence in the manufacture of quinoa flour based products. For avoid changes in these functional

properties (solubility and water holding capacity), quinoa flour can be stored at ambient temperature

(between 20 and 30 �C) and packed in double kraft paper bags (2 months).
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Introduction

Quinoa (Chenopodium quinoa Willd.), a dicotyledonous
indigenous plant in the Andean region, is considered an
excellent pseudocereal for its nutritional characteristics;
it is widely cultivated in Peru, Bolivia, Ecuador, Chile
and Argentina (Bhargava et al., 2006). This plant has
been investigated extensively because of its high protein
content, 12–23% (Koziol, 1992; Ruales & Nair, 1992;
Ando et al., 2002), and in particular its amino acid
composition, which is close to the ideal protein balance
recommended by FAO (FAO, 1973; Oshodi et al., 1999),
even though the proportions vary depending on the
location (Prakash & Pal, 1998). Due to its great food
potential, quinoa is being introduced in many other
countries (Comai et al., 2007) and it is considered a
potential crop for National Academy of Sciences (NASA
1975). Because of its high protein content (Koziol, 1992),
it can be used as an alternative protein resource for the
development of blends for end products. Its protein
fractionation shows the presence of albumin as well as a
globulin called chenopodin (Brinegar & Goundan, 1993;

Brinegar et al., 1996; Abugoch et al., 2008). Although
quinoa seeds contain bitter tasting saponins, these can be
removed either by washing the seeds in cold water or by
mechanical dehulling (Reichert et al., 1986), because the
saponin is concentrated in the outer seed layer, adhered
to the pericarp covering two seed coat layers (Varriano-
Marston & De-Francisco, 1984).
Even though amino acid composition and agronomi-

cal aspects have been studied extensively, only very
limited information is available on quinoa flour stability
and protein quality during storage, particularly on
quinoa flour proteins, and this is very important for
quality assurance in industrial use, where low storage
temperatures are required (20–40 �C) (Becker & Han-
ners, 1990; Coulter & Lorenz, 1990). Quinoa is used to
make flour, soup, cereal breakfast and beer. Quinoa
flour is used with wheat flour or corn meal to make
biscuits, bread and processed food such as spaghetti
(Bhargava et al., 2006). Oshodi et al. (1999) reported on
the good gelation, water-absorption, emulsifying prop-
erties of quinoa flour. Determining the appropriate
functional properties related to protein structure and
their changes during storage are of major importance
for the use of quinoa flour in the food industry (Kinsella
& Phillips, 1989; Oshodi & Ekperigin, 1989). The
objective of this research was to determine some
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structural and functional properties of quinoa flour
proteins and their stability during storage.

Materials and methods

Raw materials and flour preparation

Two 50-kg bags of three different batches of organic
dehulled quinoa seeds were supplied by Mr Pablo Jara
from Chile’s VI Region. From these bags, 2-kg samples
were obtained and the seeds were washed with cold
water to remove possible saponin residues. The samples
were oven-dried at 50 �C until the moisture content
reached 15 ± 1 g 100 g)1 and were then ground in an
impact mill (Retsh Muhle GmbH, Dreieich, West-
Germany) to sixty mesh.

Proximate composition

Sample moisture (method 945.15), fat (method 945.16)
and ash (method 920.153) were determined using AOAC
methods (AOAC, 1996). Protein content was deter-
mined by Kjeldahl (AOAC, 1996) (method 945.18),
using a factor of 5.85 (Becker et al., 1981; Segura-Nieto
et al., 1994). Determinations were made in duplicate.

Storage of quinoa flour

Quinoa flour was packed and stored in double kraft
paper bags at 20, 30 and 40 �C for periods of
1–5 months. While 20 ± 2 �C was reached in a box at
room temperature, the 30 ± 1 �C and 40 ± 1 �C were
obtained in ovens. Each batch was analysed separately
in duplicate or triplicate.

Amino acid assay

Amino acids were separated by precolumn derivatisation
with diethyl ethoxymethylene malonate followed by
reversed-phase high-performance liquid chromatography
(HPLC) with spectrophotometric detection at 280 nm
according to Alaiz et al. (1992). The HPLC system
consisted of a Merck-Hitachi L-6200A pump (Merck,
Darmstadt, Germany) with a Rheodyne 7725i injector
and a 20 lL sample loop, a Merck-Hitachi L-4250
UV–Vis detector, and a Merck-Hitachi D-2500 chroma-
to-integrator. The derivatives were separated on a Nova-
Pack C18 (300 · 3.9 mm i.d., 4 lm particle size; Waters,
Milford,USA). Samplepreparationandchromatographic
conditions were according to Abugoch et al. (2008).

Total proteolytic endogenous activity and determination of
TCA-protein solubility

Quinoa flour was dispersed at 1% (w ⁄v) in 0.1 m
phosphate buffer pH 5.92 and stirred in a bath at 37 �C

for 90 min. Untreated samples were used as controls.
The reaction was stopped by addition of 100 lL of 5%
TCA, and the sample was centrifuged at 10 000 g for
15 min at 15 �C. Soluble peptides were determined
in the supernatant according to Bradford (1976) and
TCA-solubility (TCAS) was calculated as percent of
total protein. The increase in solubility (%DSTCA)
was calculated with respect to the corresponding
control using the following equation (Molina &Wagner,
2002):

%DSTCA ¼ 100½ðSTCAÞt � ðSTCAÞt=ðSTCAÞ0�

where t stands for the hydrolysis time of 90 min.
Determinations were made in duplicate and the

storage period was 4 months.

Water activity (aw)

Water activity was measurement at 25 �C with a
Novasina Thermoconstanter electric hygrometer
according to Pollio et al. (1986). Determinations in each
of the batches were made in duplicate and the storage
period was 5 months.

Electrophoresis

Polyacrylamide gel electrophoresis (PAGE) was ran on
gel minislabs (Mini Protean III Model, Bio-Rad
Laboratories, CA, USA). SDS–PAGE and non-dena-
turing PAGE (5%) were performed according to
Laemmli (1970). SDS–PAGE gels contained 12%
(w ⁄v) acrylamide (5% acrylamide stacking gels) and
native gels contained 6% (w ⁄v) acrylamide (5%
acrylamide stacking gels). The molecular mass of the
polypeptides were calculated using the following protein
standards (Bio-Rad Kaleidoscope): myosin (202 kDa),
b-galactosidase (133 kDa), bovine serum albumin
(70 kDa), carbonic anhydrase (30.6 kDa), trypsin
inhibitor (20.1 kDa), aprotin (6.9 kDa). To 20 mg of
sample was added 200 lL of sample loading buffer
(native or denaturant). The sample loading buffer
contained 0.124 m Tris–HCl (pH 6.8), 15% (v ⁄v)
glycerol, and (for SDS–PAGE only) 2% (w ⁄v) SDS.
For reducing conditions, 5% (v ⁄v) b-mercaptoethanol
(2-ME) was added, and the samples were heated
(100 �C, 1 min). Protein bands were stained with
Coomassie Brilliant Blue R according to Weber &
Osborn (1969).

Fluorescence spectroscopy

Quinoa flour was dispersed in 0.08 m phosphate buffer
pH 8.5, the dispersions were stirred gently for 1 h at
room temperature, centrifuged at 8500 g for 30 min at
15 �C, and the concentration of the soluble fraction of
protein was normalised at 0.2 mg mL)1 by the Warburg
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method (Warburg & Christian, 1941). Fluorescence
spectra were recorded on an LS 50 B Perkin-Elmer
luminescence spectrometer at room temperature with an
excitation wavelength of 290 nm. The emission spectra
were recorded as the average of three spectra from 310
to 500 nm using a scan speed of 30 m min)1. Determi-
nations were made in duplicate and the storage period of
the sample was in the range of 0–4 months.

UV spectra

Soluble proteins (0.02 mg mL)1) were prepared as
described above. UV spectra of the samples were
measured with a UNICAM Type UV3-200 (Cambridge,
UK) UV–Vis spectrometer at room temperature in the
250–350 nm wavelength range. Determinations were
made in duplicate and the storage period analysed was
5 months.

Differential scanning calorimetry

Measurements were made in a Mettler Toledo 822
calorimeter with Mettler Toledo Star System software
(Schwerzenbach, Switzerland). Suspensions of quinoa
flour (20% w ⁄w) were prepared in 0.08 m phosphate
buffer, pH 8.5. Differential scanning calorimetry (DSC)
samples consisted of hermetically sealed aluminium pans
filled with 12–14 mg of quinoa flour suspensions.
Analyses were ran at a rate of 10 �C min)1 from
300 K (27 �C) to 393 K (120 �C), and a double empty
pan was used as reference. After each run, the dry
matter content was determined by puncturing the pans
and exposing them overnight at 107 �C. The denatura-
tion parameters calculated were temperature (Td) and
transition enthalpy (DH). Determinations were made in
duplicate at zero time and at month five of storage.

Solubility

Quinoa flour was dispersed in 0.08 m phosphate buffer,
pH 8.5, at 1% w ⁄v, the dispersions were gently stirred
for 1 h at room temperature and centrifuged at 8500 g
for 30 min at 15 �C. Soluble proteins (Sp) in the
supernatant were determined by the Bradford (1976)
method and solubility (S) was expressed as percentage
as follows:

%S ¼ ð0:142� 100�mgSpÞ=mg total protein

Determinations were made in triplicate and the
storage period analysed was 5 month.

Water holding capacity

The flour was dispersed in distilled water (1% w ⁄v) with
a vortex mixer and was then stirred every 10 min for
30 min at 25 �C. After the mixture was thoroughly

wetted, the samples were centrifuged (8500 g for
30 min). The amount of supernatant in the test tube
was recorded and soluble proteins were determined by
Bradford method (1976). The water holding capacity
(WHC) (grams of water per gram of sample) was
calculated as

WHC ¼ ½m2� ðm1�m3Þ�=m1d

where m1 is the weight of dry sample (g); m2 is the weight
of sediment (g); m3 is the weight of soluble protein from
the supernatant (g), and d is the density of water
(mL g)1). In this case triplicate samples were analysed
for each sample and the storage period analysed was
4 months.

Kinetic analyses

Changes in ‘C’ (solubility, WHC, aw) under isothermal
conditions can be represented by:

dC=dt ¼ �kðCÞn

where k is the rate constant, C is the quantitative
indicator at time t, and n is the of reaction order. The
integrated form for the zero order kinetic model is

Ct ¼ C0 � k � t
where C0 stands for the initial value at zero time, Ct is
the value at time t, and k is the rate constant.
The Arrhenius equation is often used to describe the

temperature dependence of reaction rates:

k ¼ k0E
�Ea=RTabs

A semi-logarithmic plot of the rate constant as a
function of reciprocal absolute temperature (1 ⁄Tabs)
should give a straight line, and the activation energy can
be determined as the slope of the line multiplied by the
gas constant R (Kong et al., 2007).

Statistical analysis

The data were analysed by multifactor anova and the
significance of differences by the tukey multiple-range
test (Statgraphics Plus 5, Rockville, MD, USA). A
P value of 0.05 was used to determine significance. The
influence of independent variables (time and tempera-
ture) over dependent variables was evaluated.

Results and discussion

Proximate and amino acid composition of raw quinoa flour

The results presented in this section correspond to the
starting quinoa flour. The moisture content was
11.8 g 100 g)1. The flour had a carbohydrate content
(66.1 g 100 g)1 by difference) comparable to that of
amaranth (Bressani, 1994) and low ash (1.5 ±
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0 g 100 g)1). Protein content was 14.2 g 100 g)1 and fat
content 6.4 g 100 g)1. Protein content was higher than
that of cereals like millet (Chauhan et al., 1992; Oshodi
et al., 1999), oat, and barley (Comai et al., 2007). The
essential amino acid profile (mg g)1 of protein) of
quinoa flour is given in Table 1 along with the human
needs for all age groups except infants. Compared to
common cereals, quinoa is higher in protein, lysine, fat
and fiber, and protein quality is high. The protein score
reflects its amino acid content compared an ideal protein
(FAO ⁄OMS, 1973). The chemical scores of methionine
+ cystine, isoleucine, histidine, threonine, phenylala-
nine + tyrosine leucine, lysine and valine were higher or
almost equivalent to the FAO ⁄WHO requirement
pattern in adults (FAO ⁄OMS, 1973). Amino acid
analysis showed that quinoa is an excellent source of
lysine, methionine, cystine in addition to other essential
amino acids, and it meets or exceeds the recommenda-
tions for proper amino acid nutrition, in close agreement
with previous observations made by Ruales & Nair
(1992) and Koziol (1992).

Electrophoretic polypeptide profile

The extracted proteins were analysed by native-PAGE
(Fig. 1) and showed a similar and predominant band

(marked with an arrow in the figure) at different storage
times and temperatures, implying no variation at the
molecular level. The profile of extracted proteins (Fig. 1)
shows globulins, a result comparable to amaranth
globulins (Martı́nez & Añón, 1996).
Total extractable protein was also analysed by SDS–

PAGE, (Fig. 2) providing different polypeptide groups
ranging from 8 to 84 kDa, as shown in Fig. 3 by the
right-hand arrows. The 8–11 kDa polypeptides group
was similar in size to the 2S type of proteins in quinoa
seeds (Brinegar et al., 1996). The 11S protein type of
quinoa seed (Fig. 3) is characterised by two hetero-
geneous sets of polypeptides, showing size ranges of
30–40 kDa (acidic subunits) and 20–25 kDa (basic
subunits) (Fig. 3, right-hand arrows) linked by disulfide
bonds (Brinegar & Goundan, 1993). The polypeptide
band intensity decreases slightly at various times and
temperatures (Figs 2 and 3). Although temperature
seems to have more influence than time on storage, it
was found that time and temperature may affect the
proteins, since the decreasing band intensity found can
be attributed to partial denaturation of quinoa proteins
due to storage conditions. There appear to be much
greater differences between temperatures than between
different times at a given temperature.

TCA-protein solubility – endogenous hydrolysis

TCA-solubility was studied to follow peptide liberation
by endogenous hydrolysis (Fig. 4). By the first month,
endogenous hydrolysis, determined by the TCAS value,
increased at all storage temperatures (P > 0.05)
(Fig. 4). Such values were found to be low compared
to those obtained by Molina & Wagner (2002). The
results indicated that the effect of the endogenous
hydrolytic enzymes was not significant under the storage
conditions.

Fluorescence spectra

Tryptophan residues are the most sensitive markers of
the protein environment (Chen & Barkley, 1998), since
the fluorescence properties of tryptophan residues in

Table 1 Essential amino acid pattern and score for all age groups

except infants*

Amino acid

Amino acids

(mg g)1 protein)

Amino acid

score

Phenylalanine + Tyrosine 394 0.8

Histidine 119 1.4

Isoleucine 175 1.2

Leucine 413 0.9

Lysine 363 0.9

Methionine + cysteine 156 1.1

Threonine 213 1.4

Tryptophan n.d. n.d.

Valine 219 1.3

*FAO ⁄ WHO ⁄ UNU, 1985, Conversion Factor N: 5.85.
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Figure 1 Electrophoretic analysis (Native-

PAGE) of total extractable quinoa flour

protein. Stored at different temperatures from

0 to 5 months.
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proteins change on denaturation of the protein (Royer,
1995). Quinoa flour has shown a proteic tryptophan
value of 187 mg 100 g)1 dry weight (Comai et al., 2007).
In the present study, fluorescence intensity was plotted
as a function of storage time and temperature; Gaussian
curves were obtained in all cases according to Abugoch
et al. (2008). Only data corresponding to fluorescence
spectra at 20 �C (Fig. 5a) are provide, since similar
curves were obtained at other temperatures. Fluores-
cence measurements showed a decreasing fluorescence

intensity (FI) at the end of the storage time (Fig. 5a),.
The quenching of fluorescence intensity may be caused
by the exposure of tryptophan residues to the environ-
ment from the internal hydrophobic environment,
suggesting a denaturation (Sripad & Narasinga Rao,
1987).

UV spectra

The absorption spectra of the supernatants were
obtained at different time-temperature conditions. Only
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data corresponding to UV spectra at 20 �C (Fig. 5b) are
provided, since similar curves were obtained at other
temperatures. These spectra showed a decrease in
absorbance with storage time, which agrees with a
solubility decrease, but with no change in the curve
shapes. These spectra were similar to those for amaranth
protein isolate (Avanza & Añón, 2006).

Water activity (aw)

Water activity has particular relevance in food chemistry
and preservation, due to its relationship with enzymatic
activity (Blandamer et al., 2005). Control of water
activity in quinoa flour did not show significant
differences with storage temperature (P > 0.05), but
with storage time (P < 0.05) aw was about
0.488 ± 0.005 and its value decreased to
0.261 ± 0.083 (P < 0.05) at 40 �C. These values show
water migration from quinoa flour to its surrounding,
which can be explained by the low endogenous
hydrolysis development found. Furthermore, this low
aw prevents microbial growth.

DSC measurements of quinoa flour

By DSC, two temperature and enthalpy peaks were
obtained, related to gelatinization temperature,

Tg = 65.7 �C (for starch), and the other denaturaliza-
tion temperature, Td = 98.9 �C (for proteins). The
enthalpy value obtained was 5.9 J g)1 (starch) and
2.2 J g)1 (proteins). The high denaturation temperature
of quinoa flour proteins was found comparable to
globulins and to most cereal and legume proteins such
as field pea and faba bean, and oat and soy proteins
(Arntfield & Murray, 1981; Abugoch et al., 2003). On
the other hand, the lower gelatinisation temperature,
was similar to that of corn starch (Li et al., 2007). The
denaturation temperature of quinoa proteins suffered
significant changes at month five of storage under all
temperature conditions. The final (after month 5)
gelatinisation temperature was 63.7 �C and the enthalpy
was 1.1 J g)1. The denaturation value at month 5 agrees
with the fluorescence spectra results.

Water holding capacity

Water holding capacity (WHC) is an important physical
characteristic affecting the quality of manufactured
foods. WHC of quinoa meal was 4.5 mL of water g)1

of flour (Table 2) and this property showed an
important decrease during storage (P < 0.05) (Table 2).
For all the temperatures tested, after 4 months of
storage WHC decreased at least 45% with respect to the
WHC of the starting material. The WHC of quinoa
meal was higher than the values reported for quinoa
meal (Ogungbenle, 2003), amaranth meal (Mahajan &
Dua, 2002), sunflower flour and protein concentrates
(Venktesh & Prakash, 1993), and were similar to soy
protein isolate (Tang et al., 2006). Only for this property
an Arrhenius equation dependency was found. Data
were normalised to zero order kinetics for WHC versus
temperature; an activation energy (Ea) of 3961.4
cal mol)1 was obtained.

Protein solubility

Protein solubility (Fig. 6) of quinoa flour was about
14% at time zero, a value similar to that obtained by
Ogungbenle (2003) and lower than that for amaranth
meal (Mahajan & Dua, 2002). A significant decrease of
solubility (P < 0.05) was found during storage time
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(Fig. 6). For this parameter, the effect of storage
temperature was not significant (P > 0.05).

Conclusions

Quinoa flour is an excellent contribution to the diet
according to its protein content and amino acid
composition. Loss of protein solubility and water
absorption occurred during storage. These changes must
influence the manufacture of products based on quinoa
flour. To avoid changes in these functional properties
(solubility and WHC), quinoa flour can be stored at
ambient temperature (between 20 and 30 �C) and
packed in double kraft paper bags (2 months). Under
those conditions its technological properties remain
without significant changes and can guarantee the
quality of the flour for manufacturing. On the other
hand, quinoa flour has potential use in processed food,
such as in drink formulations and soups due to good
hydration properties.
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