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In this work a new concept for designing an efficient monitoring system for large scale chemical plants is
presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor
location together with the plant-wide control structure design. The solution of these problems involves deciding
among a great number of possible combinations between the input-output variables. It is done supported by
the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function,
within the GA, that takes into account a fault detectability index based on combined statistics. Additionally,
by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is
by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant
(TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied
the TE case, the results obtained here can be rigorously compared with those already published. All of the
previous works considered that every TE output variables were available for the abnormal events detection
for designing the monitoring system.

1. Introduction

The monitoring systems for large scale processes play an
important role in supervising the state of a plant. Hundreds and
thousands of variables must be handled each sampling time.
The increasing demand for obtaining more efficient and profit-
able process generates complex control structures and highly
interconnected plants. In this context, to achieve a suitable
monitoring system it is necessary to account with an efficient
technique for decision making.1-3 The methodology proposed
in this work is integrated to a global, generalized, and systematic
analysis for determining an optimal sensor location and plant-
wide control structure selection, given in a previous work of
the authors.13 In that work only a steady-state model of the
process was accounted without using heuristic concepts for
reducing the problem dimensionality. In this work an optimal
monitoring system, based on historical normal and abnormal
behavior database of the process, is proposed. In Figure 1 the
block diagram with light gray background displays the procedure
given in Zumoffen and Basualdo.13 Meanwhile, the dark gray
background represents the systematic approach detailed here.
Therefore, Figure 1 summarizes the integration between both
techniques for analyzing, which is the real benefit of using them.
The PCA-based monitoring systems are widely used in industrial
processes as well as academic research4-6 due to their excellent
properties for handling noise and large databases. One of the
problem analyzed here is, which is the minimum number of
signals to be chosen for developing an efficient PCA monitoring
system? Usually, this question is not addressed because it is
assumed that the overall plant information is available for
developing the PCA model. It is remarkable that some of the
previous works in the literature addressed this complex problem
in a partial way. For example, Yue and Qin7 presented the
combined statistic using PCA for fault reconstruction tasks on
rapid thermal annealing (RTA) process. Only fault detectability

with square prediction error, SPE, or Hotelling, T2, statistics
were analyzed. Nothing was said about the use of combined
statistics for fault detectability calculations and the optimal signal
selection for PCA implementation. Additionally, on this last
area, several works have been published8-10 based on Kalman
filtering in steady-state, integer optimization routines and
observability index. It can be remarked that, these approaches
were applied in two ways, assuming that the process was
working in open loop or with an existing plant-wide control
structure in the process. It can be mentioned that in Musulin et
al.11,12 was presented a signal selection method with PCA-based
monitoring using only SPE and T2 statistics. The approach was
applied on the Tennessee Eastman (TE) process where the
signals selection was done as a trade off between cost and
precision aspects. That strategy was tested in two case studies.
First, a chemical plant with recycle is used accounting faults
and disturbances, and second, the TE process is performed by
analyzing some of the suggested disturbances without taking
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into account the potential faults at different hardware elements.
In this work a new approach to improve the PCA-based
monitoring systems performance is presented. Its optimal design
is thought to maximize the abnormal events detectability and
to minimize the investment costs. The detectability indexes are
useful for determining which set of variables could provide the
best fault classification. Particularly, one of the contribution of
this work is to calculate this index by using a combined statistic.
Because of the great dimensionality problem associated with
the large chemical plants, the best variables selection is
performed with the help of genetic algorithms (GA). In addition,
this approach can be driven to use those measurements provided
by the optimal sensor location analysis previously done. Thus,
the objective function, within the GA, also accounts a cost that
penalizes the use of new measurement devices which were not
considered to be part of the obtained control structure. So, it
provides a more profitable selection.

Finally, on the basis of the arguments given above, it is
important to remark that the proposed approach here has several
differences with respect to analogous previous strategies:11,12

First, the global treatment of the complete problem, which has
never been analyzed in this way, supported by a well-defined
objective function to be optimized through genetic algorithm
and, second, the monitoring design based on the detectability
index calculated with the combined statistics. It is proposed here
based on the successful results shown in previous works.1-3

On the other hand, the overall monitoring system is developed
with adaptive PCA (APCA) techniques, which present better
behavior than conventional ones in plants with frequent changes
on the operating conditions. The APCA, classification, and
estimation modules were discussed in detail in Zumoffen and
Basualdo1,2 and Zumoffen et al.3

2. Background Information and Tools

2.1. PCA-Based Monitoring. The principal component
analysis (PCA) is the main tool used here for performing fault
detection. PCA is a projection-based method that facilitates a
reduction of data dimension. This analysis begins by considering
the data matrix X of m × n containing m samples of n process
variables collected under normal operation. Assuming that Xj
is the normalized version of X, to zero mean and unit variance
with the scale parameter vectors b and s as the mean and
variance vector of the process variables in the data matrix,
respectively. The normalized data matrix can be represented as

where T ∈ R m×A and P ∈ R n×A are the latent and principal
components matrices, respectively, and A is the number of
principal components retained in the model P. The residual
matrix E represents the associated error since only A , n
principal components were selected.

P can be obtained by means of singular value decomposition
(SVD) from the normalized data correlation matrix Rc ) Xj ·Xj T/
(m - 1) ) UDλUT, by selecting only the first A columns of U.
This factorization produces a diagonal matrix Dλ ) diag(λ1, λ2,
· · · , λn), where λi are the eigenvalues of Rc sorted in decreasing
order (λ1 > λ2 > · · · > λn) and the corresponding columns of U
are the eigenvectors pi and so-called the principal components.
Thus, P ) [p1, · · · , pA] and DA ) diag(λ1, · · · , λA). A reduction
of dimensionality is made by projecting every normalized
sample vector xj(k) (of dimension n × 1) in the principal
component space generated by P, obtaining t(k) ) PTxj(k), which
is called the principal score vector.

Different approaches for selecting the A principal components
retained14 can be chosen. In this work the cumulative percent
variance (CPV) is used, eq 2. This index measures the percent
variance captured by the first A principal components.

in this case a search between 1 e A e n is made in order to be
satisfied the condition CPV(A) g δcpv with the minimum A.
Where δcpv is a percentage value; if it achieves lower values it
means that only a few principal components retained are needed,
and if it is close to 100%, it means that A ≈ n.

For generating quality control charts in a multivariable online
monitoring process with PCA, two statistics are widely used,
the Hotelling’s T2 and the squared prediction error (SPE) Q.
Considering the actual process measurements at their normalized
version xj(k), k being the actual sampling time, these statistic
are defined as

where C̃ ) I - PPT and ∆xj(k) ) C̃ xj(k) is the prediction error.
The test declares normal operation if T2(k) e δT2 for Hotelling’s
statistic and Q(k) e δQ for SPE statistic, where δT2 and δQ are
the control or confidence limits for the above statistics,
respectively. Supposing Gaussian distribution the control limits
can be approximated by δi ) µi + ν ·σi,

15,16 where µi and σi

are the mean and variance values for the statistic i computed
from the normal data matrix (i ) T2,Q) and ν ) 2,3 according
to the 95% or 99% confidence level, respectively.

P is computed using the normal data matrix which has
information about the common-cause variations at the surround-
ings of the process operation point. The Hotelling’s statistic T2

for a new incoming data sample is a measurement of its distance
with respect to the origin of the dominant variation subspace.
This origin and its proximities delimit the in-control zone. The
case where the principal score vectors remain at the surroundings
of the in-control zone (Hotelling’s statistic under the confidence
limit), even though an abnormal event has happened, suggests
that it cannot change enough over the dominant variation
subspace. To avoid this lose of detection of abnormal events
information, the use of the Q and T2 statistics, working together,
in a combined way is proposed.7 Hence, a detectability analysis
is done based on them, as shown in section 3, which represents
a new result from this work. This approach improves the
detection properties such as detection times, less false alarms
occurrence, and missed detections. The combined index z(k) is
defined as

Note that z(k), T2(k), and Q(k) are the computed statistics for
the actual measurement xj(k). Under these assumptions normal
operation conditions can be declared if z(k) e δz, where δz is
the new control limit. A conservative selection could be δz )
2, according to the false alarms occurring when the FD system
is injurious. A modified version of this approach integrated with
adaptive PCA techniques, fault detection, diagnosis, and estima-
tion system which supports fault tolerant control can be found
in Zumoffen and Basualdo1,2 and Zumoffen et al.3

X̄ ) TPT + E (1)

CPV(A) )
∑
j)1

A

λj

trace (Rc)
100 (2)

T2(k) ) |DA
-1/2PTx̄(k)|2, Q(k) ) |C̃x̄(k)|2 (3)

z(k) ) T2(k)
δT2

+ Q(k)
δSPE

(4)
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2.2. Fault Detectability Index Based on T2 and Q. Fault
detectability index can be suitably obtained using an additive
fault model7 representation of the abnormal process data. This
methodology can be applied to both Hotelling and the square
prediction error statistics. Yue and Qin7 presented an approach
to develop this index in the T2 and Q cases but nothing was
said about the combined statistic fault detectability index. In
the next sections an extension for computing it is proposed.

The normalized process measurement xj/(k) when a fault is
present can be written as

Two additive effects can be observed in this fault model: xj0(k)
that considers the normal behavior case and Θjfj as the fault
contribution to the actual measurements. Θj is the fault subspace
for the fault j, where j ) 1, · · · , J are the fault types and fj is
the fault components vector. The fault subspace extraction
procedure is addressed properly in the appendix.

where m is the amount of measurement points, and r is the fault
components vector length for the fault type j. The columns of
Θ have zero entries except for the measurement affected by
the fault; in this case the entry is 1 or -1 depending of the
fault direction.

Considering the fault detection process with Hotelling statistic
results

and accounting the triangle inequality it can be expressed as

remembering that for fault detection the condition T2(k) g δT2

must be fulfilled and that ||DA
-1/2PT xj0(k)||e δT2 by construction.

The detectability condition using Hotelling statistic can be
written as

and the minimal fault magnitude (MFM) detectable with this
statistic can be obtained with a most restrictive condition:

resulting in the following expression for the MFM estimate

Considering the fault detection with Q statistic:

and again using the triangle inequality, it can be expressed as

where ||Cxj0(k)||e δQ by construction. Thus the fault detectability
condition with this statistic is summarized as

and, in this case, the MFM estimation results

2.3. Genetic Algorithms. The genetic algorithms is a
stochastic global search method that mimics the metaphor of
natural biological evolution. Mainly, the GA operates on a
population of potential solutions, Ni, applying the principle of
survival of the fittest to produce better and better approximation
to the solution. In each generation a new set of individuals, Ii,
is created on the basis of their level of fitness with respect to
the specific functional cost for each problem, FC(Ii), and
breeding them together using operators borrowed from natural
genetics. Thus, the evolution of the population is developed
toward the individuals that are better suited to their environment.
Specifically, in this work a code version developed in ref 17
for Matlab environment is used.

The individuals, Ii ) [g1, · · · , gNc
], are encoded as strings

(chromosomes) composed over some alphabet, so that the
chromosome values, gj, are uniquely mapped onto the decision
variables domain. Decoding the chromosome representation, the
decision variables (individuals) can be evaluated considering
some performance or fitness function. This function establishes
the basis for pairs selection of individuals that will be mated
together during reproduction. In this phase, each individual is
assigned to a fitness value derived from this objective function
and the selection over the population is made with a determined
probability according to their relative fitness. Thus the recom-
bination process is carried out to produce the next generation.

Typically, the initial population is adjusted between 2-20%
of the problem dimension for a small combinatorial size17 and
about Nc × 100 to large scale problems.5,11 Generally, the GA
termination criteria is the maximum generation number, Ng, or
a level of fitness. The individuals selection is performed by
means of the roulette wheel method according to their fitness
measure, thus the best Nsel ) Ni/2 individuals are retained. The
production of new chromosomes is developed by the crossover
operator, in this case double-point method with a probability
of Pco. Analogously to the natural evolution, the mutation
produces a new genetic structure and basically is applied with
a low probability, Pm. Mutation generally tends to inhibit the
possibility of converging to a local optimum.

The following steps summarize the GA procedure to find the
optimal set of individuals along generations:

A. Initialization. The random initial population, Pj )
[I1, · · · ,INi

]T of dimension Ni × Nc, is defined with j ) 0. In
addition, Ni, Ng, Nsel, Pco, and Pm are selected.

B. Fitness Evaluation. The functional cost is evaluated for
each individual, Ii, from the actual population set, Pj. In addition,
the individual with best fitness value is stored in the best
population set, Pb.

C. While the termination criteria is false, do.
C.1. Selection: the Nsel best individuals are selected using

their relative fitness values and stored in Ps. The Ni -
Nsel remaining individuals are discarded.

C.2. Recombination: the individuals in Ps are recombining
by the crossover operator and stored in Pr.

C.3. Mutation: the recombined individuals in Pr suffer the
mutation process and new genetic structures are obtained
and stored in Pm.

C.4. Merging: both selected and mutated populations are
merging together to give the next generation of indi-
viduals, Pj ) [Ps,Pm]T, with j ) j + 1 and go to step B.

x̄/(k) ) x̄0(k) + Θjfj (5)

[xj/
1(k)

xj/
2(k)
l

xj/
m(k)

] ) [xj0
1(k)

xj0
2(k)
l

xj0
m(k)

] + [θj
11 θj

12 · · · θj
1r

θj
21 θj

22 · · · θj
2r

l l l l
θj

m1 θj
m2 · · · θj

mr ][fj
1(k)

fj
2(k)
l

fj
r(k)

] (6)

T2(k) ) |DA
-1/2PTx̄/(k)|2 ) |DA

-1/2PTx̄0(k) + DA
-1/2PTΘjfj|

2

(7)

|DA
-1/2PTx̄/(k)| g ||DA

-1/2PTx̄0(k)|-|DA
-1/2PTΘjfj| | (8)

|DA
-1/2PTΘjfj| g 2δT2 (9)

|DA
-1/2PTΘj||fj| g |DA

-1/2PTΘjfj| g 2δT2 (10)

|fj| |MFM
T2

) |DA
-1/2PTΘj|

-12δT2 (11)

Q(k) ) |C̃x̄/(k)|2 ) |C̃x̄0(k) + C̃Θjfj|
2 (12)

|C̃x̄/(k)| g ||C̃x̄0(k)| - |C̃Θjfj| | (13)

|C̃Θjfj| g 2δQ (14)

| |fj| |MFM
Q ) |C̃Θj|

-12δQ (15)
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D. Else. If the termination criteria is true, the set of the best
individuals for each generation is obtained from Pb, with a
dimension of j × Nc, and the optimization procedure stops.

Thus, the better suited individual to their environment is the
best individual in the latest generation.

3. Optimal Monitoring System Design

In this section the main steps of the proposed methodology
are detailed on the corresponding subsections based on the
theoretical background given before.

3.1. Fault Detectability Index Based on Combined
Statistic. In this subsection the development of the fault
detectability index with the combined statistic (z(k)) is given.
It is done by performing an extension of the concepts given in
the previous section. By grouping both Hotelling and square
prediction error statistics can be obtained with improvements
in the fault detection performance. In this case the combined
statistic can be represented as

considering that M is a symmetric and definite positive matrix,
its decomposition is possible by Cholesky factorization to obtain
M ) RTR. Thus the combined statistic case presents a similar
treatment as the Q statistic, giving the following fault detect-
ability condition

and its corresponding MFM estimate

The combined matrix M (and eventually R) depends on the
PCA model developed opportunely. The influences of factors
such as sensors location in the process, signals selection to
perform PCA model, variance retained, and confidence limits
are crucial and limit the attainable MFM. Similarly, the fault
subspace matrix Θj is directly influenced by the sensors network
(potential sources of faults) and the selected control structure.
In other words, a particular design of these matrices can incur
losses or poor quality fault detections. An interesting result can
be obtained through the comparison between a PCA model
developed using the overall available measurement points and
the optimal solution given here.

3.2. Optimal Signal Selection Based on Detectability
Maximization. The proper signals selection for the PCA model
development is performed by focusing on faults detectability
maximization. It is based on the existing sensors network in the
previously proposed optimal control structure13 and the potential
additional cost in case new measurement points would be required.

In this context, the problem can be defined as follows,
considering Nc available signals including controlled as well as
manipulated variables in the process and Ii )[g1,g2, · · · ,gNc

] a
particular signals selection, where gl ) {1;0} with l ) 1, · · · ,Nc

represents a binary alphabet indicating the utilization or not of
the signal in the l location. Then, the PCA model construction
depends on this particular selection, P(Ii) and DA(Ii). In addition,
the MFM calculation when combined statistics are used results

where i makes reference to the signals selection Ii, with i ) 1,
· · · , 2Nc and where j ) 1, · · · , J is the type of considered
abnormal events (disturbances, faulty elements, etc.).

Another important point to consider is a cost penalization c
) [c1, · · · , cNc

], greater than zero each time that new measure-
ments are introduced. Note that it is not necessary that c must
be in monetary units, in fact, its value can be selected by
considering a trade-off between detectability and quantity of
new sensors. Thus, lower values of c means that the minimiza-
tion of the objective function in eq 20 prioritizes detectability
without considering the cost of new sensors. On the contrary,
when c has a considerable weight the cost of new sensors is
penalized without considering the detectability index. The
penalization coefficients must be normalized to contribute in
the same order of magnitude as the term |R(Ii)Θj(Ii)|-12δz to
solve the trade-off problem. Therefore, the complete problem
to be solved can be stated as

This is a combinatorial problem with 2Nc potential solutions. In
eq 20 the minimization of the MFM with combined statistics drives
to the maximization of the faults detectability. In other words, the
search is oriented toward to find the optimal signals selection Iop

(solution of eq 20) that guarantees the best fault detection of the
most expected abnormal events at a lowest investment cost.

3.3. Genetic Algorithm Solution. In this subsection, the use
of GA is discussed for solving the problem displayed in eq 20
subject to the following restrictions

where the first restriction in eq 21 avoids the selection Ii that
does not present dimensional reduction. In addition, if the signal
dimension is equal to the principal components retained A the
combined statistic z is reduced to Hotelling statistic only (Q )
0). The second constraint avoids the individual selection Ii that
produces |fj|MFM

z ) ∞, which means that a specific fault can
not be detected. In other words, the second constraint guarantees
the fault detectability condition in eq 17.

4. Case Study: Tennessee Eastman Process

Essentially, the TE plant18 generates two products from four
reactants and has five principal units of operation: the reactor,
the product condenser, a vapor-liquid separator, a compressor,
and a product stripper. The stripper underflow contains the key
components G and H. In this work, is assumed that the plant is
operating under conditions considered as base case, that is G/H
mass ratio of 50/50 and a production rate of 7038 kgG/h and
7038 kgH/h. The process has 41 potential controlled variables
(CV) and 12 manipulated variables (MV). The plant dynamic
model used here was taken from Ricker’s control department
of the Washington University.19-21

In Zumoffen and Basualdo13 a systematic approach for
solving simultaneously optimal sensor location and plant-wide
control based on genetic algorithms accounting only steady-state
process information is presented. This generalized procedure is

z(k) )
x̄/

T(k)PDA
-1PTx̄/(k)

δT2

+
x̄/

T(k)C̃TC̃x̄/(k)

δQ

) x̄/
T(k)[PDA

-1PT

δT2

+ C̃TC̃
δQ

]x̄/(k)

) x̄/
T(k)Mx̄/(k)

(16)

|RΘjfj| g 2δz (17)

|fj|MFM
z ) | |RΘj| |

-12δz (18)

|fj
i|MFM

z ) |R(Ii)Θj(Ii)|
-12δz (19)

min
Ii

[ ∑
j)1

J

|fj
i|MFM

z + cIi
T] ) min

Ii

[ ∑
j)1

J

|R(Ii)Θj(Ii)|
-12δz + cIi

T]

(20)

∑
l)1

Nc

Ii(l) > A

|R(Ii)Θj(Ii)| > 0

(21)
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schematically shown at Figure 1 with light gray background.
Basically, the optimal sensor location problem accounting the
control structure is solved by using tools as steady-state models,
internal model control (IMC), sum of square errors (SSE), relative
gain array (RGA), and genetic algorithms (GA). Thus, for a
nonsquare process model G(s) ) [G(s)s

T,G(s)r
T]T with m outputs

and n inputs, m > n being the problem to solve,

where

where tr( · ) is the trace function, s ) 0, and Ii is the GA
chromosome that selects the sensor network. Minimization at eq
22 generates the sensors locations with the best decoupled RGA
without heuristic considerations.

The control structure obtained by this methodology is
displayed at Figure 2 which involves a number of variables

described in the Table 1 (indicated with boldface type). This
table displays the 52 potential measurement points and signals
available in the TE process. A comparison with other control
structures was presented in Zumoffen and Basualdo13 con-
sidering both the dynamic behavior (set point changes and
disturbances) and hardware requirements.

The optimal monitoring system design is based on analyz-
ing the abnormal event detectability on the proposed control
structure and the optimal signal selection mentioned above.
In this framework, typical problems in process elements1-3,22

are proposed and summarized at Table 2. Fourteen potential
sensor faults, all of them consisting on shifts, are accounted
within a specific range of magnitude. The disturbances
analyzed here are the most critical events for the TE process,
as it has been defined in the work of Downs and Vogel,18

according to their deep knowledge of this process.

5. Results

In this section the chosen parameters for the implementation
on the TE case study are included. According to the data given
at Table 1 the combinatorial problem has dimension Nc ) 52,

Figure 2. The proposed control structure.

Table 1. Variables for TE

potential measurements manipulated variables

variable description variable description variable description

y1 E feed flow y20 A comp. feed u1 D feed valve
y2 recycle flow y21 B comp. feed u2 E feed valve
y3 reactor feed y22 C comp. feed u3 A feed valve
y4 reactor pressure y23 D comp. feed u4 AC feed valve
y5 reactor level y24 E comp. feed u5 comp. recycle valve
y6 reactor temp y25 F comp. feed u6 purge valve
y7 purge rate y26 A comp. purge u7 sep. liq. valve
y8 separator temp y27 B comp. purge u8 str. prod. valve
y9 separator level y28 C comp. purge u9 str. steam valve
y10 separator pressure y29 D comp. purge u10 RCW valve
y11 separator underflow y30 E comp. purge u11 CCW valve
y12 stripper level y31 F comp. purge u12 E feed set point
y13 stripper pressure y32 G comp. purge u13 Psuf set point
y14 production y33 H comp. purge u14 suf set point
y15 stripper temp y34 D comp. product u15 RCW flow set point
y16 stripper steam flow y35 E comp. product
y17 compressor work y36 F comp. product
y18 reactor CWO temp y37 G/H product
y19 separator CWO temp

min
Ii

[SSE(Ii)], subject to |Ii| ) n (22)

SSE(Ii) ) tr(S(Ii)
TS(Ii)), S(Ii) ) [[ In×n

0(m-n)×n
] - GGs(Ii)

-1]
(23)
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and 252 ≈ 4.5 × 1015 possible solutions. Taking into account
that a single iteration demands ≈ 0.156 s, an exhaustive
evaluation of this problem is unpractical.

Figure 3 shows the functional cost profiles when different
settings are used. Figure 3 shows the GA behavior with Pco )
0.7, Pm ) Pco/Nc, and the weights for penalizing extra measure-
ment selection being equal to 10. For this case different initial
populations were used, Ni ) 100, 500, 1000, 5000. Thus Ni

affects the convergence time directly. Generally, for small
dimension problems, a good choice is to select the initial

population equal to 10-20% of the problem dimension. For
large combinatorial problems, as in this case, an adequate
selection may be Ni ≈ Nc × 100. Obviously, the dimension of
the initial population is limited by the computational resources.
Figure 3b summarizes the fitness profiles when different
crossover probabilities, Pco ) 0.5, 0.7, 0.9, are selected. The
mutation probability is adjusted as Pm ) Pco/Nc, the initial
population is Ni ) 500. In this case a low Pcm value, and
therefore Pm, limit the recombination and mutation possibilities
of the individuals. This behavior may give locally optimal

Table 2. Abnormal Events Proposed

faults variable range [%] type disturbances description type

F1 E feed flow (15 step IDV1 A/C feed ratio step
F2 recycle flow (10 step B comp. constant step
F3 reactor level (10 step IDV4 RCW inlet temp step
F4 separator temp (5 step IDV8 A,B,C feed comp. random
F5 separator level (10 step IDV12 CCW inlet temp random
F6 separator pressure (2 step IDV15 CCW valve sticking
F7 separator underflow (20 step
F8 stripper level (10 step
F9 stripper underflow (10 step
F10 stripper temp (5 step
F11 compressor work (5 step
F12 RCWO temp (5 step
F13 B comp. purge (10 step
F14 G/H ratio product (10 step

Figure 3. Fitness function for different settings.
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solutions.17 On the other hand, an excessive value (on these
probabilities) generates an erratic behavior at the beginning of
the search. The influence of the sensors penalization weights
in eq 20 can be observed in Figure 3c. In this case the weights
are adjusted to 0.5, 5, 15, and 30, with the remaining parameters
fixed to Pco ) 0.7, Pm ) Pco/Nc and Ni ) 1000. Clearly, by
imposing a low penalty, eq 20 focuses on minimizing the
minimal fault magnitude and new hardware may be included.
By increasing the penalization weight the inclusion of new
sensors is avoided and, obviously, the achievable MFM is
limited to the existing measurement devices. For the cases shown
in Figure 3c, and taking into account Table 1, the sensor
selection results [1, 7, 11, 16] and [1, 7, 11, 37] for a weight of
0.5 and 5, respectively. The first setting includes two new
sensors at locations 7 and 16, and the second one includes only
one new sensor at location 7. For weights of 15 and 30 the
optimal location is the same [1, 7, 11, 27, 37] and does not
include new measurement devices.

Table 3 summarizes the adopted parameters for the GA in
this case study. The simulations were performed in an Intel core
duo, 2.53 GHz and 2 GB RAM computer. Considering Table
2, J ) 19 are the potential abnormal events in the TE process.
The initial population of individuals Ni provides the starting
point for the search and evolution space (initial potential
solutions). The GA termination criteria is the maximum genera-
tion number, Ng. The individuals selection is carried out by
means of the roulette wheel method according to their relative
fitness measure. The production of new chromosomes is
developed by the crossover operator, in this case double-point
method with probability of Pco is adopted. Analogously as it
happens in the natural evolution, the mutation produces a new
genetic structure and basically is applied with a lower prob-
ability, Pm. All of these parameter are adjusted by accounting
the analysis shown in Figure 3. Finally, c(i) ) 10, where c
represents the penalty vector of dimension [1 × (52 - 14)]
related to the measurements selection.

Figure 4 shows the GA results. The fitness profile to the best
individual selected along the generations is displayed in the

Figure 4a. Figure 4b shows the unfeasible solutions percentage
for each generation. The optimal solution Iop, corresponding to
the last generation, is presented in Table 4. As can be observed
the optimal solution involves only five sensors (y1, y10, y11, y27,
y37) and six signals (u3, u9, u10, u11, u12, u13); fortunately all of
them already exist in the process control structure. This means
zero additional inVestment cost because the existing hardware
resources are enough for monitoring purposes. In Table 4 two
other alternative signals selection are included for comparison.
The solution Iunf does not fulfill the second constraint in eq 21
because it belongs to the unfeasible group. This selection
presents two serious problems: losses in fault detection and an
increase in the investment costs since it includes new sensors.
Another possibility is considered for discussion purposes, that
is the achievable performance when the full signal selection
case Ifull is done. It means that all the signals that appear in the
Table 1 are selected without previous considerations. It clearly
presents an increase in the cost due to the new measurement
points and this sensor network does not guarantee an optimal
performance from the monitoring point of view. It seems to
indicate that the amount of measurements is not directly related
to the quality of fault detection as can be observed in the
following paragraphs.

The PCA model parameters corresponding to the TE process
are presented in Table 5. In this case the normal database has
a dimension of 841 samples and 52 measured process variables.
The cumulative percent variance limit has been selected to 90%
and the confidence limit for the T2 and Q is chosen about 99%
(ν ) 3) in all cases. In addition, the principal component retained
for each case and the confidence limit adopted for the combined
statistic are included. The setting value for the moving window
N in the smoothed moving average (SMA) algorithm and the

Figure 4. GA performance.

Table 3. GA Setting Parameters

Ni Nc J Ng Pm Pco selection crossover c(i)
optimization

time

5000 52 19 100 0.7/Nc 0.7 roulette
wheel

double-point 10 1.37 h

Table 4. Different Signals Selection

individual signals selection

Iop [y1, y10, y11, y27, y37, u3, u9, u10, u11, u12, u13]
Iunf [y1, y5, y9, y12, y14, y25, y26, y27, y30, y33, y34, y35, y36, u1, u2, u4,

u7, u8, u14]
Ifull [y1, · · · , y37, u1, · · · , u15]

Table 5. PCA and Fault Subspace Parameters Setting

m × n δcpv[%] ν Aop Aunf Afull δz N* [samp.] N [samp.]

841 × 52 90 3 7 14 29 2 60 20
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samples N* to evaluate the filtered version of the process
variables are also presented (see the Appendix).

The first simulation case corresponds to the reactor level
sensor offset, recognized as F3 fault type, and can be observed
in Figure 5. The fault magnitude is +10%, and the occurrence
time is Tf ) 20 h. Figure 5 displays the temporal evolution of
the combined statistic when different sets of measurements and
signals are selected according to Table 4. In Figure 5b a temporal
zoom is presented for more clarity. The optimal signals selection,
Iop, presents better fault detection conditions compared with the
full and unfeasible cases. When analyzing which signal presents
more clearly the deviation from the mean contribution magnitude
from the confident limit, it is evident that the optimal one does.
In addition, if an expert system is designed for classification
purposes, as it was done by Zumoffen and co-workers,1-3 the
optimal solution presented here is the most suitable. In Figure
5c can be observed this behavior computed over a zone analysis

from 20 to 30 h. The used variables correspond to those
highlighted in Table 1 ([y1-2, y5, y8-12, y14-15, y17-18, y27, y37,
u1-15] in their autoscaling versions with respect to the normal
case. Figure 5 panels d and e summarize the temporal evolutions
of the two variables with major contribution in Figure 5c. This
fault type modifies the real level of the reactor; in this case of
positive offset the real reactor level decreases from its nominal
value. Consequently, it can be observed that the transient effects
in the pressure and temperature are compensated by the existing
control structure. However, an increase in the magnitude of this
fault type produces a performance degradation and/or possible
plant shutdown because the high pressure violates its allowed
limit. This behavior clearly evidences the necessity of including
any fault tolerant characteristics for the base case control
structure, which will guarantee a profitable and safe process
operation.

Figure 5. Fault F3 (reactor level offset of 10%).
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The second simulation case presented in Figure 5c shows
the separator level offset fault, occurring at Tf ) 20 h, with a
value of about +10%. This fault type affects essentially the
purge transient flow and the D feed flow. When the fault
magnitude is within (10%, it does not have direct influences
on the cost. However, an important increase in this magnitude
can produce unacceptable transient behaviors in the purge and
D feed flow affecting the quality performances in both B
composition in purge and G/H ratio in product. Figure 6a
displays the fault detection scenario with combined statistic
when different variables and signals are selected (according to
Table 4). In Figure 6b a temporal zoom is presented for more
clarity. The unfeasible signals selection presents a loss of
detection, and the full signal case presents poor detectability
conditions. On the other hand the optimal case Iop clearly
allows an adequate fault detection. Figure 6c shows the
variables contribution for the period between 20 and 30 h,

which are autoscaled with respect to the normal case. The
two variables with major contribution are displayed in the
Figure 6 panels d and e, and they are the purge and D feed
valve, respectively.

The Figure 7 presents the process behavior when the IDV4
disturbance appears at 20 h. This abnormal event produces an
abrupt variation in the reactor cooling water inlet temperature
and its effect impacts the inner control loop in stream 12 only
(see Figure 2). Because of this, only a few variables are able to
detect these changes. Figure 7a displays the fault detection
conditions with combined statistic when different variables and
signals are selected (according to Table 4). In Figure 7b a
temporal zoom is presented. Clearly the unfeasible signals
selection presents a complete loss of detection of this event.
The optimal and full selections present comparable behavior.
It is a remarkable issue since the optimal structure only uses a
few number of signals from the existing sensor network. The

Figure 6. Fault F5 (separator level offset of 10%).
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mean contribution of the variables in the control structure can
be observed at Figure 7c where clearly the principal effect comes
from the RCW valve variable. Its temporal profile is displayed
in Figure 7d.

The final simulation case presented graphically is the effect
of the IDV15 disturbance which can be observed in Figure
8. This abnormal event is characterized by a valve sticking
in the condenser cooling water stream. The result is that the
recycle flow cannot be effectively controlled in its desired
operational point affecting several process units and eventu-
ally the operational cost. Figure 8a summarizes the combined
statistic profiles when different signals selection are used,
according to Table 4. In Figure 8b a temporal zoom is
presented. The optimal and full cases present comparable
performance in the fault detection conditions. On the other
hand, the unfeasible selection case presents a considerable
delay (≈14 h) for effectively detecting this fault with poor
performance. Figure 8c summarizes the mean contribution
in the zone analysis from the existing control structure
signals. The variables with major contribution are displayed
in Figure 8 panels d and e coerresponding to the CCW and
compressor recycle valves, respectively.

The remaining simulation cases from Table 2 are summarized
in Table 6 using the reliability index. This indicator considers
the amount of samples that are over the confidence limit in
percentage magnitude. Note that in the normal operation case
the process presents 1% of the samples over this limit according
to the 99% of confidence. Thus, this index is computed and
displayed in Table 6 for each abnormal event given in Table 2
considering different signal selection according to Table 4
information. The unfeasible selection clearly presents loss of
detection for faults F5 and F8 and the disturbance IDV4
characterized by a reliability index very close to zero. The full

selection case also presents difficulties to perform a suitable
fault detection. For the faults F5 and F8 this selection presents
a lower reliability index and poor performance than the optimal
one. As can be deduced, the optimal signals selection case uses
lower amount of variables with a suitable fault detection
performance for the overall abnormal events analyzed here. In
all cases the reliability index is comparable with the full case
and even better for some of them (F5 and F8).

Finally, an important comparison can be done from previous
works11,23 in this area. It is important to note some basic
differences from the design and testing point of view. In those
works where separated statistics (T2 and Q) were used, the
methodology is tested only under typical disturbances and the
signal selection for the monitoring system is performed on a
plant with a classical control structure and sensor network
design. In contrast, the methodology presented here, uses
combined statistic which have better performance, the proposed
strategy is rigorously tested under typical disturbances and faults
in sensors, and the overall approach is based on a controlled
plant that has an optimal sensor network design as well as an
optimal control structure.13 Remembering the process conditions
stated by Downs and Vogel,18 the principal disturbance scenarios
are IDV1, IDV4, IDV8, IDV12, and IDV15. Musulin et al11

presented their results about the reliability index in contrast with
the sensor network used by Chen and McAvoy25 on the TE
plant with the base case control strategy. In Table 7 these results
are summarized to compare with the obtained ones in Table 6
with combined statistic which gives real improvements. These
previous works11,25 did not display results about the faulty
elements in the process. It was limited to test for some
disturbances suggested by Downs and Vogel.

Figure 7. Disturbance IDV4 (RCW inlet temperature).
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6. Conclusions

This work presents a promising alternative of optimal PCA-
based monitoring system design for large scale processes. The
results obtained here show that the use of GA offers an important
opportunity to do a rigorous search among a great number of
combinations which is a common task for this kind of
multivariable complex systems. Generally, these types of prob-

lems are solved with the help of a considerable amount of
heuristic considerations. The optimal supervisory system is
developed using multiple-integrated tools as PCA, combined
statistic, detectability analysis, fault subspace extraction, and
associated investment costs. It was found how to include these
elements in the objective function so as to promote the use of
the existing control structure. In particular, it must be remarked
that the detectability function is extended to be calculated on
the basis of the combined statistic which represents a new result

Figure 8. Disturbance IDV15 (CCW valve sticking).

Table 6. Reliability Index

set F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

full 17.2 100 100 100 2.3 100 98.7 0.3 100 100
unfeasible 18.2 99.3 100 99.7 0.3 97.7 1.2 0 100 98.7
optimal 11.2 100 100 100 2.5 100 39.5 1.7 100 100

set F11 F12 F13 F14 IDV1 IDV4 IDV8 IDV12 IDV15

full 100 100 100 100 100 100 99.3 99.2 95.2
unfeasible 99.5 6.3 92 99.7 99.2 0 93.5 96.5 21.2
optimal 100 11 68 100 100 100 99.2 99.2 88.5

Table 7. Reliability Indexes and Amount of Sensors in Previous
Works

Statistic IDV1 IDV4 IDV8 IDV12 sensors

Chen and McAvoy25 T2 99.72 1.97 98.89 35.33 16
Q 99.86 3.68 99.17 70.91

Musulin et al11 T2 100.00 2.38 99.29 55.56 6
Q 93.81 1.07 80.01 35.40

proposed here z 100.00 100.00 99.20 99.20 5
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in the context of expert fault diagnosis system design. In fact,
the optimal solution, obtained by this approach, with lower
investment costs presents comparable and even better detection
performance than that obtained by the full selection case. It is
done by using only the already existing hardware from the
optimal control structure. This approach integrated with the
previous work of the authors13 impels a generalized and
systematic strategy to solve typical problems in process
industries as sensors location, control structure selection, and
monitoring system design. Additionally, this methodology can
be tied with other open problems such as, process synthesis,
investment cost analysis, observability, fault diagnosis, and fault
tolerant control,1,2 which is for future work.
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Appendix

A.1. Fault Subspace Extraction

The fault subspace, Θ, can be extracted from the abnormal
database by processing the 52 potential measurements and
signals from Table 1. Initially, due to the typical noise present
in the process measurements a smoothed moving average (SMA)
filter is applied for consistency. It performs the average (mean)
of the original signal x(k) over a specified moving window of
dimension N + 1 samples, as can be observed in eq 24, resulting
in the filtered version xf(k).

An improved algorithm exists to avoid problems with lagged
samples called exponential weighted moving average (EWMA)
for online applications.23,15 Thus, before the faults subspace
extraction occurs, the autoscaled database is filtered using eq
24.

The faults direction are computed using the well-known “3δ
edit rule”24 which suggests that if |xf(k)| > 3 the variable is
considered to be deviated from its normal state. Analyzing the
overall database for each abnormal case present the fault
directions can be computed as

where xjf
ji(k*) is the autoscaled and filtered version of the variable

number i from the abnormal database (event) j evaluated in the
sampled instant k/. This temporal instant is specified according
to the dynamic response of the process trying to avoid the

transient behavior due to the fault occurrence k/ ) tf + N/.
Where tf is the fault occurrence sample. Thus each row of F
represented by F(j,1 ) Nc) corresponds to the j fault propagation
over the Nc variables analyzed from the abnormal database. The
faults subspace Θ can be computed directly from the fault
direction matrix F as can be observed in eq 26

where the function diag( · ) takes the vector F(j,1 ) Nc) as input
argument and gives back a diagonal matrix of Nc × Nc with
F(j,1 ) Nc) in its diagonal. On the other side, the function nzr{ ·}
takes as input argument the diagonal matrix constructed
previously and gives back another matrix Θj. This fault subspace
matrix contains only the nonzero rows from the original diagonal
matrix. Finally, this fault propagation matrix can be applied in
the optimization algorithm of eq 20 and eq 21.

An alternative approach to obtain the fault direction matrix
F exists.1-3 In these works a strategy based on fuzzy logic tools
is applied and the resultant matrix rules represent the fault
propagations over the process variables. In this case the matrix
rules evaluation accounts the mean contribution of the variables
within the specified zone of analysis.

A.2. Nomenclature

Variables

A ) principal component retained
b ) mean vector
c ) cost vector
CPV(A) ) CPV to A
DA ) first A eigenvalues matrix
Dλ ) full eigenvalues matrix
E ) residual matrix
fi ) fault components vector
Fi ) type i fault
||fj||MFM

i ) MFM for i statistic and fault j
gi ) gen parameter i
Ii ) chromosome i
Iop ) optimal selection
Iunf ) unfeasible selection
Ifull ) full selection
IDVi ) disturbance i
J ) abnormal events
k/ ) evaluation sample
m ) data matrix samples
M ) combined statistic matrix
n ) data matrix variables
N ) moving window dimension
N/ ) evaluation window
Nc ) chromosome length
Ng ) total generations
Ni ) initial population
pi ) eigenvector i
Pco ) crossover probability
Pm ) mutation probability
P ) PCA model
Pb ) best population set
Pj ) actual population set
Pm ) mutated population set
Pr ) recombined population set
Ps ) selected population set
Q ) SPE statistic
Rc ) correlation matrix

xf(k) ) (N + 1)-1 ∑
i)0

N

x(k - i) (24)

F(j, i) ) {1, if xjf
ji(k/) > 3

0, if -3 e xjf
ji(k/) e 3

-1, if xjf
ji(k/) < -3

(25)

with

F(j, i) )
j ) 1, ..., J
i ) 1, ..., Nc

Θj ) nzr{diag[F(j, 1 ) Nc)]}
T (26)
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s ) variance vector
t ) latent variable
T2 ) Hotelling statistic
T ) latent matrix
ui ) input i
U ) eigenvector matrix
x ) signal
xf ) filtered signal
x ) process sample
xj ) normalized process sample
x/ ) normalized process sample model
xj0 ) normal behavior case
X ) process data matrix
Xj ) normalized process data matrix
yi ) output i
z ) combined statistic

Greek Symbols

δi ) confidence limit i
λi ) eigenvalue i
µi ) mean value for i signal
σi ) variance value for i signal
Θj ) j fault subspace
F ) Fault directions matrix

AbbreViations

CPV ) cumulative percent variance
CV ) controlled variable
CCW ) compressor cooling water
EWMA ) exponential weighted moving average
FD ) fault detection, GA ) genetic algorithm
IMC ) internal model control
MFM ) minimal fault magnitude
MV ) manipulated variable
PCA ) principal component analysis
RCW ) recycle cooling water
RCWO ) RCW outlet
RGA ) relative gain array,
SMA ) smoothed moving average
SPE ) square predictive error
SSE ) sum of square errors
SVD ) singular value decomposition
TE ) Tennessee Eastman
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