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Abstract

This work proposes an alternative methodology for designing multi-loop control structures based on steady-

state indexes and multi-objective combinatorial optimization problems. Indeed, the simultaneous selection

of the controlled variables, manipulated variables, input-output pairing, and controller size and interaction

degree is performed by using a combined index which relies on the sum of square deviations and the net load

evaluation assessments in conjunction. This unified approach minimizes both the dynamic simulation burden

and the heuristic knowledge requirements for deciding about the final optimal control structure. Further,

this methodology allows incorporating structural modifications of the optimization problem context (degrees

of freedom). The case study selected is the well-known Tennessee Eastman process and a set of simulations

are given to compare this approach with early works.

Keywords: Multi-loop Control Structure, Plantwide Control Design, Combined Index, Structural Process

Faults

1. Introduction

1.1. Process control

Industrial processes generally involve several operating units interconnected via some specific layout,

which is designed for fulfilling some requirements related to product quality, product rate, and profits. The

major drawbacks limiting any kind of analysis on these processes are their respective size and complexity.

The size of the process is related obviously with the number of units and variables involved. The complexity

characteristic is tied to the high energy and mass integration of the plant. The current tendency in processes

design is to increase this complexity for reducing the operating cost and maximizing the profits [1, 2].

Furthermore, for avoiding the adverse effects of disturbances and ensuring safety, robustness, stability,

product qualities, and profits, these industrial processes need to be controlled in some extent. Generally,

multi-loop (several single-input/single-output loops) control structures are used to this end.
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It is worth mentioning that any control policy requires several decisions before it will be considered

as a potential and feasible control structure. In fact, typical decisions involve the proper selection of the

following constitutive parts: the controlled variables (CVs), the manipulated variables (MVs), the input-

output pairing between these sets, and various characteristics associated with the controller itself, such as

the interaction degree (diagonal, sparse, full), policy (decentralized or centralized), tuning, and technology

(classical or advanced). Plant-wide control (PWC) is a very important area to address the previously

mentioned decisions. The overall performance as well as the investment/operating cost can be seriously

affected if the PWC problem is not solved properly [3, 4]. The complexity of the PWC problem increases

with the process dimensions. In some cases, a heuristic and exhaustive treatment (the classical approach)

is not possible. In this context it is very useful some systematic and generalized (holistic) methodology to

overcome these drawbacks. Anyway, the latter solution requires the integration of several knowledge bases

with different insights which shows the complexity of an unified (all in one) methodology [3]. These large

and complex problems are some examples of new trends which need to be addressed in the process systems

engineering (PSE) area [5].

1.2. Plant-wide control overview

An overview on the PWC approaches existing in literature clearly identifies three point of views: 1-

methods based on purely heuristic/engineering judgment [6, 7], 2- strategies based on mathematical/systems

theory [8], and 3- approaches based on integration/hybrid [2]. All these methodologies suggest different

ways to design decentralized PWC structures addressing all the major process control implications [9]. The

heuristic methods, which are systematic in nature, were tested extensively in many case studies. However,

for large-scale processes several ad-hoc considerations are required to progressively reduce the dimension

of the PWC problem until reaching handle dimensions. This drawback generally produces suboptimal

designs from the operating as well as investment cost perspectives. On the other hand, the advent of

computing power favored an intense research and development in the mathematical/systems theory as well

as hybrid based methods. Indeed, the last three decades, this application field has generated countless

proposals with varied themes including: stability/controllability/robust assessments [10–12], input-output

pairing problems [13–15], operating cost and self-optimizing control [3, 16, 17], deviations-based indexes [18,

19], exergy eco-efficiency factor/thermodynamic concepts [2, 20], combination of these into a multi-objective

criteria [3, 4, 19], and integration between heuristics and steady-state/dynamic simulations [2, 9]. All these

mathematical approaches are based on process models, whether they are dynamic or steady-state, linear

or nonlinear, whereby these design depend on the accuracy and availability of these simplifications. It is

important to note that, for large-scale industrial processes, it is very difficult to obtain a control-oriented

process model. Generally, it is more common to deal with steady-state models which come from the process

design and synthesis stages.
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1.3. Comments on the case study

The case study considered in this paper is the well-known Tennessee Eastman Process (TEP), which

was proposed by Downs and Vogel [21] as a multivariable nonlinear benchmark plant for the process control

community. Although the original TEP version was modeled in Fortran, the current work is based on the

Matlab dynamic simulator generated by compiling the source code which is available from the Prof. Ricker’s

web page [22].This precursory work summarizes the potential working modes (six) and the general control

scenarios (four set points to be tracked and twenty disturbances to be rejected) to properly operate the

process. Specific details about this plant are given in the case study section. While Downs and Vogel [21]

suggest (from a qualitative comparison point of view) only consider one specific mode (base case), four

set points (production rate and mix, reactor pressure, and B composition in purge), and five particular

disturbances (IDV1, IDV4, IDV8, IDV12, and IDV13), other authors have been proposed and developed

the most variated PWC designs under the most variated scenarios and methodologies. In this context an

exhaustive comparison becomes complex, incomplete or impossible for some approaches. Indeed, the most

relevant applications for designing multiloop control structures are summarized in the following. Within

the heuristic-based PWC design can be found works using steady-state screening tools [23]; approaches

based on the tired method and process insights [24, 25], and designs based on the nine steps approach [26].

Some mathematical approaches also appear based on thermodynamic theory to define the most dominant

variables [27]; steady-state optimization for analyzing operating costs and variable vinculations [28]; and

methodologies based on the self-optimizing control strategy to guarantee the optimal operation [29]. Finally,

some designs are focused on integrated tools such as mathematics, heuristics, and simulations (steady-state

or dynamic) [9]. It is worth mentioning that all the above approaches (and many others) give stable PWC

structures with similar dynamic performances, where most of them are implemented based on decentralized

feedback control approaches and then improved by adding some kind of feedforward, override, ratio, and

selective controllers. All these integrated and complex designs arise from the need to address properly the

changing and strongly nonlinear behavior of the process when the latter is forced to operate in several modes

and optimal working points.

1.4. Existing drawbacks and contribution of the work

Four common drawbacks can be identified from above discussed approaches: 1- heuristic-based method

requires an ad-hoc reduction of the problem size for large-scale process, generating suboptimal designs from

simplicity, investment/operating costs, and/or robustness characteristics [30], 2- most of mentioned design

tools use all the available degrees of freedom (DOF) which leads unnecessarily to overdimensioned designs,

i.e. the simplest structure is preferred [26], 3- accurate dynamic models are infrequent for real cases, the

common scenario is confined to steady-state models either linear or nonlinear, and 4- most of commented
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approaches are focused on getting decentralized (diagonal) multivariable feedback control structures as a

base control policy.

In this work, an alternative PWC design methodology is proposed to overcome the above mentioned

drawbacks. The overall approach is based on a single multi-objective combinatorial optimization problem

with steady-state functional costs. This mathematical representation allows considering the original size

of the problem without any ad-hoc reduction, furthermore any a priori heuristic consideration may be

included properly via weighting matrices. The unified programing suggested here consists of two steady-state

contributions called the sum of square deviations (SSD) and the net load evaluation (NLE) indexes, which

have strong connection with the controllability/performance properties of the current PWC [18, 31]. This

new optimization problem allows to define the CVs, MVs, controller order/size, the input-output pairing,

and the controller interaction, simultaneously. Hence, several different DOF may be evaluated and no

dynamic models are needed in this design stage. This feature generalizes and systematizes the overall PWC

design procedure focusing the search to simple feedback control structures. Moreover, the NLE component

gives relevant information related to the controller interaction and how this structure affects the closed-loop

performance [31]. Thus, if required, integrated multi-loop control policies (feedback and feedforward) can

be designed eventually as base structure. This new unified strategy is particularly interesting because it

is well suited to handle any potential modification of the PWC problem context, i.e. DOF changes. A

particular DOF situation may change due to multiple expected and unexpected factors [32]. In the present

work, an alternative application is proposed when the DOF change due to structural process faults such

as sensor and/or actuator malfunctions. Moreover, security/stability control loops are suggested, for some

particular abnormal events, directly related to the override/selective controllers concepts from industrial

practice [33, 39].

It is worth mentioning that the proposed methodology for PWC design is mainly focused to control

structure design and evaluation from the conceptual engineering point of view. It allows to select valid

control policies by using limited information (steady-state) and analyze potential DOF modifications. The

application suggested here, related to structural process fault, is not aimed to be an active fault-tolerant

control approach and/or an on-line redesign methodology. The main real application is to analyze (off

line) potential PWC structures, how the performance of these policies are affected by eventual structural

process faults, and if hardware redundancy could be useful in some extent. Thus, relevant information can

be obtained, for example, for the process synthesis and design stage.

The case study selected here is the well-known TEP problem, briefly mentioned in previous paragraphs.

Although the overall PWC design is based on steady-state information only, all the suggested control policies

are tested dynamically by using the non linear simulator in the MatLab context. Due to the diverse

range of existing PWC proposals on this process, the main comparison tasks are focused on structural

resemblances and hardware requirements among them. All the optimization problems presented in this
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work rely on multi-objective combinatorial representations and were efficiently solved via stochastic global

search such as genetic algorithms (GA). While the GA-based optimizations suffer from uncertainty related to

the global optimum, the main reason to use these algorithms lies in the ease of both representation as well as

implementation. This fact is very important from the engineering point of view. Particularly, the open code

given by Chipperfield et al. [34] is used here. It is important to note that the same combinatorial problem

may be solved by deterministic mixed-integer optimization based formulations, for example in the GAMS

environment. Indeed, the integration between process synthesis and control, in the GAMS environment, is

currently under development by the author and co-workers. In future works a complete representation will

be given in a deterministic optimization context.

2. Analyzing PWC scenarios

In the following sections, alternative methodologies for PWC design are presented. In all cases, the

approaches are based on analyzing several control structures by integrating the SSD and NLE concepts

and suggesting a simultaneous CVs and MVs selection according to the DOF available in the process, i.e.

plant-wide control scenarios. Although the strategies are not holistic approaches, they have some systematic

and generalization degree by minimizing the heuristic considerations.

The potential multivariable control alternatives depend on: 1- the process (the number of potential

outputs m and manipulated variables n) and 2- the control requisites (the number of control loops needed

q = qo + qa). Where qo is the number of output variables which must be controlled “indefectibly” (process

engineering requirements: production rate, product quality, etc.) and qa is the number of additional output

variables which “could/should” be controlled in order to complete the multivariable controller configuration.

Although qa may be null, generally it affects the order/size of the final controller to be implemented.

Indeed, a common practice in most of the existing PWC design methods is to select qa by considering all

the potential DOF available, i.e. qa = n − qo for the m > n case. In this section a complete evaluation of

several PWC structures is proposed by analyzing all the potential range 0 ≤ qa ≤ min(m,n) − qo. In this

context, the potential plant-wide control alternatives are divided into four cases:

Case I: MVs Selection (m < n, q = m). There are more MVs than CVs and all the outputs need to be

controlled.

Case II: Simultaneous CVs and MVs selection (m ⋚ n). Several process topologies need to be considered

where q < min(m,n), i.e. all the potential DOF are not required to be used.

Case III: CVs selection (m > n, q = n). There are more CVs than MVs and all the available inputs are

used in the control structure, i.e. all DOF used.
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Case IV: There are no alternatives (m = n = q). The next step is the input-output pairing selection via

relative gain array (RGA) for example.

Each scenario requires a particular approach for solving the original PWC problem. Furthermore, the

existing control structure design tools are based only on cases I, II, or IV individually. In contrast, Zumoffen

[19] suggests a PWC design approach by addressing the oversizing analysis for all the cases simultaneously.

This strategy is called here the classical EMSD approach.

3. Classical and modified EMSD methodologies

This section summarizes the main ideas behind both the classical and the modified EMSD methodologies.

Initially, the classical EMSD approach suggested in Zumoffen [19] is presented briefly only for contextualizing

the improvements proposed further in this work.

Let us assume a stable (or already stabilized) plant with the transfer functions matrix (TFM) represen-

tation (in Laplace domain) given in Eq. (1),

y(s) =





ys(s)

yr(s)



 =





Gs(s) G∗

s(s)

Gr(s) G∗

r(s)









us(s)

ur(s)



+





Ds(s)

Dr(s)



d(s) (1)

where the number of potential CVs, available MVs, and disturbance variables (DVs) are m, n, and p,

respectively.

The subsystems and signals involved in Eq. (1) have the following description:

• Gs(s) is the square (q × q) subprocess to be controlled,

• us(s) are the (q × 1) selected MVs subset for controlling the (q × 1) output variables subset ys(s),

• ur(s) are the ((n− q)×1) remaining input variables which are not used for control purposes and yr(s)

are the ((m− q)× 1) uncontrolled variables (UVs),

• G∗

s(s), Gr(s), G
∗

r(s), are remaining matrices with dimension (q×(n−q)), ((m−q)×q), ((m−q)×(n−q)),

• Ds(s) (q × p) and Dr(s) ((m − q) × p) are the disturbance matrix partitioning which affect the CVs

and UVs, respectively,

where q ≤ min(m,n) represents the number of variables which should be controlled, i.e. the control req-

uisites. On the other hand, u(s) = [us(s)ur(s)]
T and d(s) represent the input and disturbance vectors

respectively.

Let us consider that the subprocess Gs(s) is controlled via some structure with integral action. In fact,

the internal model control (IMC) approach is considered here, where Gc(s) = G̃−1
s (s)F(s) is the controller,
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G̃s(s) the process model and F(s) a low-pass TFM. If the inputs ur(s) are not used for control purposes,

then the following relationships can be stated for the MVs, CVs, and UVs, respectively

us(s) = G−1
s (s)ys(s)−G−1

s (s)Ds(s)d(s)

ys(s) = F(s)ysp
s (s) + (I− F(s))ynet

s (s)

yr(s) = Gr(s)G
−1
s (s)ys(s) +

(

Dr(s)−Gr(s)Gs(s)
−1Ds(s)

)

d(s)

(2)

with Ssp(s) = Gr(s)G
−1
s (s), Sd(s) =

(

Dr(s)−Gr(s)G
−1
s (s)Ds(s)

)

, and ynet
s (s) = An(s)ys(s)+Bn(s)d(s)

is the so called net load effect (see AppendixA for more details).

For a particular dimension of the subprocess Gs(s), the corresponding CVs and MVs subsets need to be

defined. In this work, the binary decision vectors called Cc and Cm parameterize this selection, respectively.

On the other hand, a binary decision matrix Γ is also defined for parameterizing the plant-model mismatch

via G̃s(s) = Gs(s)⊗ Γ, where ⊗ represents the Hadamard product (see AppendixA and AppendixB).

Both binary representations are very useful for developing the EMSD method shown in Fig. 1. Basi-

cally, this approach is a sequential procedure where combinatorial problems and dynamic simulations are

integrated. First, the SSD index is solved for each PWC scenario (0 ≤ qa ≤ min(m,n) − qo) and then

all the optimal solutions (min(m,n) − qo + 1) are simulated for choose the best decentralized control pol-

icy. Eventually, the optimal sparse control structure (controller with arbitrary interaction) can be designed

based on the previously selected decentralized PWC. Finally, all the multi-loop control structures are sim-

ulated for deciding the best one. According to the PWC scenarios analyzed in the previous section, the

performance indexes used in each minimization are summarized in Table 1 (see AppendixA). Moreover, the

problem dimension is also presented. Henceforth, A(Cc,Cm) and A(Γ) represents a particular selection of

rows/columns and entries of the matrix A, respectively.

Remark 1: It is worth mentioning that the SSD and NLE indexes are computed at steady

state, where s = 0 and ys = ysp
s due to the integral action. The SSD quantifies the deviations

produced by set points and disturbance changes in the UVs and/or MVs. This index is directly

related to the controllability characteristic ofGs(s), i.e. if there are potential conflicting direction

for control purposes [18, 19]. On the other hand, the NLE measures the deviations produced by

the same effects in the ynet
s (s), i.e. how the CVs are affected in the transient by the selected

plant-model mismatch [31]. See AppendixA for specific details.

Remark 2: Although the EMSD strategy in Fig. 1 gives a significant reduction of the PWC

problem dimension and minimizes several exhaustive evaluations, the final decisions about the

control structure is taken based on multiple dynamic simulations. Indeed, it is required to analyze

min(m,n)− qo + 1 decentralized control structures plus one sparse control policy under several

scenarios given by the case study.
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3.1. Modifications to the EMSD approach: the SSD-NLE combined index

The main idea here is modifying the classical EMSD approach to facilitate the final selection of the

multi-loop control structures by minimizing the dynamic simulations burden and the heuristic knowledge

requirements (commented previously in remark 2). In this case, a new combined index is proposed based

on the SSD and NLE quantifications. Moreover, in this new version the simultaneous selection of MVs,

CVs, the number of additional control loops qa, the input-ouput pairing, and the controller interaction is

proposed in a single optimization routine.

In fact, the parametrization variable Ci suggested in Eq. (3) is used here for contextualizing the overall

problem into the GA environment (see AppendixB),

Ci =
[

C
q
i ,C

c
i ,C

m
i ,CΓ

i ,C
o
]

=
[

Cd
i ,C

o
]

(3)

where Cd
i =

[

C
q
i ,C

c
i ,C

m
i ,CΓ

i

]

is de integer/binary decision variable for the GA routine, i represents a

particular evaluation/instance (individual from the GA point of view) and Co is a fixed variable representing

the original control requisites (ad-hoc selection of some CVs). The constitutive vectors have the following

dimensions:

C
q
i : (1× r) Cc

i : (1× (m− qo)) Cm
i : (1 × n) CΓ

i : (1× (s− 1)s) Co : (1× qo), (4)

where Cc
i is the additional CVs selection according to the qa variable, and Cm

i defines the MVs selected

for squaring down the control problem. The variable called C
q
i defines the number of additional control

loops required qa, either in binary or integer representation. In the binary case, r must be adequate for

representing all the qa integer numbers in the range 0 ≤ qa ≤ min(m,n) − qo. Finally, CΓ
i is a binary

vector which represents the off-diagonal elements needed to be included in the parametrization matrix Γ

for designing the IMC controller interaction, where s = min(m,n). The length of the decision variable Cd
i

results nc = r+(m−qo)+n+(s−1)s. Note that, the IMC controller is given by Gc(s) = (Gs(s)⊗Γ)−1F(s)

(see AppendixA).

The sequential EMSD method shown in Fig. 1 can be unified into a single multi-objective combinatorial
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problem as:

min
(Ci)

[SSDyr
(Ci) + NLEΓ(Ci)] , (5)

subject to qa = C
q
i ≤ min(m,n)− qo, (6)

||Cc
i ||1 = qa, (7)

||Cm
i ||1 = qa + qo, (8)

det(Gs) 6= 0, (9)

pop = argmin
pi

Λn(Gs(pi)), (10)

C
Γqa
i = CΓ

i (1 : (qo + qa − 1)(qo + qa)) , (11)

Γ = I+ f(CΓqa
i ), (12)

G̃sΓ = Gs ⊗ Γ, (13)

Re
[

λi

(

GsG̃
−1
sΓ

)]

> 0, i = 1, . . . , qa + qo. (14)

It is important to note that the evaluation of SSDyr
as well as NLEΓ require the matrices Gs, Gr, Ds,

and Dr which are functions of the parametrization variable Ci =
[

C
q
i ,C

c
i ,C

o,Cm
i ,CΓ

i

]

and the main

process matrices G and D. The constraint in Eq. (6) guarantees that the selected qa belongs to the feasible

PWC alternatives/scenarios. In this case an integer representation for qa was selected. Constraints in

Eqs. (7)-(8) ensure that the number of selected CVs and MVs, in Cc
i and Cm

i , are made properly by

considering the suggested qa number. This conditions allow to square-down the overall PWC problem. In

the IMC context, is important guaranteeing the model inversion at steady-state, so constraint in Eq. (9)

ensures this characteristic. For computing NLEΓ, the matrices Gs and G̃sΓ = Gs ⊗ Γ are required to be

diagonally paired. Hence, some systematic methodology is needed to perform this task into the optimization

routine, i.e. constraint Eq.(10). Section 3.1.1 summarizes some details about the proposed automatic

input-output pairing subproblem based on the RGA-number. Equality in Eq.(11) allows selecting the first

(qo + qa − 1)(qo + qa) entries from the vector CΓ
i to be used as decision variables. It is clear that the size of

C
Γqa
i depends on the current qa selected. Note that Eq.(12) defines the current controller interaction matrix

Γ used. In fact, f(CΓqa
i ) is a function which builds a (qo+qa)×(qo+qa) binary matrix with null entries in the

main diagonal and the elements suggested by C
Γqa
i in the off-diagonal components. It is worth mentioning

that if only decentralized PWC structures are preferred (not sparse or full), then the vector CΓ
i can be fixed

to zero or eventually removed. The last constraint in Eq. (14) is the stability/robustness criterion developed

by Garcia and Morari [35] for multivariable control structures based on IMC theory, where Re[·] is the real

part function, λi(·) is the i-th eigenvalue, and G̃sΓ the model parametrization/selection.

The main steps of the suggested SSD-NLE index based approach are shown in Fig 2. The procedure

begins with the initialization stage where the process steady-state gains, their corresponding sizes, and the

9



original control requisites are given. The next step is testing the current PWC scenario according to the

classification given in section 2. The so called Case IV means that CVs and MVs are not required to be

defined. Therefore, the left branch in the block diagram is activated and it enables the optimal input-ouput

pairing evaluation via the subproblem in Eq.(10)/Section 3.1.1. With a decentralized control structure

already defined, the controller interaction could be investigated if the main optimization problem Eq.(5) to

Eq.(14) is solved by using only the constraints Eq.(11) to Eq.(14), the NLE index from Table 1 as the main

functional cost, and nc = (q − 1)q. On the other hand, for Cases I, II, and III the branch to be followed

is the central path of the block diagram. Indeed, the next step is selecting the controller structure desired:

1- without interaction (diagonal), where CΓ
i is not required to be computed in the main problem (s = 0),

or 2- with interaction (full/sparse), where CΓ
i is needed according to Eq. (4) (s = min(m,n)). This stage

is followed by the proper setting of the GA routine: size of the initial population, number of generations,

amount of selected individuals for matting, crossover and mutation probabilities, and individual length.

Note that the size, nc, of the decision variable depends on several factor such as the representation form

of Cq
i , the process dimension, the number of control requisites, and the selected controller structure in the

previous stage (Eqs. (3)(4)). In this work an integer representation is selected for Cq
i ∈ [0,min(m,n)− qo]

whereby r = 1. In this context, the general conditions for running the main algorithm are given and the GA

begins the global stochastic search according to the sequential steps described in AppendixB for evolving

towards the best suited individuals (Cd
i ). It is worth mentioning that the functional cost is evaluated based

on the parametrization variable Ci =
[

Cd
i ,C

o
]

because it depends on the decision variable Cd
i as well as the

fixed control requisites Co (ad-hoc CVs selection). For each iteration in the GA routine, the main problem

calls the optimal input-output pairing subproblem of Eq.(10) and described in Section 3.1.1. This subroutine

receives a particular subprocess selection called Gs and returns the optimal pairing pop by minimizing the

RGA-number. The vector pop contains the column permutation required onGs for diagonal pairing. Finally,

once the GA code reaches the maximum number of generations the global search stops and the optimal value

of additional control loops Cq
op, location of selected CVs Cc

op, location of selected MVs Cm
op, the controller

interaction degree CΓ
op, and the suggested pairing pop are available for PWC implementation and dynamic

simulation testing.

Remark 3: The methodology suggested in this section based on the SSD-NLE combined

index gives a more adequate evaluation of the solution space by searching a trade-off solutions

between the SSD and NLE indexes. This strategy allows us to focus the exhaustive dynamic

simulation tasks to only one optimal PWC design, in contrast, the classical EMSD requires

“min(m,n)− qo + 1 + number of potential pairings + number of controller interaction designs”

exhaustive dynamic evaluations to decide. Although both approaches are based on steady-state

indexes, it is important to note the strong relationships of such indexes with dynamic character-
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istics of the closed loop process. These connections have been analyzed for many researchers the

last decades [8, 10, 11, 18, 19, 31, 35].

3.1.1. Automatic input-output pairing based on the RGA number

This section is devoted to summarize the main concepts for implementing the optimal input-output

pairing subproblem stated in the constraint Eq. (10). The basic idea is identifying automatically the best

diagonal pairing for a given square steady-state matrixGs of the process. In this case a GA-based subroutine

is proposed by using the well-known RGA-number concept, which can be integrated to the main optimization

problem as shown in Eq. (10) as well as in Fig. 2. This index is defined as [8]:

Λn(Gs) = ||Λ(Gs)− I||sum, (15)

which gives a measurement of the diagonal dominance of the classical steady-state RGA matrix Λ(Gs) =

Gs⊗
(

G−1
s

)T
. The sum-norm is defined as ||A||sum =

∑

ij |aij | where aij is the ij-the element of the matrix

A.

Original problem: let us consider the vector p = [p1, p2, . . . , pq] of positive integer variables. Each

component pi identifies a particular column of the matrixGs, therefore it must fulfill the following conditions:

pi ∈ N, 1 ≤ pi ≤ q, and pi 6= pj for i 6= j. If a particular ordering in the column space of Gs is called pl, then

the RGA-number can be computed in this case as Λn(Gs(pl)). Hence, an automatic diagonal pairing can

be implemented if a suitable columns permutation pl is found, such as, the Λn(Gs(pl)) index is minimized.

A simple implementation: in this case a GA-based approach is proposed by using a real positive

decision variable Cp
i =

[

cp1i , cp2i , . . . , cpqi

]

where each element fulfils 0 ≤ cpji ≤ 1 with j = 1, . . . , q. Thus, the

automatic diagonal input-output paring is given by pi in Eq. (16).

min
C

p
i

Λn(Gs(pi)), subject to pi = sort (Cp
i ) (16)

where the sort function “sort (Cp
i )” reorders the vector C

p
i in increasing order and returns in pi the new

position of each element.

This way of computing the optimization over a positive real decision variable (Cp
i ) for subsequently

perform a rounding tasks (pi) relaxes the original combinatorial problem and improves the GA probability

to find valid solutions. This behavior is mainly given by the dimension and the continuous characteristics of

the searching space where the mating, crossover, and mutation functions evolve in a more robust manner.

4. Alternative application: DOF changes and PWC redesign analysis

The methodology proposed in section 3.1, is particularly interesting because it is well suited to handle any

potential modification of the PWC problem context, i.e. degrees of freedom (DOF) changes. In fact, it allows
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a quickly global redesign analysis about the CVs, MVs, controller size and interaction, and input-output

pairing if the combinatorial optimization modifies its definition.

Basically, the main root causes of the process DOF modifications are: 1- changes in the number and

type of the active constraints and 2- modifications of the controlled process information structure [32]. The

active constraint definition, in the first category, may change due to expected or unexpected modifications

in the process operation itself, i.e. the real time optimizer decides to fix some particular variable or some

process variable reaches its safety limit. The second set involves structural process faults. In this work, the

analysis is focused on the latter case, i.e. faults or failures in the process elements such as sensors and/or

actuators. Even though there are differences among fault, failure, and malfunction concepts [36], in this

work, it is considered that those meanings are unified and represent a particular temporal event from which

some process devices lose their functionality suddenly. More specifically, a complete loss is considered in the

measurement and actuation devices [37].

In the following paragraphs the potential sensor and actuator faults are integrated to the PWC context.

Obviously, the new DOF scenario is characterized via healthy devices, i.e. hardware redundancy-based

redesign analysis [38]. When these faults occur the original process can be represented as,

yfi (s) = Gfij (s)ufj (s) +Dfi(s)d(s)

Gfij (s) = Ti
sG(s)Tj

a

Dfi(s) = Ti
sD(s)

(17)

where Gfij (s) and Dfi(s) are the matrices associated with the new process representation when the sensor

i and the actuator j were lost, i.e. the fault fij occurs. Indeed, the matrices Ti
s and Tj

a are selection

matrices which allow to incorporate the i-th and j-th sensor and actuator faults, respectively. The vectors

called yfi(s) and ufj (s) represent all the available healthy sensors and actuators, respectively. On the other

hand, the structure of the selection matrices are displayed in Eq. (18). The null column/row represents the

i-th/j-th faulty sensor/actuator to be deleted from the original process model. In the fault-free (ff) case

the matrices Ti
s and Ti

a are replaced by Tff
s = I(m×m), T

ff
a = I(n×n), respectively and the approach is the

same as section 3.1.

Ti
s =

















I
0

0...

0

...
I

0

















(m−1)×m

, Ti
a =











I 0

0 · · · · · · 0

0 I











n×(n−1)

(18)

In this context, the procedure shown in Eqs. (5)-(14) is modified and replaced for the following optimiza-

tion scenario,

min
C

fij

k

[

SSDfij
yr

(C
fij
k ) + NLE

fij
Γ (C

fij
k )

]

, (19)
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subject to










Gfij = Ti
sGTj

a, Dfi = Ti
sD

Gs = Gfij

(

[Cc
k,C

o
fij

],Cm
k

)

, Ds = Dfi

(

[Cc
k,C

o
fij

]
)

Eqs. (6)-(14)

(20)

where SSDfij and NLEfij indicate that the sum of square deviations and the net load evaluation indexes are

computed by considering the current i-th sensor and j-th actuator faults fij , respectively. Note that C
fij
k

is defined as Eq. (3), but in this case Co
fij

indicates that the original control requisites could be affected by

the fault fij , i.e. particularly when sensor faults occur for the ad-hoc selected CVs.

4.1. Comments on reconfigurable PWC

The methodology suggested in previous section allows to easily reevaluate, off-line, the PWC structure

when the DOF scenario changes. The main objective is identifying if additional hardware redundancies are

needed for guaranteeing the overall process operability, how the control structure needs to be modified, and

finally testing these new control policies based on dynamic simulations. It is clear that all the abnormal

events have different effects on the controlled process, so the changing DOF analysis can be made only for

the most critical ones, i.e. for those events which produce the process shutdown.

For these particular contexts some emergency/auxiliary control loops can be turned on with the aim to

tolerate some critical abnormal events. Tolerance describes the notion of trying to contain the consequences

of faults such that the process remains operative. The hardware redundancy plays a crucial role to perform

such desirable characteristic [36, 37]. Although the main idea in this work is not to develop a complete

on-line fault-tolerant control system, the information given by the methodology suggested in the previous

section can be used to develop backup (emergency/auxiliary) control loops for some particular events. In

fact, the well-known override/selective controllers are common in industrial practice and they have been

used for decades. Indeed, override control applications include: protecting process equipment, automatic

startup/shutdown, protection against instrument faults, and signals selections [33, 39, 40].

It is worth mentioning that specific details about the on-line reconfiguration, synchronization, selection

logic, and anti-reset windup procedures tied directly to the override control design are beyond the scope of

the current work, so will not discussed here.

5. The Tennessee Eastman Process

The case study selected in this work, for testing the previously suggested approaches, is the well-known

Tennessee Eastman process (TEP). This plant was introduced by Downs and Vogel [21] as a multivariable

nonlinear benchmark for the process control community. Although the original TEP version was modeled

in Fortran, the current work is based on the Matlab dynamic simulator generated by compiling the source
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code which is available from the Prof. Ricker’s web page [22]. The process consists of five major units

the reactor, the product condenser, a recycle compressor, a vapor-liquid separator, and a product stripper.

The plant produces two liquid products G and H from four gaseous reactants called A, C, D, and E, where

also present are an inert B and a byproduct F. The reactions in Eq. (21) are approximately first-order with

respect to the reactant concentrations, irreversible, and exothermic.

A(g) + C(g) + D(g) → G(liq), Product 1,

A(g) + C(g) + E(g) → H(liq), Product 2,

A(g) + E(g) → F(liq), Byproduct,

3D(g) → 2F(liq), Byproduct.

(21)

This plant summarizes 12 available MVs, 41 potential measurements, 20 disturbance scenarios, and six

potential operating modes which define several product G/H mass ratios and rates. The most popular

operating condition is the base case or mode I where it is required 50/50 mass ratio and 7038 kg/h for G

and H rates.

The TEP is an open-loop unstable plant, so a stabilizing control structure is required before applying the

approaches discussed in previous sections. In this work, the stabilizing control policy opportunely suggested

by McAvoy and Ye [23] is adopted, which consists of flow (inner) and level (cascade) controllers for the

reactor, separator, and stripper. Figure 3 shows the TE process layout and the corresponding stabilizing

control structure.

The main scenario considered here for PWC design is shown in Table 2 and corresponds to the working

point identified as the base case, with m = 12 outputs, n = 8 inputs, and p = 2 disturbances. The same

framework was used in previous publications of the author [18, 19]. According to the definitions stated in

section 2 the overall PWC problem belongs to the Case II with its corresponding functional cost. This

table summarizes the connection between the nomenclature used here (first column) and the description

used opportunely in the precursory work (last column). Furthermore, the original control requisites stated

by Downs and Vogel [21] define that the output variables identified as y9, y10, y11, and y12 need be controlled

and this fact is indicated with an asterisk in Table 2.

Once the PWC is designed and implemented, the final testing is performed on the nonlinear dynamic

simulator by considering the following challenging scenarios stated by Downs and Vogel [21]:

• Set point changes:

– XME(7): Reactor operating pressure step change from 2705 to 2645 kPa.

– XME(17): Production rate step change from 14.228 to 12.094 kg/h.

– XME(30): B composition in purge step change from 13.82 to 15.82 %.

– XMEG/H : Product mix step change from 50 G/50 H to 40 G/60 H.
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called here sp1, sp2, sp3, and sp4.

• Disturbances:

– IDV 1: A/C feed ratio step change, B composition constant (stream 4).

– IDV 2: B composition step change, A/C ratio constant (stream 4).

– IDV 4: Reactor cooling inlet temperature step change.

– IDV 8: A, B, C feed compositions random changes (stream 4)

– IDV 12/IDV 15: Condenser cooling water inlet temperature random changes and condenser cool-

ing water valve sticking.

called here d1, d2, d3, d4, and d5.

6. Results and discussion

This section is devoted to display the main results of the new SSD+NLE combined index approach

suggested in sections 3.1 and 4 on the TEP. These results and discussions are divided in three major sections

for a proper analysis and comparison. Initially, the SSD+NLE combined index approach is applied and the

new PWC suggested is further evaluated dynamically against the classical EMSD methodology [19] to show

the improvements. Abnormal events or structural faults were not considered in this first evaluation, i.e. a

fault-free design context. The second main section is related to display the PWC redesign analysis concepts

stated in section 4, i.e. changes in DOF conditions. The basic idea here is to analyze how the optimal PWC

structure, designed in the fault-free scenario, behaves under structural process faults and evaluate if some

emergency (backup) control loops could be useful to guarantee the overall process operability. Finally, a

discussion is presented by comparing the suggested approach and the final PWC structure with some earlier

works in the area.

It is worth mentioning that, for simplicity, all the PWC structures considered here are decentralized

ones, i.e. several SISO (single input-single output) control loops without interaction. Hence, the controller

structure is diagonal with Γ = I and the parametrization CΓ
i is not used in Eq. (3).

6.1. Classical EMSD and SSD-NLE combined index approaches

Remembering the discussion in the previous section, the PWC design scenario is defined by qo = 4

original control requisites (ad-hoc CVs selection), m = 12 outputs, n = 8 inputs, p = 2 disturbances, and

v = 7 stabilizing control loops. Moreover, considering the combinatorial problem size stated in section 2, for

the case II, there are [(m− qo)!/(qa!(m− q)!)][n!/(q!(n− q)!)] = 1820 feasible PWC solutions. This number

increases even more if we consider all the potential input-output pairings, hence it is clear that an heuristic

evaluation of these solutions results unpractical.
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The classical EMSD approach shown in Fig. 1 and suggested by Zumoffen [19] represents a systematic

and generalized methodology to avoid the exhaustive evaluation of these 1820 potential solutions. Indeed,

the classical EMSD strategy focuses mainly on max(qa) + 1 = 5 potential optimal PWC structures, where

0 ≤ qa ≤ min(m,n)− qo = 4, which shows a remarkable reduction in the problem size. Anyway, for deciding

about the final control policy, the five control structures ((11 × 11) to (15 × 15)) need to be implemented

and their performances tested dynamically on the non linear simulator. A complete analysis is performed

in Zumoffen [19] and the final conclusion is that the PWC structure with dimension (12× 12) presents the

best trade-off behavior between the integral absolute tracking error (IAE) for the main process variables

and the operating cost.

The modification suggested in section 3.1, the SSD-NLE combined index, facilitates the final selection of

the multi-loop control structures by minimizing the dynamic simulations burden and the heuristic knowledge

requirements. The methodology suggested in Eqs. (5)-(14) is applied to the TEP with the same scenario as

defined at the beginning of this section, Co = [1 1 1 1], qo = 4 and 0 ≤ qa ≤ 4. The parametrization variable

results Ci = [Cq
i ,C

c
i ,C

o,Cm
i ] where each subcomponent has the following dimensions (1×1), (1×(m−qo)),

(1 × qo), and (1 × n), respectively. In this case, Cq
i is an integer decision variable into the qa range and

Γ = I. The corresponding optimization problem is solved here by using the GA approach with the parameter

settings displayed in Table 3 (see AppendixB). Note that in this context the overall combinatorial problem

dimension is (51)(216) = 327680, with only [(m− qo)!/(qa!(m− q)!)][n!/(q!(n− q)!)] = 1820 feasible solutions

according to 0 ≤ qa ≤ min(m,n)− qo = 4. On the other hand, the optimization time to solve this problem

was ≈ 1.8 hours (Intel Core, i5-2400, 3.1 GHz, 3 GB RAM).

The SSD-NLE combined index approach allows us to focus all our attention on just one solution, reducing

even more the overall problem size. Indeed, the PWC suggested in this case is called OPWC3 and it is shown

in Table 4. This solution represents a control policy of (13×13) decentralized controllers (6 servo/regulatory

and 7 stabilizing control loops). Furthermore, Table 4 also summarizes two additional PWC structures

named OPWC1 and OPWC2 which come from the classical EMSD methodology and they have been used

here for dynamic comparison purposes. The overall description of these control policies are the following:

• OPWC1: the best (12× 12) solution suggested by the classical EMSD approach [19] with qa = 1. Best

pairing: u1 − y12, u2 − y9, u3 − y10, u5 − y11, u7 − y8.

• OPWC2: the best (13× 13) solution suggested by the classical EMSD approach [19] with qa = 2. Best

pairing: u1 − y12, u2 − y9, u3 − y10, u4 − y8, u5 − y11, u7 − y1.

• OPWC3: the (13 × 13) optimal policy suggested by the modified methodology with qa = 2. Best

pairing: u1 − y12, u2 − y9, u3 − y10, u5 − y11, u7 − y2, u8 − y7.

It is worth mentioning the main differences about the number, type and pairing of the variables for the
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three PWC structures to be compared. This fact impacts directly in the SSD+NLE index shown in the

last column in Table 4. In theory, the control structure called OPWC3 presents the best servo/regulator

performance, i.e. better dynamic behavior. This fact will be tested dynamically on the non linear simulator

benchmark.

The dynamic performances for OPWC1, OPWC2, and OPWC3 control policies are summarized in Fig.

4 and Fig. 5. The integral absolute tracking error (IAE) between the CV and its corresponding reference

trajectory for the main process variables are shown in Figs. 4(a)(b), which correspond to the reactor pressure

(y9) and B composition in purge and (y11), respectively. All the scenarios, sp1 to sp4 and d1 to d5, are

considered here for comparing the three PWC structures. It is clear that the new control policy suggested

by the modified EMSD methodology, OPWC3, considerably improves the servo/regulator behavior for the

scenarios called sp2, sp3, d1, d2, d4, and d5. Some scenarios where the OPWC3 structure presents notable

improvements are summarized dynamically along 70 hr of simulation time in Fig. 5. In fact, the temporal

evolution of the reactor pressure when disturbance d1 occurs and the profile of the B composition in purge

when disturbance d2 is present are shown in Fig. 5(a) and Fig. 5(b), respectively. In both cases the

disturbance effect appears at t = 0 hour. It is clear that the new OPWC3 policy allows maintaining the

reactor pressure under normal operating limits, improving the response time and reducing the variability.

On the other hand, the settling time and the peak values are drastically reduced in the purge composition.

The significant improvements introduced by the OPWC3 structure rely on the new methodology based

on combined SSD-NLE index. Indeed, this modified version of the EMSD approach allows to design PWC

structures focused on minimizing the SSD index for the UVs as well as reducing the NLE among CVs when

servo/regulator behavior is assumed for the diagonal controller. Moreover, the suggested approach explores

the correct controller size.

6.2. PWC redesign analysis: sensor faults

In previous section an optimal PWC structure, called OPWC3, was designed based on the SSD-NLE

combined index approach for the fault-free scenario. This control policy is named here OPWCff highlighting

this fact.

The basic idea here is analyzing how this nominal PWC behaves when some components lose functionality

(structural faults) and evaluate if some kind of PWC redesign (backup/emergency/auxiliary control loop)

could be useful to guarantee the overall process operability. The main concepts from section 4 are used here.

Without loss of generality, only faults in sensors are considered due to both simplicity and space issues.

Remembering the Table 4, the control policy OPWCff requires six sensors [y2, y7, y9, y10, y11, y12] for the

servo/regulatory control layer. Hence, the first aim is to analyze the overall behavior of the closed-loop

process when those sensors are lost. Table 5 summarizes the effects produced by the mentioned six sensor

faults f1 to f6 (the second column shows the corresponding faulty measurement) on the OPWCff control
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structure when all the simulation scenarios were considered. When the fault fi (i = 1, . . . , 6) occurs,

the feedback information given by the yj (j = 2, 7, 9, 10, 11, 12) output measurement is lost, hence the

corresponding control loop works in open-loop manner. This means that the optimal control policy OPWCff

loses one control loop and therefore its optimality. The control structure formed by the remaining healthy

control loops are called in this case FPWCfi, i.e. a faulty PWC structure. The symbolism used in that

table is the following: “X” defines a stable operation condition, “⊗” means that this setpoint change cannot

be implemented due to the loss of the respective sensor, and “SD” represents the shutdown of the process

operation due to violations of the operating limits. Note that the SSD+NLE index value is also displayed

in each scenario.

The faults called f2, f4, and f6 do not produce any drastic process condition and the plant operability is

guaranteed. The corresponding SSD+NLE indexes are very close to the fault-free case (≈ 19.76 in Table 4).

It is important to note that, in these cases, while a stable operation is maintained, by the remaining operative

control loops, the performance in some process variables may be reduced due to the lack of a complete control

structure. For these faults no PWC redesigns (emergency control loops) are required, so the overall process

behavior it is assumed acceptable. The faults set highlighted with gray background, f1, f3, and f5, leave the

process inoperative producing the mentioned shutdown of the plant for scenarios d1, d2, and sp4. Note that

the SSD+NLE indexes are deviate considerably from the fault-free case. Generally, this undesired shutdown

generates enormous monetary losses due to unsold products and the costs involved in re-startup of the plant.

Eventually, legal problems may also occur due to out-of-specification operation in some units.

For avoiding these drastic scenarios the methodology suggested in section 4 is used here for analyzing

potential PWC redesigns based on auxiliary/emergency control loops. In fact, control policies are reevaluated

for the f1, f3, and f5 faulty scenarios. Table 6 shows the new control structures suggested for guaranteeing

the process operability which are called OPWCf1, OPWCf3, and OPWCf5, respectively. The last column

of this table summarizes the new SSD-NLE index values for these structures. Remembering the faulty

values of Table 5, in these case an improvement of 28.79, 63.88, and 35.40 % can be identified, respectively.

Comparing Table 6 with the fault-free PWC design OPWCff shown in Table 4, the following differences can

be discussed:

• OPWCf1: when the reactor feed flow sensor is lost (y2), this new structure suggests to add the recycle

flow sensor (y1) and controlling this variable via the same manipulated variable, the reactor colling

water inlet temperature set point (u7). The new loop is reasonable because either y1 or y2 can be used

to fix the recycle flow to the reactor. This auxiliary control loop can be implemented based on the

override control theory on OPWCff to guarantee operability of the process.

• OPWCf3: in this case the reactor pressure sensor (y9) is lost, and this new control structure suggest to

include the stripper pressure sensor (y6) and controlling this variable with the same input, i.e. the A
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feed flow (u2). This auxiliary loop seems to be reasonable because the reactor, stripper and separator

pressures are strongly correlated, so any of them can be used to fix the remaining ones. Again here

an override control procedure can be implemented for security issues.

• OPWCf5: when the B composition in purge sensor (y11) is lost, this new structure suggests to incor-

porate the compressor work sensor (y8) and controlling this variable with the same manipulated one,

i.e. the purge valve (u5). Furthermore, this structure also proposes that the stripper temperature

(y7) needs to be controlled via the stripper steam valve (u6) instead of the condenser cooling water

flow (u8). Both auxiliary control loops can be implemented based on override or selective control

configuration.

The control structure called OPWCff (or OPWC3) is displayed in Fig. 6, where indicators and controllers

are represented with white circles. Furthermore, on the same figure also are implemented the mentioned

override controllers for handling the most drastic faults (in this case f1, f3, and f5). These selective

controllers and its corresponding indicators are represented via gray filled circles.

Display the dynamic behavior of the main process variables (y9, y10, y11, and y12) for all the scenarios

and control structures summarized in Table 5 and Table 6 results totally prohibitive as well as impractical.

Instead, only the temporal profiles for the most critical scenarios are shown in Fig. 7 where the reactor

pressure is presented. Figures 7(a) to 7(c) compare the control policies called: fault-free OPWCff , faulty case

FPWCfi, and the reconfigured OPWCfi structure when the fault fi occurs at t = 10 hours with fi = f1, f2, f3,

respectively. The disturbances and reference changes selected in each case are those presented in Table 5

which identify a process shutdown (SD). It is clear here that, the backup control loops suggested by each

control structure called OPWCf1, OPWCf3, and OPWCf5 guarantee the overall process operability and allow

to operate the plant very close to the normal case identified with OPWCff . The shutdown time for the all

cases is named tSD.

6.3. Comments on related works

There are several PWC proposals in literature for the Tennessee Eastman process developed in the most

varied scenarios and by using the most varied methodologies. In this context an exhaustive comparison

becomes complex, incomplete or impossible for some approaches. Some comments related to the general

classification into heuristic-based, mathematical-based, or hybrid-based approaches were given in section

1.3. Due to the diverse range of existing control structures with similar dynamic performances, the main

comparison tasks are focused on structural resemblances and hardware requirements among them. Partic-

ularly, the concept of hardware requirements is related to the total number of measurements (TM), control

loops (CL), and compositions required to be measured (CM). Indeed, the most relevant applications are

summarized in the following.
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A precursory PWC design was proposed by McAvoy and Ye [23] (TM: 22, CL: 22, CM: 4). The multi-loop

control structure, for the base case TEP, is developed based on heuristic considerations with focus on the

plant operability even if the analyzers are not functioning. Some special scenarios require to design specific

override controllers such as reactor pressure (y9)–purge valve (u5) plus a cutting-back the production (lower

A/C feed flow). The work of Lyman and Georgakis [24] (TM: 20, CL: 20, CM: 5) is based on the tired

approach for heuristic multi-loop control structure design. Paradoxically, this proposal does not use the

reactor pressure as a CV, which is an ad-hoc requisite by Downs and Vogel [21]. Several scenarios were run

with a reduction of 15% in the production rated, basically for avoiding shutdown problems. Furthermore,

an override controller is proposed to switch the classic B composition in purge (y11)-purge valve (u5) control

loop to C composition in purge-purge valve (u5). The production rate (y10) in this case is suggested to

be controlled by the condenser cooling water flow (u8). On the other hand, Ricker [25] (TM: 17, CL: 19,

CM: 3) proposes a very complex PWC design based on heuristics, feedback, feedforward, ratio, and override

control for the TEP at the optimal operating point. All the flows in the process are controlled by ratio

control with the production rate. Two overrides controllers were proposed to guarantee a safety operation:

1- if the reactor pressure y9-purge valve (u5) control loop saturates, the production rate set point is used

as backup and then lowered and 2- the reactor level- condenser cooling water flow (u8) is switched to the

recycle valve (u4) as a backup. The production rate changes were fixed as ramp for avoiding large transients

and saturation problems. The heuristic nine steps approach is applied in Luyben et al. [26] (TM: 19, CL:

20, CM: 2) for decentralized control design at the base case. In this case five (5) override controllers were

suggested to guarantee operability of the process in some scenarios. Indeed, override control in purge flow,

D feed flow, and the three levels change their MVs. In this case the A feed flow (u2) is used to control the

A composition in the purge and eventually the reactor pressure is controlled by the A/C feed flow (u3),

leaving the production rate to be fixed by the stripper underflow. On the other hand, Larsson et al. [29]

(TM: 22, CL: 19, CM: 3) propose a design based on the self-optimizing ideas and the inner cascade flow

controllers suggested by Ricker [25]. The main idea here is the controlled variable selection by using all

the DOF available. Some disturbance scenarios are avoided because they require to design several override

controllers, which they were not designed in this work. Recently, Jha and Okorafor [9] (TM: 20, CL: 21,

CM: 6) propose a new control policy by integrating self-optimizing concepts, steady-state simulation, and

mathematics-based analysis similar to the IF approach of Vasudevan et al. [30]. The overall structure has

some problems to reject properly some disturbances. Indeed, three override control structures were proposed:

1- B comp purge (y11)–purge valve (u5) to purge fully open for problems with reactor pressure, 2- reactor

pressure y9–A/C feed flow (u3) to C composition in reactor feed–A/C feed flow, and 3- for some setpoints

changes reactor feed composition control switch to product rate and quality control.

Although all the above mentioned proposals suggest valid PWC structures, it is clear that the hardware

requisites and the application range is really varied. The SSD-NLE combined index approach proposed here
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gives excellent and reliable designs, from the hardware requisites point of view (TM: 13, CL: 13, CM: 3), by

analyzing all the searching space properly and avoiding oversizing problems. Furthermore, the integrated

index improves the closed-loop behavior respect to previous work of the author such as Molina et al. [18]

(TM: 15, CL: 15, CM: 3) and Zumoffen [19] (TM: 12, CL: 12, CM: 3).

7. Conclusion

In this work an alternative methodology called SSD-NLE comnbined index approach was presented for

multi-loop control structure design. The overall strategy is based on a single multi-objective combinatorial

optimization problem with steady-state functional costs. This proposal allowed us to properly address

typical PWC drawbacks such as the ad-hoc reduction of the problem size, all the available DOF are used

and fixed, the reduced information about the process limits the design stage, and the control policies are

only focused on decentralized control.

This mathematical representation allows considering the original size of the problem without any ad-hoc

reduction, furthermore any a priori heuristic consideration may be included properly via weighting matrices.

The unified programing suggested here consists of two steady-state contributions called the sum of square

deviations (SSD) and the net load evaluation (NLE) indexes, which have strong connection with the con-

trollability/performance properties of the current PWC. This new optimization problem allows to define the

CVs, MVs, controller order/size, the input-output pairing, and the controller interaction, simultaneously.

Hence, several different DOF may be evaluated and no dynamic models are needed in this design stage.

This feature generalizes and systematizes the overall PWC design procedure focusing the search to simple

feedback control structures. Moreover, the NLE component gives relevant information related to the con-

troller interaction and how this structure affects the closed-loop performance. Thus, if required, integrated

multi-loop control policies can be designed eventually as base structure. Furthermore, an alternative appli-

cation of the SSD-NLE comnbined index approach was proposed when the DOF change due to structural

process faults such as sensor and/or actuator malfunctions. This methodology gives a reliable PWC redesign

analysis by defining multiple security/stability control loops for guaranteeing the process operability (based

on the hardware redundancy theory). Moreover, this kind of control loops can be easily implemented via

the override/selective controller concepts from industrial practice.

It is worth mentioning that the proposed methodology for PWC design is mainly focused to control

structure design and evaluation from the conceptual engineering point of view. The main real application

is to analyze (off line) potential PWC structures, how the performance of these policies are affected by

eventual structural process faults, and if hardware redundancy could be useful in some extent. Thus,

relevant information can be obtained, for example, for the process synthesis and design stage.
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AppendixA. SSD and NLE approaches

Remembering that in Eq. (2) a control structure with integral action was implemented, then at steady

state (s = 0) we have ys = ysp
s and,

us = G−1
s ysp

s −G−1
s Dsd,

yr = GrG
−1
s ysp

s +
(

Dr −GrG
−1
s Ds

)

d = Sspy
sp
s + Sdd,

(A.1)

it can be observed that both MVs and UVs deviations depend on the selected square subprocess Gs and if

the setpoint and disturbance effects are considered individually, then, the SSD index (for UVs in this case)

can be stated as

SSDyr
= ||Λ2SspΛ1||

2
F + ||Θ2SdΘ1||

2
F , (A.2)

where diagonal weighting matrices Λ1 (n×n) and Θ1 (p× p) allow to include the process control objectives

such as setpoint/disturbance magnitudes (this is important when the used process model is not normalized).

Similarly, Λ2 ((m−n)×(m−n)) and Θ2 ((m−n)×(m−n)) take into account the relative degree of importance

among the overall outputs. In addition, || · ||F means the Frobenius norm for matrices.

The selected subprocess Gs, which minimizes either SSDyr
or SSDus

, is well-conditioned and has good

controllability properties. An exhaustive analysis can be found in Molina et al. [18] and Zumoffen and

Basualdo [31].

On the other hand, considering the CVs expression in Eq. (2) and the IMC control structure we have

ys(s) = F(s)ysp
s (s) + (I− F(s))ynet

s (s) (A.3)

ynet
s (s) = An(s)ys(s) +Bn(s)d(s) (A.4)

An(s) =
[

I+
(

Gs(s)− G̃s(s)
)

Gc(s)
]

−1 (

Gs(s)− G̃s(s)
)

Gc(s) (A.5)

Bn(s) =
[

I+
(

Gs(s)− G̃(s)
)

Gc(s)
]

−1

Ds(s). (A.6)

The CVs are affected by ynet
s (s) in the transient because the term

(

I− G̃s(s)Gc(s)
)

produces integral

action at steady-state. The harmful effects in the transient are directly related to the multivariable gain of

[A(s)B(s)] and the time constants of the diagonal low-pass TFM F(s). Because the filter setting cannot be

chosen freely, the only way to reduce these effects in the CVs is by reducing the deviations of ynet
s (s) in a
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sum of square sense, then the net load evaluation (NLE) results:

NLEΓ = ‖∆2AnΓ∆1‖
2
F + ‖Ξ2BnΓΞ1‖

2
F (A.7)

with

AnΓ = I− G̃sΓG
−1
s , BnΓ = G̃sΓG

−1
s Ds, G̃sΓ = Gs ⊗ Γ, Γ =











γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn











, (A.8)

where AnΓ and BnΓ are the net load matrices shown in Eqs. (A.5) and (A.6) at steady state and param-

eterized with the process model selection G̃sΓ displayed in Eq. (A.8). Note that γij belongs to the binary

alphabet {0, 1} indicating the selection (γij = 1) or not (γij = 0) of the ij process element and ⊗ is the

Hadamard product. On the other hand, ∆1, ∆2, Ξ1 and Ξ2 are diagonal weighting matrices which allow

to sort the process control objectives according to its relative importance in the system, specially when the

used process model is not normalized.

The minimization of NLEΓ gives the optimal Γ which parameterizes the plant-model mismatch and the

controller interaction Gc(s) = G̃−1
sΓ (s)F(s). Thus, Gc(s) represents the optimal controller which minimizes

the effects of ynet
s (s) in the CVs. A detailed description of these topics can be found in Molina et al. [18],

Zumoffen and Basualdo [31], and Zumoffen et al. [41].

AppendixB. Genetic algorithms

Genetic algorithms (GA) represent a well-known methodology to perform a stochastic global search (op-

timization) by simulating the metaphor of the real biological evolution. Mainly, GA operate on a population

of individuals (potential solutions) which are evaluated, selected, merged, mate, and mutate (operators bor-

rowed from natural genetics) along the generations in order to find the best population according to some

particular environment (fitness function) [34].

The classical steps involved in any GA-based optimization methodology are shown in Algorithm 1. The

initialization phase summarizes all the data required for starting the algorithm: the initial population P0

(where ni individuals with length nc are generated randomly), the maximum allowed generation ng, the

amount of individuals to be selected ns = ni/2, and the reproduction and mutation probabilities pc and pm,

respectively. The first evaluation is the criterion for stoping the overall procedure, i.e. the maximum allowed

generations. The following step is the fitness evaluation f(Cd
i ) by considering all the individuals in the

current population Pj . In this stage, the best individual is stored in the best population set Pb and its value

in the vector F. The individuals selection is performed by means of some stochastic operator, i.e. roulette

wheel method, according to their relative fitness values. In this context, the best ns = ni/2 individuals

are retained in Ps and the remaining ones are discarded. The production of new chromosomes from Ps
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is developed by the crossover or recombination operators, i.e. double-point method, with a probability pc

and stored in the new matrix Pr. Analogously to the natural evolution, the mutation produces a new

genetic structure and basically is applied with a low probability pm. Mutation generally tends to inhibit

the possibility of converging to a local optimum [4, 34]. Hence, matrix Pr is mutated and stored in Pm.

Finally, the original selected subpopulation Ps and the mutated one Pm are merged (stacked) to give the

next generation of individuals, Pj = [PT
s ,P

T
m]T . When j = ng the termination criterion is true and the

overall procedure stops to provide the matrix Pb (ng × nc) and the vector F (ng × 1), which summarize the

set of the best individuals along the generations and their corresponding fitness values, respectively.
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Nomenclature

Acronyms

CVs: Controlled variables

DOF: Degrees of Freedom

DVs: Disturbances variables

EMSD: Extended MSD

FPWCfi: Faulty PWC for fault fi

GA: Genetic Algorithms

IAE: Integral Absolute Error

IMC: Internal model control

MSD: Minimum squared deviation

MVs: Manipulated variables

NLE: Net load evaluation

OPWCff : Optimal PWC fault-free case

OPWCfi: Optimal PWC redesign for fault fi

PSE: Process Systems Engineering

PWC: Plant-wide control

RGA: Relative Gain Array

SD: Shutdown

SSD: Sum of squared deviations

TEP: Tennessee Eastman Process

TFM: Transfer functions Matrix

UVs: Uncontrolled variables

Variables

An(s): Net load TFM - Set point effect

AnΓ: Steady-state A(s) parameterized with Γ

Bn(s): Net load TFM - Disturbance effect

BnΓ: Steady-state B(s) parameterized with Γ

Cc: Decision variable for CVs selection

Ci: Decision variable/Chromosome

Cm: Decision variable for MVs selection

Co: Ad-hoc variable for control requisites

Co
fij

: Co for fault fij

Cr
op: Optimal Cr

C
p
i : Real positive decision variable

Cq: Decision variable for controller order selection

CΓ: Decision variable for controller interaction

d(s): Disturbance vector

D(s): Disturbance TFM

Dfi(s): D(s) without row i

Dr(s): Disturbance TFM for UVs

Ds(s): Disturbance TFM for CVs

fij : Fault in sensor i and actuator j

F(s): Diagonal low pass TFM filter

G(s): Process TFM

Gij(s): G(s) without row i and column j

Gc(s): IMC controller TFM

Gr(s): Process TFM for UVs

Gs(s): Process TFM for CVs

G̃s(s): Process model TFM for CVs

G̃sΓ: Steady-state matrix parameterized with Γ

m: Number of outputs

n: Number of inputs

ng: Number of generations

ni: Number of individuals

ns: Number of individuals selected

NLEΓ: Net load evaluation parameterized with Γ

p: Number of disturbances

pc: Crossover probability

pm: Mutation probability

pi: Vector with column permutation/Pairing

q: Number of control loops

qa: Additional number of control loops

qo: Ad-hoc number of control loops

s: Laplace variable

Sd(s): UVs TFM - Disturbance effect

Ssp(s): UVs TFM - Set point effect

SSDa: sum of square deviations of a

t: Time

Tj
a: Selection matrix for actuators

Ti
s: Selection matrix for sensors

u(s): Input vector
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ufj(s): u(s) without entry j

ur(s): Remaining inputs vector

us(s): MVs vector

v: Number of stabilizing control loops

y(s): Output vector

yfi(s): y(s) without entry i

yr(s): UVs vector

ys(s): CVs vector

ynet
s (s): Net load effect TFM

ysp
s (s): Set point vector
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γij : ij element of Γ

Γ: Parametrization binary matrix

∆i: Diagonal weighting matrix

Θi: Diagonal weighting matrix

Λ: RGA
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Λi: Diagonal weighting matrix
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Algorithm 1: GA-based stochastic global search

1 Initialization: j = 0, setting ni, ng, ns, pc, pm, nc, and Pj = [CT
1 , . . . ,C

T
ni
]Tni×nc

;

2 while (j ≤ ng) do

3 Fitness evaluation: evaluate f(Cd
i ) for each individual Cd

i from the current population set Pj . The

best individual is stored in the best population set Pb and its value in the vector F;

4 Selection: the ns best individuals are selected using their relative fitness values and stored in Ps. The

ni − ns remaining individuals are discarded;

5 Recombination: the individuals in Ps are recombining by the crossover operator and stored in Pr;

6 Mutation: the recombined individuals in Pr suffer the mutation process and new genetic structures are

obtained and stored in Pm;

7 Merging: j = j + 1 and both selected and mutated populations are merging together to give the next

generation of individuals, Pj = [PT
s ,P

T
m]T ;

8 end

Result: the best population set Pb (j × nc) and the fitness profile F (j × 1)

Table 1: SSD and NLE indexes used by the EMSD approach

Case Index Problem size

I SSDus(C
m) = ||Gs(C

m)−1||2F + ||Gs(C
m)−1Ds(C

m)||2F n!/(q!(n− q)!)

II SSDyr (C
c,Cm) = ||Ssp(C

c,Cm)||2F + ||Sd(C
c,Cm)||2F [(m− qo)!/(qa!(m− q)!)][n!/(q!(n − q)!)]

III SSDyr (C
c) = ||Ssp(C

c)||2F + ||Sd(C
c)||2F (m− qo)!/(qa!(m− q)!)

All NLEΓ = ||I − G̃s(Γ)G
−1
s ||2F + ||G̃s(Γ)G

−1
s Ds||

2
F 2(q×q)
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Table 2: TEP variables

no. Inputs Variable

u1 D Flow [kg/h] XMV (1)

u2 A Flow [kg/h] XMV (3)

u3 A/C Flow [kscmh] XMV (4)

u4 Compressor rec. valve [%] XMV (5)

u5 Purge valve [%] XMV (6)

u6 Stripper steam valve [%] XMV (9)

u7 RCWO temp. setpoint [oC] XME(21)sp

u8 CCW Flow [m3/h] XMV (11)

Outputs

y1 Recycle flow [kscmh] XME(5)

y2 Reactor flow [kscmh] XME(6)

y3 Reactor temp. [oC] XME(9)

y4 Separator temp. [oC] XME(11)

y5 Separator pressure [kPa] XME(13)

y6 Stripper pressure [kPa] XME(16)

y7 Stripper temp. [oC] XME(18)

y8 Compressor work [kW] XME(20)

y9(*) Reactor pressure [kPa] XME(7)

y10(*) Production rate [m3/h] XME(17)

y11(*) B comp. purge [mol%] XME(30)

y12(*) G/H comp. ratio XMEG/H

Disturbances

d1 Composition stream 4 (A/C) IDV (1)

d2 Composition stream 4 (B) IDV (2)

Table 3: GA parameter settings - Modified EMSD approach

ni ng pc pm nc nq Selection Crossover

1000 60 0.7 0.7/nc 17 1 roulette-wheel double-point
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Table 4: Optimal solutions - Classical and modified EMSD approach

PWC Cq
op Cc

op Cm
op SSD+NLE

Name qa y1 y2 y3 y4 y5 y6 y7 y8 u1 u2 u3 u4 u5 u6 u7 u8 Index

Classical EMSD

OPWC1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 21.60

OPWC2 2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 27.53

SSD-NLE combined index approach

OPWC3 2 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 19.76

Table 5: Sensor faults effect

Fault CV PWC Disturbances Set Points SSD+NLE

no. Name d1 d2 d3 d4 d5 sp1 sp2 sp3 sp4 Index

f1 y2 FPWCf1 SD X X X X X X X SD 73.23

f2 y7 FPWCf2 X X X X X X X X X 20.23

f3 y9 FPWCf3 SD X X X X ⊗ X X X 31.04

f4 y10 FPWCf4 X X X X X X ⊗ X X 17.69

f5 y11 FPWCf5 X SD X X X X X ⊗ X 89.05

f6 y12 FPWCf6 X X X X X X X X ⊗ 23.36

Table 6: PWC redesign - Sensor faults - TEP

Fault PWC Cq
op Cc

op Co
fi Cm

op SSD+NLE

no. Name (qa) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 u1 u2 u3 u4 u5 u6 u7 u8 Index

f1 OPWCf1 2 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 21.09

f3 OPWCf3 3 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 19.83

f5 OPWCf5 2 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 31.53
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Figure 1: Extended minimum square deviations (EMSD) approach
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Figure 2: The SSD-NLE combined index approach
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Figure 5: Dynamic performance - Optimal PWC structures
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Figure 7: Reactor Pressure (y9) - PWC structures with and without redesign
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