Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Journal of Alloys and Compounds 490 (2010) L12-L14

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Letter

Vibrational spectra of Sn₂TiO₄

Enrique J. Baran^{a,*}, Ana C. González-Baró^a, Nobihiru Kumada^b, Nobukazu Kinomura^b, Takahiro Takei^b, Yoshinori Yonesaki^b

 ^a Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 esq. 115, C. Correo 962, 1900 La Plata, Province Buenos Aires, Argentina
 ^b Department of Research Interdisciplinary, Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae-cho 7, Kofu 400-8511, Japan

ARTICLE INFO

Article history: Received 3 September 2009 Accepted 20 September 2009 Available online 6 October 2009

Keywords: Tin(II) tetraoxotitanate TiO₆-moieties Infrared spectra Raman spectra

ABSTRACT

The infrared and Raman spectra of the recently synthesized tin(II) titanate, Sn_2TiO_4 , were recorded and briefly discussed on the basis of its structural peculiarities.

© 2009 Elsevier B.V. All rights reserved.

ALLOYS AND COMPOUNDS

1. Introduction

Double oxides containing transition metals and Sn(II) are relatively scarce [1] and, in particular, mixed titanium(IV)/tin(II) oxides were not known until recently when a material of composition Sn_2TiO_4 could be prepared and characterized [2].

On the other hand, only a reduced number of oxometallates containing octahedral TiO_6 -units has been thoroughly investigated by vibrational spectroscopic methods [3–5]. Therefore, this new material offers a good opportunity to advance in a better knowledge of the vibrational properties of this type of oxide moieties.

2. Experimental

Black stick shaped single crystals of Sn₂TiO₄ were obtained by high temperature solid state reaction working with stoichiometric amounts of TiO₂, K₂CO₃ and SnCl₂ in an evacuated quartz tube, as described earlier [2]. The obtained samples were characterized by X-ray powder diffractometry.

The infrared spectra in the range 4000–400 cm⁻¹ were recorded with a FTIR-Bruker-EQUINOX-55 instrument, using the KBr pellet technique. Spectra measured with suspensions of the compounds in Nujol mulls gave identical results. Raman spectra in the same spectral range were measured on powdered samples using the FRA 106 Raman accessory of an IF66 Bruker spectrophotometer. Radiation from a Nd:YAG solid-state laser (1064 nm) was used for excitation.

3. Results and discussion

3.1. Structural characteristics

 Sn_2TiO_4 crystallizes in the tetragonal system, space group $P4_2/mbc$ with Z=4 formula units per cell and it is structurally related to the low-temperature form of Pb₃O₄ [1,2,6]. The structure is built up by one-dimensional chains of slightly distorted TiO₆-octahedra sharing edges along the *c*-axis and the chains are connected by Sn²⁺ cations having a stereochemically active electronic lone pair.

The TiO₆ units present four longer (1.986(7) Å) and two shorter (1.965(8) Å) Ti–O distances [2], showing that the actual symmetry of these groups is D_{4h}. On the other hand, the Sn(II) cations present a trigonal SnO₃ coordination with one longer (2.21(1) Å) and two shorter (2.093(6) Å) Sn–O distances [2].

3.2. Vibrational spectra

On the basis of the commented structural characteristics and in order to attempt an assignment of the vibrational spectra of Sn_2TiO_4 , it seems useful to make a spectral analysis based on the D_{4h} distortion of the quasi-octahedral TiO₆ units present in the material [7]. This correlation is presented in Table 1.

From the three active Raman vibrations, the MO_6 -octahedra usually shows a very strong and well-defined line, at the highest energy, corresponding to the totally symmetric M–O stretching ($\nu_1(A_{1g})$), whereas those at lowest energy corresponds to one of the

^{*} Corresponding author. Tel.: +54 221 4259485; fax: +54 221 4259485. *E-mail address:* baran@quimica.unlp.edu.ar (E.J. Baran).

^{0925-8388/\$ –} see front matter s 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2009.09.179

E.J. Baran et al. / Journal of Alloys and Compounds 490 (2010) L12-L14

Table 1 Correlation between the vibrational modes of an octahedral O_b-species and the derived D_{4b}-species.

TiO ₆ -octahedron	TiO ₆ -D _{4h} -symm.	
A _{1g}	A _{1g}	
Eg	$A_{1g} + B_{1g}$	
F _{1u}	$A_{2u} + E_u$	
F _{1u}	$A_{2u} + E_u$	
F _{1g}	$B_{2g} + E_g$	
F _{2u}	$B_{2u} + E_u$	
Activity		
A _{1g} , E _g , F _{1g} : Ra	A _{1g} , B _{1g} , B _{2g} , E _g : Ra	
F _{1u} : IR; F _{2u} : ia	A _{2u} , E _u : IR; B _{2u} : ia	

Table 2

 $Description \ of the \ vibrational \ modes \ of the \ TiO6-moieties \ with \ trans-D_{4h}-symmetry.$

Vibrational mode	Description	Activity
v_1 (A _{1g})	$v_{\rm s}$ (Ti-O _{equatorial})	Raman
$\nu_2 (A_{1g})$	$v_{\rm s}$ (Ti-O _{axial})	Raman
$\nu_3 (A_{2u})$	v_{as} (Ti-O _{axial})	IR
$v_4 (A_{2u})$	π (TiO ₄)	IR
$v_5 (B_{1g})$	ν (TiO ₄)	Raman
ν_{6} (B _{2g})	$\delta_{\rm sciss.}$ (TiO ₄)	Raman
v_7 (B _{2u})	δ (TiO ₄)	Inactive
ν ₈ (E _g)	$\delta_{\rm sciss.}$ (TiO ₆)	Raman
ν_9 (E _u)	v_{as} (TiO ₆)	IR
$v_{10} (E_u)$	δ (Ti-O _{equatorial})	IR
ν_{11} (E _u)	δ (Ti-O _{axial})	IR

deformational modes ($\nu_5(F_{1g})$). Between these two lines a second M–O stretching ($\nu_2(E_g)$), usually with very low intensity, is found [8].

The IR spectrum generally presents two strong and relatively broad bands corresponding to the antisymmetric M–O stretching $(\nu_3(F_{1u}))$ and bending $(\nu_4(F_{1u}))$ vibrations. The remaining F_{2u} mode, corresponding to another deformational mode, is inactive.

In the case of D_{4h} -symmetry, and as shown in Table 1, splitting of the double and triple degenerated vibrational modes are expected, and concomitant band splitting, in relation to the O_h schema, can be predicted. Concretely, in this case five Raman active and five infrared active bands related to the TiO₆ vibrations in the Sn₂TiO₄ lattice are expected. The origin of these bands is described in detail in Table 2 and the characteristics of these vibrational modes are nicely depicted in an earlier paper of Preetz et al. [9].

The FTIR and Raman spectra of one of the measured Sn_2TiO_4 samples are shown in Figs. 1 and 2, respectively. A first inspection of the IR spectrum immediately shows the presence of two strong and relatively broad bands centered at about 600 and 500 cm⁻¹, which are usually considered as characteristic of non-isolated octahedral TiO₆ moieties [4,10].

The proposed assignment is shown in Table 3, and briefly discussed as follows:

Table 3

Wavenumbers (in cm^{-1}) and assignment of the vibrational spectra of $Sn_2 TiO_4.$

IR	Raman	Assignment
	655 vs	$\nu_1(A_{1g}), \nu_2(A_{1g})(?)$
618 sh		$\nu_3(A_{2u})$
600 vs, br		$\nu_9(E_u)$
530 m		$\nu_4(A_{2u})$
506 vs		$\nu_{10}(E_u)$
476 s, 470 sh		$\nu_{11}(E_u)$
	470 s	$\nu_8(E_g)$
440 m, 430 s		
	380 sh, 360 m	$\nu_{6}(B_{2g})$
	339 s, 298 m	
	180 vs, 160 s, 142 m, 108 vs	Lattice vibrations

vs, very strong; s, strong; m, medium; br, broad; sh, shoulder.

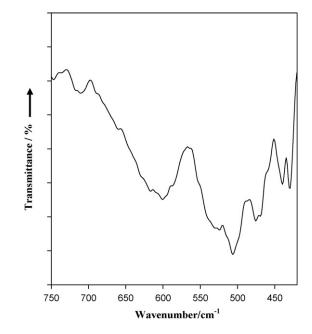


Fig. 1. FTIR spectrum of Sn_2TiO_4 in the spectral range between 750 and 400 cm⁻¹.

- The strongest Raman line can be confidently assigned to totally symmetric stretching vibration of the four equatorial Ti–O bonds.
- The two components derived from the octahedral E_g mode $(A_{1g}+B_{1g})$ could not be identified. The A_{1g} component may be eventually overlapped with the $\nu_1(A_{1g})$ vibration, as suggested in Table 3, whereas the other one probably does not attain enough intensity.
- In the IR spectrum the two components of the original F_{1u} modes $(\nu_3 + \nu_9 \text{ and } \nu_4 + \nu_{10}, \text{ respectively})$ lie close together, as expected. The ν_{11} (E_u) mode lies near to ν_{10} , in agreement with their similar origin. The observed weak splitting of this band may be a consequence of a site-symmetry effect.
- The situation is rather more complex for the components derived from the original F_{1g} mode, since in the region below 470 cm⁻¹ the TiO₄-vibrations can be coupled with SnO modes [11]. The active Raman vibration ν_8 (B_{2g}) apparently presents a similar energy than ν_{11} whereas the ν_6 (B_{2g}) mode is also seen as a weakly splitted doublet.

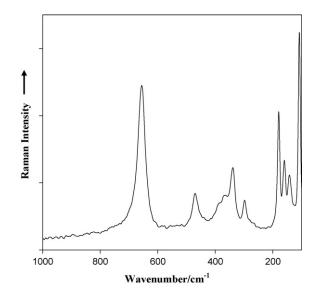


Fig. 2. FT-Raman spectrum of $Sn_2 TiO_4$ in the spectral range between 1000 and $100\,cm^{-1}.$

E.J. Baran et al. / Journal of Alloys and Compounds 490 (2010) L12–L14

As it can be seen from Fig. 2 and Table 3 the Raman spectrum shows some additional bands; those at 339 and 298 $\rm cm^{-1}$ can, eventually, be related to vibrational modes that retain a certain Sn-O character whereas the other four are surely external ("lattice") vibrations.

4. Conclusion

In summary, the performed analysis of the IR and Raman spectra of Sn₂TiO₄ is clearly compatible with the structural characteristics of the compound, containing non-isolated and slightly distorted octahedral TiO₆ moieties, and extends our knowledge on the vibrational properties of this type of materials.

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), and the Universidad Nacional de La Plata. AGB and EJB are members of the Research Career from CONICET.

References

- [1] O. Müller, R. Roy, The Major Ternary Structural Families, Springer, Berlin, 1974. [2] N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, S. Wada, Mater. Res. Bull. 44
- (2009) 1298. [3] A. Müller, E.I. Baran, R.O. Carter, Struct, Bonding 26 (1976) 81.
- A.N. Lazarev, Vibrational Spectra and Structure of Silicates, Consultant Bureau, [4] New York, 1972.
- [5] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-[6] J.R. Gavarri, D. Weigel, A.W. Hewat, J. Solid State Chem. 23 (1978) 327.
 [7] C.N.R. Rao, Indian J. Appl. Phys. 16 (1978) 277.
 [8] A.F. Corsmit, H.E. Hoefdrad, G. Blasse, J. Inorg. Nucl. Chem. 34 (1972) 3401.
 [9] W. Preetz, D. Ruf, D. Tensfeldt, Z. Naturforsch. 39b (1984) 1100.

- [10] P. Tarte, Silic. Ind. 28 (1963) 345.
- [11] V.S. Suknev, E.N. Diman, J. Appl. Spectrosc. 22 (1975) 194.