Continuous and localized Riesz bases for L^2 spaces defined by Muckenhoupt weights

Hugo Aimar 1, Wilfredo A. Ramos2

Abstract
Let w be an A_{∞}-Muckenhoupt weight in \mathbb{R}. Let $L^2(wdx)$ denote the space of square integrable real functions with the measure $w(x)dx$ and the weighted scalar product $\langle f, g \rangle_w = \int_{\mathbb{R}} fg \, wdx$. By regularization of an unbalanced Haar system in $L^2(wdx)$ we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.

Keyword: Riesz bases, Haar wavelets, basis perturbations, Muckenhoupt weights, Cotlar’s Lemma.

1. Introduction and statement of the main result
A sequence $\{f_k, k \in \mathbb{Z}\}$ in a Hilbert space H is said to be a Bessel sequence with bound B if the inequality
$$\sum_{k \in \mathbb{Z}} |\langle f, f_k \rangle|^2 \leq B \|f\|^2_H$$
holds for every $f \in H$. If $\{f_k, k \in \mathbb{Z}\}$ is a Bessel sequence with bound B and $\{e_k, k \in \mathbb{Z}\}$ is an orthonormal basis for the separable Hilbert space H, then the operator T on H defined by
$$Tf := \sum_{k \in \mathbb{Z}} \langle f, f_k \rangle e_k$$
is bounded on H with bound \sqrt{B}. Conversely if T is bounded on H, then $\{f_k, k \in \mathbb{Z}\}$ is a Bessel sequence with bound $\|T\|^2$.

When $\{f_k, k \in \mathbb{Z}\}$ itself is an orthonormal basis and $e_k = f_k$, T is the identity. Of particular interest is the case of $H = L^2$ when the Bessel system and the orthonormal basis are built on scaling and translations of the underlying space. In such cases the operator T has a natural decomposition as $T = \sum_{j \in \mathbb{Z}} T_j$. Sometimes the orthonormal basis can be chosen in such a way that the T_j’s become almost orthogonal in the sense of Cotlar. We aim to use Cotlar’s Lemma to produce smooth and localized Riesz bases for $L^2(\mathbb{R}, wdx)$ when w is a Muckenhoupt weight.

1Instituto de Matemática Aplicada del Litoral, IMAL (UNL-CONICET), CCT CONICET Santa Fe, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168, Paraje El Pozo, 3000 Santa Fe, Argentina. (haimar@santafe-conicet.gov.ar)

2Instituto de Matemática Aplicada del Litoral, IMAL (UNL-CONICET), and Departamento de Matemática, Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste. (wramos@santafe-conicet.gov.ar)

Preprint submitted to Elsevier

April 6, 2015
To introduce the problem let us start by some simple illustrations. Let \(\psi \) be a Daubechies compactly supported wavelet in \(\mathbb{R} \). Assume that \(\text{supp} \psi \subset [-N, N] \). The system \(\{ \psi^j_k(x) = 2^j \psi(2^j x - k) : j, k \in \mathbb{Z} \} \) is a compactly supported orthonormal basis for \(L^2(\mathbb{R}, 3x^2\,dx) \). More generally if \(w(x) \) is a non-negative locally integrable function in \(\mathbb{R} \) and \(W(x) = \int_0^x w(y)\,dy \), then the system \(\{ \psi^j_k(x) = 2^j \psi(2^j W(x) - k) \} \) is an orthonormal basis for \(L^2(w\,dx) \).

In fact, changing variables

\[
\int_{\mathbb{R}} \overline{\psi^j_k(x)} \psi^m(x) w(x)\,dx = 2^{j/2} \int_{\mathbb{R}} \psi(2^j W(x) - k) \psi(2^j W(x) - m) w(x)\,dx
\]

and we have the orthonormality of the system \(\{ \overline{\psi^j_k} : j \in \mathbb{Z}, k \in \mathbb{Z} \} \) in \(L^2(\mathbb{R}, w\,dx) \). As it is easy to verify in the case of \(w(x) = 3x^2 \), for \(j \) fixed the length of the supports of \(\overline{\psi^j_k} \) tend to zero as \(|k| \to +\infty \). On the other hand for \(k = 0 \) the scaling parameter is \(2^{-\frac{j}{3}} \).

Notice also that if \(w \) is bounded above and below by positive constants the sequence \(\overline{\psi^j_k} \) is an orthonormal basis for \(L^2(w\,dx) \) with a metric control on the sizes of the supports provided by the scale.

A Riesz basis in \(L^2(w\,dx) \) is a Schauder basis \(\{ f_k \} \) such that there exist two constants \(A \) and \(B \) called the Riesz bounds of \(\{ f_k \} \) for which

\[
A \sum |c_k|^2 \leq \left\| \sum c_k f_k \right\|_{L^2(w\,dx)}^2 \leq B \sum |c_k|^2
\]

for every \(\{ c_k \} \) in \(l^2(\mathbb{R}) \), the space of square summable sequences of real numbers. In this note we aim to give sufficient conditions on a weight \(w \) defined on \(\mathbb{R} \) more general than \(0 < c_1 \leq w(x) \leq c_2 < \infty \), in order to construct, for every \(\delta > 0 \), a system \(\Psi = \{ \psi_I(x), I \in \mathcal{D} \} \) (\(\mathcal{D} \) are the dyadic intervals in \(\mathbb{R} \)) with the following properties,

(i) \(\Psi \) is a Riesz basis for \(L^2(w\,dx) \) with bounds \((1 - \delta)\) and \((1 + \delta)\),

(ii) each \(\psi_I^j \) is absolutely continuous,

(iii) for each \(I \), \(\psi_I \) is supported on a neighborhood \(I' \) of \(I \) such that

\[
0 < \frac{|I'|}{|I|} - 1 < \delta.
\]

As we have shown in the above example with \(w(x) = 3x^2 \), we have that \(\{ \overline{\psi^j_k} \} \) satisfies (i) and (ii) but not (iii).

An orthonormal basis in \(L^2(\mathbb{R}, w\,dx) \) satisfying (iii) but not (ii) when \(w \) is locally integrable is the following unbalanced version of the Haar system (see [12]). Let \(\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j \) be the family of standard dyadic intervals in \(\mathbb{R} \). Each \(I \) in \(\mathcal{D}^j \) takes the form \(I = [k2^{-j}, (k + 1)2^{-j}) \) for some integer \(k \). For \(I \in \mathcal{D}^j \) we have that \(|I| = 2^{-j} \). We shall frequently use \(a_I \) and \(b_I \) to denote the left and right points of \(I \) respectively, for each \(I \in \mathcal{D} \), define

\[
h^j_I(x) = \frac{1}{\sqrt{w(I)}} \left\{ \sqrt{\frac{w(I)}{w(I_1)}} \chi_{I_1}(x) - \sqrt{\frac{w(I)}{w(I_2)}} \chi_{I_2}(x) \right\}
\]

where \(w(E) = \int_E w\,dx \), \(I_1 \) is the left half of \(I \) and \(I_2 \) is its right half. Notice that with the above notation \(h^j_I \) is the standard Haar basis \(h_I \) for \(L^2(\mathbb{R}) \) when \(w = 1 \).
The real numbers with the usual distance and measure $d\mu = wdx$ with w a Mucken-
houpt weight, is a space of homogeneous type. Some constructions of wavelet type bases
on spaces of homogeneous type are contained in [2] and [3]. Those in [2] are not regular
and those in [3] are not compactly supported.

In this note we prove that the A_∞ Muckenhoupt condition on a weight w is sufficient
for building a Riesz basis in $L^2(wdx)$ satisfying (i), (ii), and (iii).

Aside from Cotlar’s Lemma, other fundamental tools we shall use are the basic
properties of Muckenhoupt weights and a result due to Favier and Zalik [8] on small Bessel
perturbations of Riesz bases.

system to produce a regular and compactly supported Riesz basis with bounds as close to
one as desired and supported on small neighborhoods of the dyadic intervals. In [11] the
same type of result is obtained via regularizing by convolution. In both cases the main
tool is contained in Theorem 5 in [8].

Let $1 < p < \infty$. A locally integrable nonnegative function w defined on \mathbb{R} is said to be
an A_p Muckenhoupt weight if there exists $C > 0$ such that

$$\left(\int_J wdx \right) \left(\int_J w^{-\frac{1}{p-1}} dx \right)^{p-1} \leq C |J|^p,$$

for every interval J. The class A_∞ is defined by $A_\infty = \cup_{1 < p < \infty} A_p$.

The typical nontrivial examples of A_∞ weights are the powers of the distance to a fixed
point. In particular $w(x) = |x|^\alpha$ belongs to A_∞ for every $\alpha > -1$. For the general
theory of Muckenhoupt weights, introduced by B. Muckenhoupt in [11], see the book [9].

A simple and well known result for A_∞ weights that implies the doubling condition for
the measure $w(x)dx$, due to B. Muckenhoupt, is the inequality

$$\left(\frac{|E|}{|J|} \right)^p \leq C_{\mathcal{w}}(E) / w(J)$$

which holds for some constant C and every measurable subset E of any interval J, provided
that $w \in A_p$. From (1.2) it follows easily that the function $W(x) = \int_0^x w(y)dy$ defines a
one to one and onto change of variables on \mathbb{R} with Jacobian w. Set W^{-1} to denote the
inverse function of W.

In order to produce a regularization of the system h^u_I given by (1.1) we first use the
change of variables defined by W^{-1} to obtain another orthonormal basis $\{H^u_I\}$ in the spaces
L^2 with respect to the translation invariant measure dx. Next we regularize by convolution
with a smooth and compactly supported function \(\varphi\) the functions H^u_I to produce a Riesz
_basis for $L^2(\mathbb{R}, dx)$ which we shall denote by $\{H^{u, \varphi}_I\}$. Finally in order to obtain the desired
regularization $h^{u, \varphi}_I$ of $\{h^u_I\}$ we go back to $L^2(\mathbb{R}, wdx)$ by reversing the change of variables
induced by W^{-1}. Since the regularizing function φ can be assumed to be as smooth as
desired, the regularity of each $h^{u, \varphi}_I$ is only limited by the regularity of $W(x)$ which is at
least locally absolutely continuous. Let us precisely define the three families $\{H^u_I\}$, $\{H^{u, \varphi}_I\}$
and $\{h^{u, \varphi}_I\}$.

For each $I \in \mathcal{D}$ set $H^u_I = h^u_I \circ W^{-1}$. Notice that

$$H^u_I(x) = \frac{1}{\sqrt{|I'|}} \left\{ \frac{|H'|}{|I'|} \chi_{I'}(x) - \sqrt{\frac{|H'|}{|I'|}} \chi_{I'}(x) \right\}$$

where $I' = \{W(y), y \in I\}$. Now take a function φ to be C^∞, nonnegative, non-increasing
to the right of 0, even and supported in $(-1, 1)$ with $\int_\mathbb{R} \varphi = 1$. With the standard notation
\[\varphi_t(x) = \frac{1}{t} \varphi\left(\frac{x}{t}\right), \quad t > 0, \text{define} \]
\[H^w_t(x) = \left(\varphi_{ew(t)} * H^w_t \right)(x). \]
(1.4)

Finally, set \(h^w_t(x) = (H^w_t \circ W)(x) \) for \(\epsilon \) positive small enough.

The main result in this note is contained in the following statement.

Theorem 1.1. Let \(w \) be a weight in \(A_\infty(\mathbb{R}) \). Then there exists \(\epsilon_0 > 0 \) depending only on \(w \) such that

a) for each positive \(\epsilon < \epsilon_0 \), the system \(\{h^w_t, I \in \mathcal{D}\} \) is a Riesz basis for \(L^2(w dx) \) of absolutely continuous functions,

b) the Riesz bounds of \(\{h^w_t, I \in \mathcal{D}\} \) can be taken as close to one as desired by taking \(\epsilon \) small enough,

c) for each dyadic interval \(I = [a_I, b_I] \) the support of \(h^w_t \) is an interval \(I^\epsilon = [a_I^\epsilon, b_I^\epsilon] \) with \(a_I^\epsilon \nearrow a_I, b_I^\epsilon \searrow b_I \) when \(\epsilon \to 0 \) and for some constant \(C \), \(0 < |I^\epsilon| = |I| \leq 1 < C\epsilon^{\frac{1}{p}} \) if \(w \in A_p \).

Let us point out that the regularity of each \(h^w_t \) can be better than absolute continuity if \(w \) is smooth. In particular, when \(w \equiv 1 \) the functions \(h^w_t \) are C\(\infty \). In other words we get a basis for \(L^2(dx) \) with full regularity and small supports. To get simultaneously these two properties we have to pay loosing orthogonality.

In Section 2 we give the basic result used in Section 3 in order to prove Theorem 1.1.

2. Preliminaries and basic results

In this section we introduce three basic results from functional and harmonic analysis which we shall use in Section 3 to prove Theorem 1.1. We shall refer to them as Coifman-Fefferman inequality, Cotlar’s Lemma and Favor-Zalk stability, respectively.

Aside from (1.2) another important property of \(A_\infty \) weights that we shall use in the proof Theorem 1.1 is contained in the next statement which is proved as Theorem 2.9 page 401 in [9] and originally proved in [5].

Coifman-Fefferman. If \(w \in A_p, 1 < p < \infty \) then there exist positive and finite constants \(C, \gamma \) such that the inequality

\[\frac{w(E)}{w(J)} \leq C \left(\frac{|E|}{|J|} \right)^\gamma \]
(2.1)

holds for every interval \(J \) and every measurable subset \(E \) of \(J \).

The original proof of Cotlar’s Lemma is contained in [6]. For more easily available proofs see [7] or [12].

Cotlar’s Lemma. Let \(\{T_i : i \in \mathbb{Z}\} \) be a sequence of bounded operators in a Hilbert space \(H \). Assume that they are almost orthogonal in the sense that there exists a sequence \(s : \mathbb{Z} \to (0, \infty) \) with \(\sum_{k \in \mathbb{Z}} \sqrt{s(k)} = A < \infty \) such that

\[\|T_i^*T_j\| + \|T_iT_j^*\| \leq s(i - j) \]

for every \(i, j \in \mathbb{Z} \). Then

\[\left\| \sum_{i=-N}^{N} T_i \right\| \leq A \]
for every positive integer \(N \).

The third result, due to S. Favier and R. Zalik, deals with the perturbation of Riesz bases and is contained in Theorem 5 of [8]. A basis \(\{ f_n \} \) for a Hilbert space \(H \) is said to be a Riesz basis with bounds \(A \) and \(B \) if and only if the inequalities

\[
A \| f \|^2 \leq \sum |\langle f_n, f \rangle|^2 \leq B \| f \|^2
\]

hold for every \(f \in H \) (see, for example, Theorem 6.1.1 in [4]).

Favier-Zalik stability. Let \(\{ f_n \} \) be a Riesz basis for a Hilbert space \(\mathcal{H} \) with bounds \(A \) and \(B \). Let \(\{ g_n \} \) be a sequence in \(\mathcal{H} \) such that \(\{ f_n - g_n \} \) is a Bessel sequence with bound \(M < A \). Then \(\{ g_n \} \) is a Riesz basis with bound \(\left[1 - \left(\frac{M}{A} \right)^2 \right] A \) and \(\left[1 - \left(\frac{M}{B} \right)^2 \right] B \).

The next lemma is a consequence of (1.2). It will be crucial in the proof of Theorem 1.1.

Lemma 2.1. Let \(w \) be a weight in \(A_p \). For a given dyadic interval \(I \), set \(a_I, b_I, c_I \) to denote the left endpoint of \(I \), the right endpoint of \(I \) and the center of \(I \) respectively. As before \(I_l \) and \(I_r \) denote the left and right halves of \(I \). Then

a) with \(C \) the constant in (1.2) and \(\epsilon < \left(\frac{1}{2} \right)^p \frac{1}{2C} \) we have that \(2\epsilon w(I) < w(I_l) \) and \(2\epsilon w(I) < w(I_r) \);

b) with \(C \) as above and \(\epsilon < \frac{1}{C^2} \frac{1}{2} \) we also have that \(\sum_{I \in D^j} \chi_{W^\epsilon(I)}(x) \leq 2 \) for every \(j \in \mathbb{Z} \), where \(W^\epsilon(I) \) is the \(\epsilon w(I) \) neighborhood of the interval \(W(I) \), in other words \(W^\epsilon(I) = \left(W(a_I) - \epsilon w(I) \right) \cup \left(W(b_I) + \epsilon w(I) \right) \).

Proof. a) Using (1.2) with \(J = I, E = I_l \) we obtain

\[
\frac{w(I_l)}{w(I)} \geq \frac{1}{C} \left(\frac{|I|}{|I_l|} \right)^p = \frac{1}{C^2} > 2\epsilon.
\]

The same inequality is true for \(I_r \) instead of \(I_l \).

b) Let us consider \(\overline{I}, \overline{K} \) and \(J \) three consecutive intervals in \(D^j \) with \(b_I = a_K \) and \(b_K = a_J \). Let \(M \) be the interval obtained as the union of \(I, J \) and \(K \). From (1.2) we see that

\[
\epsilon < \frac{1}{C} \frac{1}{3^p} = \frac{1}{C} \left(\frac{|K|}{|M|} \right)^p \leq \frac{w(K)}{w(M)}
\]

Hence \(\epsilon (w(I) + w(J)) \leq w(M) < w(K) = W(a_J) - W(b_I) \), so that \(W(b_I) + \epsilon w(I) < W(a_J) - \epsilon w(J) \). Then, no point \(x \in \mathbb{R} \) can belong to more than two of the intervals \(W^\epsilon(I) \).

\[\square\]

3. **Proof of Theorem 1.1**

Throughout this section \(w \) is a weight in \(A_p(\mathbb{R}) \) for some \(1 < p < \infty \). We shall use the standard inner product notation \(\langle \cdot, \cdot \rangle \) for the scalar product in \(L^2(dx) \). We shall write \(\langle \cdot, \cdot \rangle_w \) to denote the inner product in \(L^2(wdx) \).

Notice first that \(\{ h^I : I \in D \} \) defined in (1.1) is an orthonormal basis for \(L^2(\mathbb{R}, wdx) \). For \(j \in \mathbb{Z} \), set

\[
\mathcal{V}_j = \{ f \in L^2(wdx) : f \text{ is constant on each } I \in D^j \},
\]

and observe that \(\bigcup_{j \in \mathbb{Z}} \mathcal{V}_j \) is dense in \(L^2(wdx) \). By (2.1) \(wdx \) is doubling and hence \(\int_{\mathbb{R}} w = \infty \). Thus, we have \(\bigcap_{j \in \mathbb{Z}} \mathcal{V}_j = \{0\} \). For \(I \in D \) fixed, the two dimensional vector space
of those functions f defined on I which are constant on each half I_l and I_r of I has
$$ \{ \frac{1}{\sqrt{w(I)}} h^w_I, \ h^w_I \} $$ as an orthonormal basis with the $L^2(\omega dx)$ inner product. For $j \in \mathbb{Z}$, we
define W_j as the $L^2(\omega dx)$ orthogonal complement of V_j in V_{j+1}. In other words, as usual,
$V_{j+1} = V_j \oplus W_j$.

From the above mentioned properties of the multiresolution $\{ V_j : j \in \mathbb{Z} \}$ we see that
$$ L^2(\omega dx) = \bigoplus_{j \in \mathbb{Z}} W_j. $$

Since, for $j \in \mathbb{Z}$ fixed, the family $\{ h^w_I : I \in \mathcal{D} \}$ is an orthonormal basis of W_j we get that
$\{ h^w_I : I \in \mathcal{D} \}$ is an orthonormal basis for $L^2(\omega dx)$.

Given a set $E \subset \mathbb{R}$ we shall write E' to denote the image of E by W. In other words
$E' = \{ W(x), \ x \in E \}$. We write $\mathcal{D}' = \bigcup_{j \in \mathbb{Z}} \mathcal{D}_j'$ to denote the family of all the images I' of
intervals $I \in \mathcal{D}$ through W, here \mathcal{D} denote the family of all dyadic intervals in \mathbb{R} defined
above. Notice that $|I'| = w(I)$.

For each $I \in \mathcal{D}$ we shall use H^w_I to denote the composition $h^w_I \circ W^{-1}$. It is easy
to see that
$$ H^w_I(x) = \frac{1}{\sqrt{|I'|}} \left\{ \frac{|E|}{|I'|} \chi_{E}(x) - \frac{|E|}{|I'|} \chi_{I'}(x) \right\} $$
and that $\{ H^w_I, \ I \in \mathcal{D} \}$ is an orthonormal basis of $L^2(\mathbb{R}, \omega dx)$. In fact, for $f \in L^2(\omega dx)$ we have $\langle f, H^w_I \rangle = \langle f \circ W, h^w_I \rangle_w$
for every $I \in \mathcal{D}$. Moreover
$$ \sum_{I \in \mathcal{D}} |\langle f, H^w_I \rangle|^2 = \sum_{I \in \mathcal{D}} |\langle f \circ W, h^w_I \rangle_w|^2 = \| f \circ W \|^2_{L^2(\omega dx)} = \| f \|^2_{L^2(\omega dx)}. $$

Next we regularize by convolution the function H^w_I for $I \in \mathcal{D}$ in order to get $H^w_{I, \epsilon}$, defined by
$H^w_{I, \epsilon} = \varphi_{\epsilon w(I)} \ast H^w_I$. Here $I \in \mathcal{D}$, φ is as described in the introduction, and ϵ is
as in Lemma 2.1.

We prove a) in Theorem 1.1 by applying the Favier-Zalik stability result. We shall
estimate the Bessel bound in $L^2(\omega dx)$ for the difference $b^j_I = H^w_I - H^w_{I, \epsilon}$ between the basic
element H^w_I and its regularization $H^w_{I, \epsilon}$.

We use the strategy described in the introduction, taking as $\{ f_k \}$ the sequence $\{ b^j_I \}$ and
as the orthonormal basis $\{ e_k \}$ the sequence H^w_I. Precisely, define
$$ T_j f = \sum_{I \in \mathcal{D}} \langle f, b^j_I \rangle H^w_I $$
and $T_j f = \sum_{J \in \mathcal{D}_j} \langle f, b^j_I \rangle H^w_I$, thus $T_j = \sum_j T_j$. To prove that $\{ b^j_I : I \in \mathcal{D} \}$ is a Bessel
sequence with small bound, we apply Cotlar’s Lemma to the sequence $\{ T_j \}$ of operators
in $L^2(\mathbb{R})$. We begin by estimating $\| T_j^\ast T_j \|$ and $\| T_j T_j^\ast \|$ where T_j^\ast is the adjoint of T_j,
$$ T_j^\ast f = \sum_{J \in \mathcal{D}_j} \langle f, H^w_{j, \epsilon} \rangle b^j_I. $$

Since the family $\{ H^w_I, \ I \in \mathcal{D} \}$ is orthonormal, for $i \neq j$ we have
$$ T_i^* T_j f = \sum_{J \in \mathcal{D}_j, \ I \in \mathcal{D}_i} \langle f, b^j_I \rangle \langle H^w_{j, \epsilon}, H^w_I \rangle b^i_I = 0. $$
On the other hand, for $i = j$, \(\| T_j^\ast T_j \| = \| T_j \|^2 \) and \(\| T_j f \|^2 = \sum_{I \in \mathcal{D}_j} |\langle f, b^j_I \rangle|^2 \).

Since H^w_I is piecewise constant, for ϵ small enough the support of b^j_I splits into three
intervals, each of them centered at the images through W of the two endpoints a_j, b_J of J and
of its center c_J. All of them have the same length $2 \epsilon w(J)$. Precisely, with $S^j_I = \text{supp } b^j_I$ we have that $S^j_I = \bigcup_{m=1}^3 S^j_{I, m}$, where $S^j_{I, m} = (W(a_j) - w(J) \epsilon, W(a_j) + w(J) \epsilon)$.,
$S^2_j = (W(c_j) - w(J)\epsilon, W(c_j) + w(J)\epsilon)$ and $S^3_j = (W(b_j) - w(J)\epsilon, W(b_j) + w(J)\epsilon)$. Now, from Schwartz inequality we have that

$$|\langle f, b_j' \rangle|^2 \leq \left(\int_{S^2_j} |f|^2 \right) \left(\int |b_j'|^2 \right).$$

In order to estimate $\int |b_j'|^2$, let us first notice that $|b_j'| \leq |H^p_j| + |H^w_{j'}| \leq 2 |H^p_j| \leq \frac{2}{\sqrt{w(I)}} \max \left\{ \sqrt{\frac{w(I)}{w(I)}}, \sqrt{\frac{w(I)}{w(I)}} \right\}$, which is bounded by a constant C, depending only on w, times $w(I)^{-\frac{1}{2}}$. Then $\int |b_j'|^2 \leq \frac{C^2}{w(I)} |S^2_j| = 6C^2\epsilon$.

Then, from b in Lemma 2.1 we have

$$\|T_j f\|^2 \leq 6C^2\epsilon \sum_{J \in \mathcal{D}^j} \int_{S^2_j} |f|^2 \leq 6C^2\epsilon \sum_{J \in \mathcal{D}^j} \int_{w^*(J)} |f|^2 \leq 6C^2\epsilon \int_R \left(\sum_{J \in \mathcal{D}^j} \chi_{w^*(J)} \right) |f|^2 \leq 12C^2\epsilon \|f\|^2_2.$$

Hence $\|T_j^* T_j\| = \|T_j\|^2 \leq 12C^2\epsilon$, and since $\|T_j^* T_j\| = 0$ for $i \neq j$, any $s(k)$ with $s(0) \leq 12C^2\epsilon$ and $s(k) > 0$ for $k \neq 0$ is admissible for the estimate $\|T_i^* T_j\| \leq s(i - j)$ required by Cotlar’s Lemma.

The behavior of the sequence $\|T_i^* T_j\|$ is more subtle since $T_i^* T_j f = \sum_{l \in \mathcal{D}^j} \sum_{J \in \mathcal{D}^j} \langle f, H^p_J \rangle \langle b'_l, b'_j \rangle H^p_J$ and now the functions b'_j are not orthogonal. In this case the Lipschitz smoothness of each b'_j away from its points of discontinuity, and its mean vanishing properties will play essential roles. These two properties are made precise in the following claims, which we proof later.

Claim 1. For each $I \in \mathcal{D}$ with $I = [a, b)$ centered at c_I, on each one of the segments $\sigma_1 = (-\infty, W(a))$, $\sigma_2 = (W(a), W(c_I))$, $\sigma_3 = (W(c_I), W(b))$ and $\sigma_4 = (W(b), \infty)$ the function b'_j is Lipschitz with norm bounded by a constant times $(cw(I))^{-\frac{1}{2}}$.

Claim 2. On each one of the three connected components S_i^m of its support we have $\int_{S^m_i} b'_j = 0$, $m = 1, 2, 3$.

Let us assume Claims 1 and 2 and continue the proof.

To estimate $\|T_i^* T_j\|$, observe that, since $\{H^p_I, I \in \mathcal{D}\}$ is an orthonormal basis, we have

$$\|T_i^* T_j f\|^2 = \sum_{l \in \mathcal{D}^j} \left(\sum_{J \in \mathcal{D}^j} \langle f, H^p_J \rangle \langle b'_l, b'_j \rangle \right)^2.$$ \hspace{1cm} (3.1)

Assume first that $j > i$. For a fixed $I \in \mathcal{D}^j$, we consider the partition of \mathcal{D}^j provided by the three sets, $A(I) = \{ J \in \mathcal{D}^j : S_j^j \cap S_j' = \emptyset \}; B(I) = \{ J \in \mathcal{D}^j \setminus A(I) : b'_j$ is continuous and not identically zero on $S_j' \}$ and $C(I) = \mathcal{D}^j \setminus (A(I) \cup B(I))$. Since for $J \in \mathcal{A}(I)$ we have that $\langle b'_j, b'_j \rangle = 0$, then

$$\|T_i^* T_j f\|^2 = \sum_{l \in \mathcal{D}^j} \left(\sum_{J \in B(I) \cup C(I)} \langle f, H^p_J \rangle \langle b'_l, b'_j \rangle \right)^2.$$
\begin{align*}
&\leq \sum_{I \in D^v} \left(\sum_{J \in B(I) \cup C(I)} |\langle f, \mathcal{H}_J^w \rangle|^2 \right) \left(\sum_{J \in B(I) \cup C(I)} |\langle b_I^t, b_J^i \rangle|^2 \right) \\
&= \sum_{I \in D^v} \left(\sum_{J \in B(I) \cup C(I)} |\langle f, \mathcal{H}_J^w \rangle|^2 \right) \left(\sum_{J \in C(I)} |\langle b_I^t, b_J^i \rangle|^2 \right) \\
&\quad + \sum_{I \in D^v} \left(\sum_{J \in B(I) \cup C(I)} |\langle f, \mathcal{H}_J^w \rangle|^2 \right) \left(\sum_{J \in B(I)} |\langle b_I^t, b_J^i \rangle|^2 \right) \\
&= I_1 + I_2.
\end{align*}

In order to estimate \(I_1 \) notice that \(C(I) \) has at most six elements. On the other hand, from (2.1)

\[|\langle b_I^t, b_J^i \rangle| \leq \int_{S_J^i} |b_I^t(x)| |b_J^i(x)| \, dx \]

\[\leq C \frac{\epsilon w(J)}{(w(I)w(J))^2} \leq C \frac{1}{2^{(j-i)^2}}, \]

hence

\[I_1 \leq C \varepsilon^2 2^{-\gamma(j-i)} \sum_{I \in D^v} \sum_{J \in B(I) \cup C(I)} |\langle f, \mathcal{H}_J^w \rangle|^2 \]

\[\leq C \varepsilon^2 2^{-\gamma(j-i)} \sum_{J \in D^v} |\langle f, \mathcal{H}_J^w \rangle|^2 \chi\{I \in D^v : J \notin \mathcal{A}(I)\} \leq C \varepsilon^2 2^{-\gamma(j-i)} \|f\|_2^2, \]

which has again the desired form to apply Cotlar's Lemma with \(s(j - i) = C \varepsilon^2 \frac{1}{2^{(j-i)}} \).

For a given interval \(I \), set \(\tilde{I} \) to denote the concentric with \(I \) and twice its length. Since for \(J \in B(I) \) the function \(b_J^i \) is Lipschitz on the support of \(b_J^i \), if \(x_J^i \) is the center of the \(m \)-th connected component of the support of \(b_J^i \), from Claims 2 and 1 and applying again (2.1) we get

\[\sum_{J \in B(I)} |\langle b_I^t, b_J^i \rangle|^2 = \sum_{J \in B(I)} \left(\sum_{m=1}^3 \int_{S_J^m} |b_J^i(x)| (b_I^t(x) - b_I^t(x_J^i)) \, dx \right)^2 \]

\[\leq \sum_{J \in B(I)} \frac{C}{(\epsilon w(J))^3} \left(\sum_{m=1}^3 \int_{S_J^m} |b_J^i(x)| |x - x_J^i| \, dx \right)^2 \]

\[\leq C \sum_{J \in B(I)} \frac{1}{\epsilon^3 w(I)^3} |S_J^i|^2 \frac{1}{w(J)} \epsilon^2 w(J)^2 \]

\[\leq C \varepsilon \sum_{J \in B(I)} \left(\frac{w(J)}{w(I)} \right)^2 \frac{w(J)}{w(I)} \]

\[\leq C \varepsilon \sum_{J \in B(I)} \left(\frac{|J|}{|I|} \right)^{2\gamma} \frac{1}{w(I)} \int_J w(x) \, dx \]

\[\leq C \varepsilon \left(\frac{1}{2} \right)^{2(j-i)\gamma} \frac{1}{w(I)} \int_R \sum_{J \in B(I)} \chi_J(x) w(x) \, dx \]

8
\[
\leq C \varepsilon \left(\frac{1}{2} \right)^{2\gamma(j-i)} \frac{w(\tilde{I})}{w(I)}
\]

\[
\leq C \varepsilon \left(\frac{1}{2} \right)^{2\gamma(j-i)}
\]

So that, for \(j > i \)

\[
\sum_{J \in \mathcal{B}(I)} |\langle b_j^f, b_j^g \rangle|^2 \leq C \varepsilon 2^{-2(j-i)\gamma}
\]

(3.2)

hence

\[
I_2 \leq C \varepsilon 2^{-2(j-i)\gamma} \sum_{I \in \mathcal{D}^i} \sum_{J \in \mathcal{B}(I) \cup \mathcal{C}(I)} |\langle f, H^{y_j}_j \rangle|^2
\]

\[
\leq C \varepsilon 2^{-2(j-i)\gamma} \|f\|^2_2,
\]

finally

\[
\|T_i^* T_j f\|_2^2 \leq I_1 + I_2 \leq C \varepsilon 2^{-\gamma(j-i)} \|f\|_2^2.
\]

Hence, for \(j > i \) taking \(s(j-i) = C \varepsilon \frac{1}{2} 2^{-\frac{2}{2}(j-i)} \) we have a good sequence in order to use Cotlar’s Lemma.

For \(i \geq j \), with the above notation for \(J \in \mathcal{D}^j \) given, we have the three classes \(\mathcal{A}(J) \), \(\mathcal{B}(J) \) and \(\mathcal{C}(J) \),

\[
\|T_i^* T_j f\|_2^2 \leq C \sum_{I \in \mathcal{D}^i} \left(\sum_{\{J \in \mathcal{D}^j \mid S^*_i \cap S^*_j \neq \emptyset\}} |\langle f, H^{y_j}_j \rangle|^2 \left| \langle b_j^f, b_j^g \rangle \right|^2 \right)
\]

\[
\leq C \sum_{J \in \mathcal{D}^j} |\langle f, H^{y_j}_j \rangle|^2 \left(\sum_{I \in \mathcal{C}(J) \cup \mathcal{B}(J)} \left| \langle b_j^f, b_j^g \rangle \right|^2 \right)
\]

\[
\leq C \sum_{J \in \mathcal{D}^j} |\langle f, H^{y_j}_j \rangle|^2 \left(\sum_{I \in \mathcal{C}(J)} \left| \langle b_j^f, b_j^g \rangle \right|^2 \right) + C \sum_{J \in \mathcal{D}^j} |\langle f, H^{y_j}_j \rangle|^2 \left(\sum_{I \in \mathcal{B}(J)} \left| \langle b_j^f, b_j^g \rangle \right|^2 \right).
\]

For the first term, notice that if \(I \in \mathcal{C}(J) \), we obtain from (2.1) as before

\[
|\langle b_j^f, b_j^g \rangle| \leq \int_{S^*_j} |b_j^f(x)| |b_j^g(x)| \, dx
\]

\[
\leq C \frac{\epsilon w(I)}{w(J)^{1/2} w(I)^{1/2}} \leq C \varepsilon 2^{-(i-j)\frac{1}{2}},
\]

since the number of elements in \(\mathcal{C}(J) \) is bounded we get that

\[
\sum_{J \in \mathcal{D}^j} |\langle f, H^{y_j}_j \rangle|^2 \left(\sum_{I \in \mathcal{C}(J)} \left| \langle b_j^f, b_j^g \rangle \right|^2 \right) \leq C \varepsilon 2^{-\gamma(i-j)} \|f\|_2^2.
\]

For the second term observe that if \(I \in \mathcal{B}(J) \) and \(y^m_j \) is the center of the interval \(S^*_j \), since the integral of \(b_j^f \) vanishes on each connected component \(S^*_j \), we have

\[
|\langle b_j^f, b_j^g \rangle| \leq \left(\sum_{m=1}^{3} \int_{S^*_j} b_j^f(y) (b_j^f(y) - b_j^g(y^m_j)) \, dy \right)^2,
\]

9
then, from Claim 1,

\[
|\langle b_f^*, b_f^\epsilon \rangle|^2 \leq \left(\frac{C}{\epsilon^2 w(J) \frac{3}{2}} \sum_{m=1}^{\frac{3}{2}} \int_{S_j^m} |b_f^*(y)| |y - y_j^m| \, dy \right)^2 \leq \left(\frac{3Cw(I) |S_j^m|}{\epsilon^2 w(J) \frac{3}{2} w(I) \frac{3}{2}} \right)^2 \leq C \epsilon \left(\frac{w(I)}{w(J)} \right)^3.
\]

Hence

\[
\|T_i T_j f\|_2^2 \leq C \epsilon^2 2^{-\gamma(i-j)} \|f\|_2^2 + C \epsilon^2 2^{-\gamma(i-j)} 2^\gamma \sum_{J \in D_0^i} |\langle f, H_j^\gamma \rangle|^2 \left(\frac{1}{w(J)} \sum_{I \in B(J)} w(I) \right)^{\frac{1}{2}} \leq C \epsilon^2 2^{-\gamma(i-j)} \|f\|_2^2 + C \epsilon^2 2^{-\gamma(i-j)} \|f\|_2^2.
\]

Then \(\|T_i T_j\| \leq C \epsilon^2 2^{-\frac{\gamma}{2}(i-j)},\) for \(i \geq j.\)

So far we have the hypotheses of Cotlar’s Lemma for the sequence \(\{T_j\}\) with \(s(k) = C \epsilon^2 2^{-\frac{\gamma}{2}|k|}, k \in \mathbb{Z}.\) Then \(\|T_i\| \leq C \epsilon^i, 0 < \epsilon < \epsilon_0 = \min \left\{ \frac{2^p}{16}, \frac{3^p}{16} \right\}\) where \(C\) is the constant in (1.2). Now from the Favier-Zalkin stability Lemma, we get that \(\{h_I^w, \epsilon : I \in D\}\) is a Riesz basis for \(L^2(\mathbb{R}, dx)\) with bounds \((1 - \sqrt{C \epsilon^i})^2\) and \((1 + \sqrt{C \epsilon^i})^2\). Since \(h_I^w, \epsilon = H_I^w, \epsilon \circ W\) and for \(f \in L^2wdx\) we have the identity

\[
\sum_{I \in D} \langle f, h_I^w, \epsilon \rangle_w^2 = \sum_{I \in D} \langle f \circ W^{-1}, H_I^w, \epsilon \rangle^2
\]

we immediately see that \(\{h_I^w, \epsilon : I \in D\}\) is a Riesz basis for \(L^2(\mathbb{R}, wdx)\) with bounds \((1 \pm \sqrt{C \epsilon^i})^2\). This proves a).

The absolute continuity of each \(h_I^w, \epsilon\) follows from the regularity of \(H_I^w, \epsilon\) and the absolute continuity of \(W\). Part b) in the statement of Theorem 1.1 follows directly from the Riesz bounds for \(\{h_I^w, \epsilon : I \in D\}\) obtained before.

Let us prove c). With \(a_I\) and \(b_I\) the left and right endpoint of \(I\) we have that the support of \(h_I^w, \epsilon\) is the interval \(I_e = [W^{-1}(W(a_I) - \epsilon w(I)), W^{-1}(W(b_I) + \epsilon w(I))] = [a_I^e, b_I]\) containing \(I.\) Notice that since \(W(a_I) - W(a_I^e) = \epsilon w(I)\) and \(W(b_I^e) - W(b_I) = \epsilon w(I),\) from the continuity of \(W^{-1}\) it follows that \(a_J^e\to a_I\) and \(b_J^e\to b_I\) when \(\epsilon\to 0.\) A more quantitative estimate of the rate of approximation can be obtained using again (1.2). In fact, set \(I^*\) to denote the interval concentric with \(I\) with three times its length. Let \(J\) be the interval \([a_I^e, a_{I^*}]\), then from (1.2)

\[
\frac{a_I - a_{I^*}}{3 |I|} = \frac{|J|}{|I^*|} \leq C \left(\frac{w(J)}{w(I^*)} \right)^{\frac{1}{p}} = C \left(\frac{w(I)}{w(I^*)} \right)^{\frac{1}{p}} \leq C \epsilon^{\frac{1}{p}}.
\]

In a similar way \(b_{I^*} - b_{I^*} \leq C \epsilon^{\frac{1}{p}}.\) Hence \(\frac{|I_e|}{|I|} = 1 + \frac{a_I^e - a_I}{|I|} + \frac{b_I^e - b_I}{|I|}\) and \(0 < \frac{|I_e|}{|I|} - 1 < C \epsilon^{\frac{1}{p}}\) where \(C\) depends on the \(A_p\) constant of \(w.\) Notice that the rate of approximation is better as \(p\) tends to 1.

Let us finally prove Claims 1 and 2.
Proof of Claim 1. Since for $x, y \in \sigma_i$, $i = 1, \ldots, 4$ we have that $H^w_{\ell}(x) = H^w_{\ell}(y)$, then

$$|b^\ell_f(x) - b^\ell_f(y)| = H^w_{\ell} \ast \varphi_{w(I)}(x) - H^w_{\ell} \ast \varphi_{w(I)}(y) = \left| \int_{\mathbb{R}} \frac{H^p_{\ell}(z)}{w(I)} \left(\frac{x - z}{w(I)} - \frac{y - z}{w(I)} \right) dz \right|.$$

Since φ is smooth, applying the mean value theorem we get that

$$|b^\ell_f(x) - b^\ell_f(y)| \leq \frac{\|\varphi^\prime\|_{\infty}}{w(I)^2} |x - y| \int_{\{x - z \in \omega(I) \cup \{y - z \in \omega(I)\}} |H^p_{\ell}(z)| dz \leq \frac{c \|\varphi^\prime\|_{\infty}}{(w(I))^2} |x - y|$$

as desired. \hfill \box

Proof of Claim 2. It is easy to see that $\int b^\ell_f dx = 0$. In fact, we can see from (1.3)

$$\sqrt{|I|} \int_I H^w_{\ell}(x) dx = \sqrt{|I|} \int_I \chi_{H^w_{\ell}}(x) dx - \sqrt{|I|} \int_I \chi_{H^w_{\ell}}(x) dx = \sqrt{|I|} \int_I \chi_{H^w_{\ell}}(x) dx = 0.$$

On the other hand, since $\int \varphi(z) dz = 1$, we also have that $\int H^w_{\ell} dx = 0$.

Notice that, after normalization, $\int_{S^r_I} b^\ell_f dx = 0$ since $\int_{-\delta}^{\delta} |x(z, 0, \infty) - (\chi_{(0, \infty)} \ast \varphi_{\delta})| dx = 0$ for $\delta > 0$. Since a similar argument proves that $\int_{S^r_I} b^\ell_f dx = 0$ and $\int b^\ell_f = 0$, we also have $\int_{S^r_I} b^\ell_f dx = 0$. \hfill \box

References

