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Abstract: The management of the collection of Municipal Solid Waste is a complex task for local 
governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools 
to support decision-making can contribute to improve the efficiency of the system and reduce the 
associated costs, especially in developing countries, which usually suffer from a shortage of resources. 
In the present work, a simulated annealing algorithm is proposed to address the problem of designing 
the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver 
based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a 
state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on 
both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía 
Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to 
the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated 
annealing algorithm was also able to improve the solutions of the solver in many instances of the real 
dataset. 

Keywords: municipal solid waste; waste collection; vehicle routing problem; simulated annealing; 
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1. Introduction 

The generation of municipal/urban solid waste (MSW) is an inalienable consequence of the 
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development of modern cities. Likewise, its correct management is one of the key elements for the 
sustainable development of a city [1]. The stages in the reverse logistics chain of MSW are diverse. 
According to Tchobanoglous et al. [2], they can be classified into waste generation; handling, 
separation, accumulation and processing of waste at source; collection, transfer and transportation; 
separation, processing and transformation of solid waste; and finally, disposition. In these stages, there 
are many decisions to be made. For this reason, proposing computer-aided tools that allow assisting 
decision-making agents can contribute to a more efficient use of resources. 

This work focuses on the collection, transfer and transportation stage of waste, which is known 
to be among the most expensive activities of MSW systems [3]. This activity comprises the design of 
the waste collection routes for the vehicles that collect the waste produced by households and other 
commercial and institutional urban activities. The correct performance of this task is critical for due 
quality of service provided to the citizens since when it is mishandled it can lead to waste bins overflow 
which is associated with environmental and social issues. In particular, a simulated annealing (SA) 
metaheuristic algorithm is proposed to solve this problem. The proposed algorithm is compared against 
other metaheuristic algorithms and CPLEX in order to study its performance. The experimentation is 
carried out on both a well-known benchmark of the literature and real instances of the city of Bahía 
Blanca, Argentina. This paper is a revised and expanded version of our conference work presented at 
The Xth international conference of production research-Americas 2020 [4]. 

This article is structured as follows. Section 2 presents the proposed model and resolution 
algorithms for the addressed problem and a literature review of the main related works. Section 3 
describes the results of the computational experimentation performed on a well-known benchmark set 
of instances from the literature and a real-world case of study. Section 4 analyses and discusses the 
obtained results. Finally, Section 5 presents the main conclusion and future research work lines. 

2. Materials and methods 

The waste collection problem can be addressed considering multiple features depending on the 
collection system and the real-world restrictions that are taken into account. The waste collection 
problem that is addressed in this work is based on a community bin system in which waste is carried 
by generators from their households to the collection points that are distributed throughout the city. A 
collection point is a place in the city specially conditioned for installing a (waste) bin or set of bins.  

2.1. Mathematical formulation 

This problem can be modelled either as a Capacitated Vehicle Routing Problem (CVRP) or a soft 
clustered-CVRP, in which the collection points are split into regions (clusters) and within a route a 
vehicle visiting a collection point in a cluster must visit all the remaining collection points therein 
before leaving it or to respect the soft-cluster constraint, i.e., all collection points of the same cluster 
must be served by the same vehicle [5]. In this work, the waste collection problem is modelled as a 
CVRP in which a fleet of homogeneous vehicles has to visit all the collection points considering 
capacity constraints. Given a set of collection points ܥ and a superset ܥ ൌ ܥ ∪ ܿ, where ܿ is the 
depot where the vehicles start and end their trips, the following variables and parameters are defined: 
binary variable ݔ  that takes value 1 if a vehicle uses the path from collection point ݅ ∈  to  ܥ
collection point ݆ ∈ - for subݑ and 0 otherwise; the continuous non-negative auxiliary variable ܥ
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tour elimination indexed over collection points (݅ ∈  parameter ܳ is defined as the capacity of the ;(ܥ
vehicle; parameter ݀ as the distance between collection points ݅ ∈ ݆ and ܥ ∈  ݍ and parameter ;ܥ
as the amount of waste to be collected at collection point ݅ ∈  In this way, the following model is .ܥ
proposed, using the two-index formulation developed by Miller et al. [6] in Eqs (1)–(6). 

minܦ ൌ  ݀ݔ
,∈

 (1)

Subject to: 

ݔ
∈
ஷ

ൌ 1, ∀ ݅ ∈  ܥ
(2)

ݔ
∈
ஷ

ൌ 1, ∀ ݅ ∈  ܥ
(3)

ݑ െ ݑ  ܳ൫1 െ ൯ݔ െ ,ݍ ∀ ݅, ݆ ∈ ,ܥ ݅ ് ݆ (4)

ݍ  ݑ  ܳ, ∀ ݅ ∈ (5) ܥ

ݔ ∈ ሼ0,1ሽ  (6)

The proposed objective is to minimize the total distance travelled expressed in Eq (1). 
Equations (2) and (3) guarantee that each collection point is visited only once, having a single 
successor collection point and a single predecessor collection point on the route. Equation (4) prevents 
the formation of subtours. Equation (5) ensures that the vehicle’s capacity is not exceeded. Equation (6) 
establishes the binary nature of the corresponding variable. 

2.2. Proposed resolution method: a simulated annealing algorithm 

As it was previously said, the collection of MSW in bins constitutes an application case of the 
VRP (Vehicle Routing Problem) problem. In computational complexity theory, this type of problem is 
classified as NP-hard [7], that is, it is at most as difficult as problems for which efficient solving algorithms 
that run in polynomial time have not yet been developed, regarding the size of the problem [8]. In this 
type of problems, metaheuristic tools allow obtaining good solutions in reasonable computational 
times [9]. The proposed resolution algorithm is based on a simulated annealing (SA) method and was 
adapted from the previous algorithm developed in Toncovich et al. [10,11]. SA is a local search-based 
method that was developed from an analogy with the physical phenomenon of annealing [12] to 
solve complex optimization problems. Local search methods search for the solution with the best value 
of the chosen criteria in the current solution neighborhood, accept it as the current solution, and repeat 
this procedure until it is not possible to improve the solution in the explored neighborhood. By 
systematically applying this procedure, a local optimum for the problem is generally obtained. To avoid 
being trapped in a local optimum, a diversification mechanism must be incorporated in order to 
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adequately explore the solutions space. In simulated annealing metaheuristics, the diversification 
strategy allows moves, with some probability, toward solutions that worsen the current value of the 
objective function. 

To get a good approximation to the optimal solution of the problem during the search process, it 
is necessary to restart the search regularly from one of the solutions accepted during the search process 
selected at random. The SA algorithm incorporates the classic parameters of simulated annealing. The 
parameters and variables corresponding to the implemented SA algorithm are indicated below. 

 .current iteration :ݐ ●
● ݊: current step. 
● ܵ: initial solution. 
● ܵ: current solution. 
● ܵ: candidate solution. 
● ܵ∗: best solution found. 
● ܸሺܵሻ: neighborhood for solution ܵ, given by the set of solutions that can be obtained from 

solution ܵ  through a basic perturbation. In our implementation the perturbation is generated by 
swapping two randomly selected elements (collection points) in ܵ. 

● ܶ: control parameter. This variable simulates the temperature in the real annealing process. It 
is a positive real number that varies in the interval ܶ ∈ [ ܶ, ܶ] during the execution of the algorithm, 
where ܶ is the initial temperature and ܶ	 >	 ܶ. 

● ்ܰ: maximum number of iterations performed by the algorithm for a certain temperature value 

ܶ, at step ݊. 
 ሺܶሻ: function that determines the cooling mechanism, i.e., how ܶ varies during the searchߙ ●

process. In this case, it is a geometric progression of the form ܶ ൌ ߙ ൈ ܶିଵ, with ߙ ∈ ሾ0,8; 0,999ሿ. 
● ܰ௧: number of consecutive iterations without improvement in the objective function value 

at the iteration ݐ. 
● ௦ܰ௧: maximum allowable number of iterations without improvement. 
 .time that has passed since the algorithm started :݀݁ݏ݈ܽ݁_݁݉݅ݐ ●
 .amount of time available for executing the algorithm on a given instance :ݐ݈݅݉݅_݁݉݅ݐ ●
 .: probability of accepting a solution that is worse than the current solution ●
 .a uniformly distributed random number in the interval (0,1) :ߝ ●
The pseudo-code of the SA algorithm is presented in Algorithm 1. 

Algorithm 1: Simulated annealing algorithm. 

Inputs: data of the instance (݀,	 	,ݍ ܳ) and parameters ܶ, ܶ, α, ்ܰ, ௦ܰ௧, ݐ݈݅݉݅_݁݉݅ݐ 
Initialization 
݀݁ݏ݈ܽ݁_݁݉݅ݐ  ← ݁݉݅ݐ ;0 ←  ሺሻݓ݊
 create ܵ using a randomized greedy procedure 
 evaluate	 ܵ, ܦሺܵሻ, using Equation (1) 
 ܵ ← ܵ; ܵ∗ ← ܵ; ݐ ← 1;  ݊ ← 1; ܰ௧ ← 0; ଵܶ ← ܶ 
repeat 
ݎ݁ݐ݊ݑܿ  ← 0 
 repeat 
  create a new solution ܵ, ܵ ∈ ܸሺ ܵሻ 
  evaluate ܵ, ܦሺܵሻ 
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ݐݏܥ   ← ሺܵሻܦ െ ሺܦ ܵሻ 
  if ݐݏܥ	  0 then 
   ܵ ← 	 ܵ; ; ܰ௧ ← 0 
   if ܦሺܵ∗ሻ ൏ ሺܦ ܵሻ then 
    ܵ∗ ← ܵ 
   endif 
  else 

    ← ݁
ିೞ	

 ߝ ; ←  ሺ0,1ሻ݀݊ܽݎ

   if ߝ    then
    ܵ ← 	 ܵ; ܰ௧ ← 0 
   else 
    ܰ௧ ← ܰ௧  1 
   endif 
  endif 
ݐ   ← ݐ  ݀݁ݏ݈ܽ݁_݁݉݅ݐ ;1 ← ሺሻݓ݊ െ ݎ݁ݐ݊ݑܿ ;݁݉݅ݐ ← ݎ݁ݐ݊ݑܿ  1 
 until ܿݎ݁ݐ݊ݑ  ்ܰ 
 ݊ ← ݊  1; ܶ ← ߙ ൈ ܶିଵ 
until ܰ௧  ௦ܰ௧ OR ܶ  ܶ OR ݁݉݅ݐ௦ௗ   ݐ݈݅݉݅_݁݉݅ݐ
return ܵ∗ 

2.3. Comparison algorithms 

The proposed metaheuristic is compared with a commercial solver and other two metaheuristics, 
i.e., large neighborhood search (LNS) algorithm developed by Erdoğan [13] and a standard genetic 
algorithm. 

2.3.1. Commercial solver based on MIP formulation 

The solver that is used to solve the proposed mathematical formulation presented in Section 2.1 
is CPLEX. In order to speed up the resolution process, the Eq (7) is added that sets the minimum 
number of trips required considering the overall waste to collect. 

ݔబ
∈େ


ݍ
ܳ

∈େ

 (7)

This Equation is a well-known valid inequality or cut in routing problems [14]. In preliminary 
tests, this cut was found to be competitive for reducing the computing times. This is generally 
associated to a better estimation of the lower bound due to a tighter approximation of the feasible 
region of the linear relaxation to the feasible region of the actual MIP model in resolution algorithms 
based on branch-and-cut [15] as CPLEX. 

2.3.2. Large neighbourhood search 

Erdoğan’s metaheuristic was adapted from the adaptive LNS heuristic developed by Pisinger and 
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Ropke [16], which extends Shaw’s original heuristic [17]. A simplified explanation of its operation 
and pseudo-code is presented in Algorithm 2. 

The operation of the heuristic consists of two main stages. The first is the construction of an initial 
solution that is obtained by inserting clients into the available routes in accordance with the objective 
to be minimized (operator ݈݈ܵܽ݅ݐ݅݊ܫሺሻ). Then, an enhancement is made using the ݄ܿݎ݈ܽ݁ܵܽܿܮሺሻ 
operator that applies four local search techniques. The first three are known as Exchange (two clients 
are exchanged), 1-OPT (a client is extracted from one route and reinserted into another) and 2-OPT 
(two route segments are exchanged). These operators are detailed in Groër et al. [18]. The fourth local 
search operator is Vehicle-Exchange. This operator tries to exchange the vehicles assigned to two 
routes, which is why it is useful when working with a heterogeneous fleet. 

The second stage is where you try to get an improvement on the solution from the previous stage. 
The ݈݀݅ݑܾܴ݁݀݊ܣݕݎݐݏ݁ܦሺሻ operator is applied, which considerably alters the current solution to 
explore another region of the search space and thus be able to escape from local optimum. In particular, 
long sections of routes are extracted from the current solution and the extracted clients are reinserted 
in those positions that minimize the objective function (function ܦሺሻ defined in Eq (1)). A solution is 
accepted if it has a better cost than the best solution found so far or, if a solution does not have a better 
cost than the previous solution, it can even be accepted with a probability p-value. This process is 
repeated cyclically up to the time limit imposed by the user. 

Algorithm 2: Pseudo-code of large neighborhood search [13]. 

Input: data of the instance (݀,	 	,ݍ ܳ) and parameter ܶ݅݉݁  ݐ݈݅݉݅
Initialization 
ܵ ←   ሺሻ݈݈ܵܽ݅ݐ݅݊ܫ
ܵ′ ←   ሺሻ݄ܿݎ݈ܽ݁ܵܽܿܮ
݈ܵݐݏ݁ܤ ← ܵ′  
ܶ݅݉݁	 ݀݁ݏ݈ܽ݁ ← 0  
repeat 
݁݉݅ݐ  ←  ሺሻݓ݊
 ܵ′ ←  ሺܵ′ሻ݈݀݅ݑܾܴ݁݀݊ܣݕݎݐݏ݁ܦ
 ܵ′ ←  ሺܵ′ሻ݄ܿݎ݈ܽ݁ܵܽܿܮ
 if ܦሺܵᇱሻ   ሻ݈ܵݐݏ݁ܤሺܦ
݈ܵݐݏ݁ܤ   ← ܵ′ 
 else 
ߝ   ←  ሺ0,1ሻ݀݊ܽݎ
  If ߝ   ݁ݑ݈ܽݒ
݈ܵݐݏ݁ܤ    ← ܵ′ 
  end if 
 end if 
 ܶ݅݉݁	 ݀݁ݏ݈ܽ݁ ← ሺሻݓ݊ െ  ݁݉݅ݐ
until ܶ݅݉݁	 ݀݁ݏ݈ܽ݁  ܶ݅݉݁	  ݐ݈݅݉݅
return ݈ܵݐݏ݁ܤ 
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2.3.3. Genetic algorithm 

The schema of the implemented genetic algorithm (GA) is presented in in Algorithm 3. 

Algorithm 3: Pseudo-code of genetic algorithm [19]. 

Input: data of the instance (݀,	 	,ݍ ܳ) and parameters , , #ܲ, and ܶ݅݉݁	  ݐ݈݅݉݅
Initialization 
ܲ ←   ሺሻ݊݅ݐ݈ܽݑ݈ܲܽ݅ݐ݅݊ܫ
ܶ݅݉݁	 ݀݁ݏ݈ܽ݁ ← 0  
repeat 
݁݉݅ݐ  ←  ሺሻݓ݊
 ሺܲሻ݁ݐܽݑ݈ܽݒ݁ 
	ݏݐ݊݁ݎܽ  ← ሺ݊݅ݐ݈ܿ݁݁ݏ ௧ܲሻ 
	݃݊݅ݎݏ݂݂  ←  ሻݏݐ݊݁ݎܽሺܚ܍ܞܗܛܛܗܚ܋
	݃݊݅ݎݏ݂݂  ←  ሻ݃݊݅ݎݏ݂݂ሺܖܗܑܜ܉ܜܝܕ
 ܲ ← 	ܖܗܑܜ܉ܑܚ܉ܞ  ሻݏݐ݊݁ݎܽሺܛܖܗܑܜ܉ܚ܍ܘܗ
until ܶ݅݉݁	 ݀݁ݏ݈ܽ݁  ܶ݅݉݁	  ݐ݈݅݉݅
return ܾ݁ݐݏ	 	݈ܽݑ݀݅ݒ݅݀݊݅  ݀݊ݑ݂

The GA was developed using the Distributed Evolutionary Algorithms in Python (DEAP) 
framework [20] and has the following characteristics: 

 Representation of solutions. Solutions are encoded as a permutation of integers of length equal 
to the number of containers ݊. Each index in the vector represents the visit order in the tour and the 
corresponding integer value represents one of the containers. 

 Initialization. The population of size |ܲ| is initialized by applying a random procedure to 
generate the permutations with a uniform distribution. 

 Genetic operators. The recombination operator is the Partially Mapped Crossover (PMX) 
applied on two selected individuals with   probability. The mutation operator is based on Swap 
Mutation and swaps two elements of the permutation. Both selected operators have been usually 
applied in CVRP problems [21]. The mutation applies to an individual with probability pm. The 
proposed operators guarantee the feasibility of the solution. 

 Selection. The selection is made through a binary tournament, from which the one with the 
best fitness is selected. 

 Replacement. In each iteration, the new population is made up of the best 10% (with better 
fitness) of the previous population and the rest of new individuals generated through genetic operators. 

 Fitness assessment. The fitness function is decoded by reading alleles in the gen from left to 
right and inserting a depot visit when necessary due to the capacity constraint of the vehicle. An 
example of the decoding process is presented in Figure 1 for a representative gen considering a vehicle 
with a capacity of 7݉ଷ. The collection vehicle starts its route from the depot and collects the waste of 
GAPs 2,1 and 5. However, collecting the waste of GAP 6 is not feasible since the amount of waste 
(1.5݉ଷ ) exceeds the available remaining capacity of the vehicle, i.e., 7	 ݉ଷ	 – 	 2.3	 ݉ଷ െ 2.3	 ݉ଷ െ
2.1	 ݉ଷ ൌ 0,3	 ݉ଷ. Thus, a visit to the depot to unload the vehicle is inserted before visiting GAP 6, 
adding the distances ݀ହ and ݀ to the fitness. Then, the vehicle visits GAPs 4,7 and 3 and, finally, 
it returns to the depot. 
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Figure 1. Example of fitness assessment. 

 Cut due to stagnation. A deadlock cut-off mechanism was incorporated. The algorithm stops 
when no improvement in the fitness of the best individual is obtained during a time interval equal 
to 50% of the maximum execution time of the instance. Otherwise, it continues until the generation—
evaluation, selection, crossing, mutation and replacement cycle—which has exceeded the maximum 
execution time at the end. 

2.4. Related works 

The problem of collection of containerized waste in a city has been frequently addressed in the 
literature. In Beliën et al. [22] and Han and Ponce Cueto [23], extensive reviews of these works are developed. 

Among the main works that applied heuristics in waste collection, it is the work of Kim et al. [24] 
who applied a clustering-based heuristic and an insertion heuristic on a set of real-world instances of 
the United States of America. Over the same dataset, Benjamin and Beasley [25] applied two advanced 
metaheuristics, i.e., a variable neighborhood search and a tabu search, improving the previous results 
of Kim et al. [24]. Nesmachnow et al. [9] proposed an evolutionary algorithm to optimized collection 
routes in Montevideo, Uruguay while considering priorities in collection points that are located near 
public institutions or busy places in which overflowing may have a large social impact. 

Regarding SA algorithms in waste management, there is the work of Tirkolaee et al. [26]. The 
authors applied a metaheuristic based on SA improved with an efficient cooling equation to address 
the problem of waste collection considering uncertainty in waste generation that aims at minimizing 
the total distance and the usage cost of vehicles. The proposed algorithm obtained similar results 
than the exact solution for small instances. A comprehensive work was performed by Nowakowski 
et al. [27] who compared four different heuristics, i.e., simulated annealing, tabu search, greedy, and 
bee colony optimization, to solve case studies of three different cities in the context of electronic waste 
collection. The results showed that SA outperforms the rest of the proposed heuristics. A similar 
problem is addressed in Tirkolaee et al. [3] in which more priority is assigned to collect waste bins that 
are located near some special places, such as health centers that produce hazardous waste, than to 
household waste for addressing a case study in Sanandaj, Iran. The proposed SA-based algorithm was 
able to obtain near-optimal solutions in comparison with the CPLEX solver. Mekamcha et al. [28] 
proposed a SA to deal with a waste collection case study in the Algerian city of Tlemcen in which the 
collection is modelled as a Travelling Salesman Problem. The SA algorithm is compared with a Tabu 
Search obtaining better results regarding total distance minimization. 

In the case of Argentina, some studies can be found on applications of VRP models to solve the 
problem of design of collection routes. For example, Bonomo et al. [29] implemented a solution 
strategy based on integer programming to schedule the collection routes for waste containers in the 
Southern area of the City of Buenos Aires. On the other hand, in Bonomo et al. [30] a different model 
is presented for this city, which aims at minimizing the travel distances simultaneously with 
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minimizing wear and tear on vehicles. In the city of Concordia, Bertero [31] presents an application to 
design the city's collection routes, making an effort to minimize the number of turns to facilitate the 
implementation of the routes by the authorities. On the other hand, Bianchetti et al. [32] exhibits an 
algorithm to solve the zoning of the city of San Miguel de Tucumán in order to optimize the use of 
resources, reassigning trucks to the downtown area of the city. In Braier et al. [33], through 
mathematical programming models, the collection of recyclable waste is planned for the city of Morón. 
Delle Donne et al. [34] presented a solution strategy based on integer programming to scheduling of 
routes to collect waste produced by leaf sweeping of streets in the city of Trenque Lauquen. 

From the analysis of the related literature, we consider that there is still room to propose efficient 
algorithms based on simulated annealing to design waste collection routes. Moreover, this work 
compares SA with other metaheuristic approaches and a commercial solver in order to assess the 
competitiveness of the simulated annealing procedure and addresses a real case study of the city of 
Bahía Blanca. 

3. Results of computational experimentation 

This Section presents the set of benchmark instances from the literature, the real-world case from 
the city of Bahía Blanca, the implementation details for the solution algorithms, the obtained results 
and an analysis of these results. 

3.1. Case study: Argentinean city of Bahía Blanca 

 

Figure 2. Case study of the city of Bahía Blanca. 

Bahía Blanca is a medium-size city located in the South of Argentina: It is considered as a major 
industrial, logistic and university center from the southern part of the country. The management of 
urban solid waste in the city of Bahía Blanca is a crucial activity for local authorities, not only because 
of the broad environmental and social impact associated with its operation but also because it consumes 
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a large part of the municipality's budgetary resources [35]. Therefore, approaches that allow the 
optimization of collection logistics may be relevant to achieve a more efficient service provision [8,36]. 
Nowadays, waste collection is performed in a door-to-door basis. However, there are initiatives and 
studies that aim at migrating to a community bins system [8,35–38]. This work uses a real dataset that 
was obtained in one of these projects carried out by the academic, municipality and private 
stakeholders of the city [35]. This dataset was built with the aim of migrating from the current door-
to-door waste collection system to the community waste bins system and it corresponds to two 
neighborhoods of the downtown of Bahía Blanca. These neighborhoods can be depicted in Figure 2: 
The University neighborhood as sector A and the downtown as sector B. 

Table 1. Real MSW instances description. 

Instance Sector Type of waste Collection 

frequency 

Number of 

collection points 

Waste generation per collection point (m3) 

Average Std. dev. 

A-F2HUM A Humid 6 per week 69 0.83 0.22 

A-F2DRY A Dry 4 per week 69 2.22 0.62 

A-F3HUM A Humid 6 per week 79 0.73 0.18 

A-F3 DRY A Dry 3 per week 79 2.94 0.66 

B-F2HUM B Humid 6 per week 68 0.79 0.21 

B-F2 DRY B Dry 4 per week 68 2.85 0.79 

B-F3HUM B Humid 6 per week 101 0.55 0.17 

B-F3 DRY B Dry 3 per week 101 2.95 0.69 

A + B-F2HUM A + B Humid 6 per week 137 0.81 0.21 

A + B-F2 DRY A + B Dry 4 per week 137 2.55 0.74 

A + B-F3HUM A + B Humid 6 per week 180 0.63 0.19 

A + B-F3DRY A + B Dry 3 per week 180 2.95 0.67 

One of the goals of the aforementioned project [35] was also to implement source classification 
of waste to increase the amount of waste that is recycled in the city and assess the impact of different 
collection frequencies in the number of collection points. Following these guidelines for this work, the 
real instances are defined as follows. Firstly, three different geographic areas are considered: Sector A, 
Sector B, and the overall Sector A + B. From each area, four different instances are constructed, which 
differ in the type of waste -humid or dry waste- and the collection frequency considered. The instances 
of humid waste are always collected six times per week since they cannot remain uncollected due to 
environmental reasons. However, dry waste can be collected either four times per week or three times 
per week. Thus, Cavallin et al. [35] proposed two systems based on collection frequency for the city: 
The F2 system in which humid waste is collected six times per week and dry waste is collected four 
times per week, and F3 system in which dry waste is collected six times per week and dry waste is 
collected three times per week. Considering the three factors, i.e., geographic sector, type of waste and 
collection frequency in the system, the twelve instances of Table 1 are defined1. Further details of the 
instances can be consulted in Cavallin et al. [35]. In regard to the present work, the collection 

                                                              
1 The instances of Bahía Blanca used in this paper can be consulted in GitHub: https://github.com/diegorossit/Instances-

of-Waste-collection-in-Bah-a-Blanca/blob/afdc3cef822ef7c49c0f166e4360136e9c7cf69e/README.md. 
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frequency of the dry waste will affect the stored quantity of dry waste to be collected, and due to its 
influence on the required storage space in the collection point, it will also affect the quantity of 
humid waste to be collected. 

The capacity of the truck was set in 21 m3 which is the common capacity in the trucks of the fleet 
of the collection company. The distances between collection points were estimated with Open Source 
Routing Machine2 using the approach proposed by Vázquez [39]. 

3.2. Benchmark instances 

In regard to the CVRP benchmark instances, the well-known set E of 13 instances proposed in 
Christofides and Eilon [40] was used. Both the instances and the optimal solutions were retrieved from 
the VRP-REP digital repository [41]. 

3.3. Implementation details 

For solving the MIP formulation of Eqs (1)–(7), the commercial solver IBM ILOG CPLEX 20.1 
was used [42]. It was implemented using GAMS 35.1 [43] as a modelling language. The majority of 
the parameters were kept in their default values [42,43] except for the enlargement of the working 
memory from the default 2048 MB to 5000 MB. This parameter was changed since on preliminary 
experimentation the solver ran out of memory space using the default configuration. The model that 
was solved with CPLEX is the MIP model composed by Eqs (1)–(7), which includes the valid 
inequality of the minimum number of trips (Eq (7)) to accelerate convergence. A time limit of 15,000 
seconds was set to CPLEX for each run. The exact resolution was only applied to the real-world 
scenarios since the optimal solution of the benchmark instances is already available. 

The SA was programmed in Visual Basic for Applications (VBA), the same programming 
language used in the LNS implementation taken from the repository of the author3. The GA algorithm 
was implemented using the DEAP library as the programming language. 

Regarding the calibration of the metaheuristics the LNS does not need calibration [13]. The SA 
algorithm was fine-tuned using a small number of test runs in order to establish the values for the 
parameters specified in Section 2.2.  

The GA algorithm was calibrated with a parametric analysis. The parameters that were analyzed 
through a statistical analysis were the size of the population |ܲ|—the values 100; 150; and 200 were 
considered, the probability of mutation —the values 0.05; 0.1; 0.15; 0.20; and 0.25 were considered 
and crossover —the values 0.5; 0.6; 0.7; 0.8; 0.9; and 1 were tested. For carrying out the parametric 
analysis the instances P-n16-k8, P-n19-k2 and P-n20-k2 proposed in [44] were used. For each instance 
and for each parametric configuration, 50 independent executions were carried out. The Shapiro-Wilk 
test was applied to study whether the fitness distribution had a normal distribution. Since many executions 
did not fit a normal distribution, the medians were evaluated with the Friedman test [45], selecting the 
configuration: |ܲ| = 200,  = 0.9 and  = 0.25 as the most promising parametric configuration. 

In order to provide a fair comparison between different metaheuristics the same computing time 
limits and implementation computer should be used [46]. In this case, the three metaheuristic were run 

                                                              
2 http://project-osrm.org/. 
3 https://people.bath.ac.uk/ge277/vrp-spreadsheet-solver/. 
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in a personal computer with an Intel Core i5-3570k@3.40 GHz processor and 12 GB of RAM memory 
on a Windows 10 environment. For solving the instances, 30 runs were performed with each 
metaheuristic to obtain a more representative sample of the performance of the algorithms. Regarding 
execution times, Equation (8) was used to set the maximum execution time of each run in seconds (ܯ) 
for the metaheuristics which is proportional to the number of collection points in the instance -
excluding the depot-(ܰ) 

ܯ ൌ
ሺܰ ൈ 10 ൈ 60ሻ

50
 (8)

It should be taken into account that both the SA and the GA described here have cut-off 
mechanisms due to stagnation that can lead to a real execution time that is less than the maximum. 
This is not the case for the LNS whose execution time will be equal to the maximum. In the case of 
CPLEX, a time limit of 15,000 seconds was given to the solver. 

3.4. Computational experimentation 

In this Section, we present the results of the computational experimentation. The experimentation 
was performed over two different datasets: the real world MSW instances of Bahía Blanca described 
in Section 3.1 and the benchmark instances described in Section 3.2, respectively. 

Since the three metaheuristics involve probabilistic parameters, the results were statistically 
analyzed according to the following procedure. Each metaheuristic was run 30 times on each instance. 
Then, a two-stage statistical methodology is applied. First, the Shapiro-Wilk normality test [47] is used 
to determine whether the results follow a normal distribution. The null hypothesis of this test is that 
the data has a normal distribution and the alternative hypothesis is that the data cannot be assured to 
have a normal distribution. The test was applied with a statistical confidence level of 0.95. 

Table 2. Results of the real instances of the three metaheuristics. 

Instance SA LNS GA 

min median max iqr min median max iqr min median max iqr 

A-F2HUM 25.99 *26.81 27.91 0.75 25.88 *26.87 27.90 0.73 32.80 36.59 41.79 2.95

A-F2DRY 46.13 *46.89 47.41 0.25 46.41 *46.89 48.20 0.33 52.93 55.67 58.86 1.75

A-F3HUM 27.31 27.95 29.30 0.39 27.73 28.81 29.33 0.66 37.48 40.74 43.23 2.50

A-F3DRY 66.23 66.74 67.15 0.39 65.95 66.56 67.30 0.38 72.61 75.36 77.59 2.20

B-F2HUM 24.56 24.96 26.02 0.52 24.72 25.30 25.60 0.03 31.01 34.24 36.03 3.24

B-F2DRY 39.80 *40.41 42.88 0.35 39.65 *40.36 40.90 0.48 45.72 48.13 52.64 2.76

B-F3HUM 29.04 29.54 30.44 0.73 29.30 30.16 31.20 1.12 44.12 47.59 53.63 2.75

B-F3DRY 57.35 *58.33 58.89 0.44 57.36 *58.32 58.97 0.36 68.86 72.66 77.03 3.75

A + B-F2HUM 48.43 49.30 50.54 0.88 50.14 50.88 51.83 0.89 77.82 82.91 88.79 5.54

A + B-F2DRY 88.99 90.51 92.51 1.11 88.54 91.59 94.61 1.98 111.65 115.34 121.69 3.30

A + B-F3HUM 54.83 *56.54 59.19 1.37 55.10 *56.25 57.78 0.78 114.27 127.10 140.38 5.75

A + B-F3DRY 121.24 122.72 123.96 1.10 125.87 128.70 131.30 1.56 174.92 182.04 186.23 5.75

After that, in case the results of the three metaheuristics for a specific instance follow a normal 
distribution, the mean value is used as estimator for the studied metric and the standard deviation (std) 
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is used as a measure of statistical dispersion, and the parametric ANOVA statistical test is applied to 
analyze if there are significant differences on the mean values of the metaheuristics. Conversely, in 
case the results of any of the metaheuristics does not follow a normal distribution, the median value is 
used as estimator for the studied metric and the interquartile range (IQR) as a measure of statistical 
dispersion, and the non-parametric Kruskal-Wallis statistical test [48] is applied to analyze if there are 
significant differences on the median values of the metaheuristics. The null hypothesis of this test is 
that the medians are equal and the alternative hypothesis is that the medians are not equal. It was 
applied with a statistical confidence level of 0.95. 

In both set of instances, at least the results of one of the metaheuristics rejected the hypothesis of 
normal distribution according to Shapiro Wilk test. Thus, medians and interquartile ranges are used to 
report the results and the Kruskal-Wallis test is used to analyze the differences among medians. The 
detailed results of the Shapiro Wilk and Kruskal-Wallis tests can be consulted in Appendix. 

For the real instances Table 2 reports for each metaheuristic: the minimal value, the median 
value, the maximal value, and the interquartile range/standard deviation of the D values achieved by 
each metaheuristic. In the pairwise comparisons performed by Kruskal-Wallis statistical test all the 
medians where found to be statistically different except for those that have an asterisk*, which 
rejected this hypothesis. 

Table 3. Percentage difference of the solutions of each metaheuristic to the exact solution. 

Instance CPLEX Comparison with minimal ࡰ Comparison with median ࡰ 

 CPLEX gap % ∆ௌ ∆ேௌ ∆ீ ∆ௌ ∆ேௌ ∆ீ ܦ

A-F2HUM 25.49 *0.00% 1.96% 1.53% 28.63% 5.18% 5.41% 43.55% 

A-F2DRY 47.18 10.73% –2.23% –1.63% 10.49% –0.61% –0.61% 17.99% 

A-F3HUM 27.21 *0.00% 0.37% 1.91% 36.49% 2.72% 5.88% 49.73% 

A-F3 DRY 67.42 13.76% –1.77% –2.18% 7.58% –1.01% –1.28% 11.77% 

B-F2HUM 24.53 0.43% 0.12% 0.77% 27.49% 1.75% 3.14% 39.59% 

B-F2 DRY 40.66 10.65% –2.12% –2.48% 12.37% –0.61% –0.74% 18.37% 

B-F3HUM 28.54 0.10% 1.75% 2.66% 57.64% 3.50% 5.68% 66.74% 

B-F3 DRY 63.46 26.30% –9.63% –9.61% 7.73% –8.08% –8.10% 14.50% 

A + B-F2HUM 49.12 10.13% –1.40% 2.08% 57.64% 0.37% 3.58% 68.80% 

A + B-F2 DRY 96.09 31.47% –7.39% –7.86% 15.61% –5.81% –4.68% 20.03% 

A + B-F3HUM 57.62 16.54% –4.84% –4.37% 98.53% 1.87% –2.38% 120.59% 

A + B-F3DRY 141.18 39.09% –14.12% –10.84% 23.84% –13.08% –8.84% 28.94% 

Average –3.27% –2.50% 32.00% –1.46% –0.24% 41.72% 

Note: *These solutions are proven optimal by CPLEX. 

In Table 3, the best distance—D according to Eq (1)—obtained for each real instance with CPLEX 
and each metaheuristic is reported. Besides, it is reported the gap estimated by CPLEX to the ideal 
solution calculated by the software and the percentage difference between the best solution obtained 
by each metaheuristic and the solution obtained by CPLEX according to Eq (9). 
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∆ெுൌ
ܪܯܦ െܺܧܮܲܥܦ

ܺܧܮܲܥܦ
% (9)

where ܦெு is the distance obtained by each metaheuristic and ܦா is the distance obtained with 
CPLEX. Thus, in Table 3 when ∆ெு has a negative value it means that the metaheuristic obtained a 
better result than CPLEX. We compare the CPLEX solution with two distances of the metaheuristic: 
the best or minimal distance and the median distance. 

In order to evaluate its performance, Table 4 records the number of iterations required by each 
metaheuristic in the time established by the Eq (8). 

Table 4. Average time and iterations required for real-world MSW instances. 

Instance ܯ (sec) Average number of iterations 

SA LNS GA 

A-F2HUM 828 2785036.17 905.97 66449.33 

A-F2DRY 828 4234573.77 1623.03 64646.87 

A-F3HUM 948 5310001.37 549.90 68082.77 

A-F3 DRY 948 5153516.90 828.00 67384.67 

B-F2HUM 816 4906570.60 862.00 64281.60 

B-F2 DRY 816 2121397.27 1587.80 63497.00 

B-F3HUM 1212 7424337.37 371.97 77485.87 

B-F3 DRY 1212 7101348.27 591.30 76806.13 

A + B-F2HUM 1644 10063074.37 308.03 90283.23 

A + B-F2 DRY 1644 9726814.20 121.37 89513.53 

A + B-F3HUM 2160 12840985.67 111.60 99323.93 

A + B-F3DRY 2160 57603690.73 68.63 98254.67 

As aforementioned, to extend the metaheuristic comparison, the instances of the benchmark Set 
E [40] were solved. Table 5 shows the best results found in each instance by the algorithms under study, 
while Table 6 shows the performance of the metaheuristics in comparison to the BKS (Best Known 
Solution) of the instance using the percentage difference estimated with Eq (10). 

∆′ெு ൌ
ܪܯܦ െܵܭܤܦ

ܵܭܤܦ
% (10)

where ܦெு is the distance obtained by each metaheuristic and ܦௌ is the distance of the BKS of 
the instance. Again, we compare the BKS with two distances: the best (minimal) value and the median 
value achieved by each metaheuristic. 

Similarly, to the results of real-world instances, in Figure 4 we present a chart with the results of 
the best distance achieved by each metaheuristic and the BKS of each instance of the benchmark. 
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Table 5. Results of the benchmark instances of the three metaheuristics. 

Instance SA LNS GA 

min median max iqr min median max iqr min median max iqr 

E-n13-k4 247.00 247.00 248.00 0.00 247.00 247.00 247.00 0.00 247.00 248.00 265.00 1.00 

E-n22-k4 375.00 375.00 383.00 0.00 375.00 375.00 375.00 0.00 375.00 389.00 439.00 14.50 

E-n23-k3 569.00 569.00 597.00 0.00 619.00 619.00 619.00 0.00 569.00 628.50 732.00 58.00 

E-n30-k3 503.00 503.00 503.00 0.00 534.00 534.00 537.00 3.00 507.00 547.00 636.00 40.00 

E-n31-k7 379.00 390.00 425.00 16.00 379.00 379.00 393.00 0.00 395.00 471.00 573.00 40.75 

E-n33-k4 835.00 835.00 843.00 1.75 835.00 835.00 835.00 0.00 507.00 547.00 636.00 40.00 

E-n51-k5 521.00 521.00 538.00 5.75 521.00 521.00 536.00 0.00 565.00 610.00 681.00 46.75 

E-n76-k7 684.00 689.00 694.00 1.75 830.00 *830.00 853.00 0.00 776.00 *833.50 912.00 59.75 

E-n76-k8 736.00 738.50 747.00 2.75 737.00 737.00 740.00 0.00 846.00 935.00 1061.00 65.75 

E-n76-k10 830.00 843.00 862.00 7.50 830.00 830.00 853.00 0.00 930.00 967.00 1052.00 42.25 

E-n76-k14 1023.00 1034.00 1051.00 9.00 1026.00 1026.00 1026.00 0.00 1102.00 1158.50 1651.00 55.00 

E-n101-k8 817.00 825.50 863.00 5.00 822.00 822.00 834.00 0.75 1119.00 1205.00 1365.00 80.00 

E-n101-k14 1082.00 1093.00 1127.00 12.75 1080.00 1080.00 1086.00 0.00 1279.00 1401.50 1570.00 109.50

Table 6. Distances of the solutions of each metaheuristic to the BKS of the benchmark. 

Instance ࡹ 

(sec) 

BKS Comparison with best ࡰ value Comparison with median ࡰ value 

∆′ௌ ∆′ேௌ ∆′ீ ∆′ௌ ∆′ேௌ ∆′ீ 

E-n13-k4 156 247 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 

E-n22-k4 264 375 0.00% 0.00% 0.00% 0.00% 0.00% 3.73% 

E-n23-k3 276 569 0.00% 8.79% 0.00% 0.00% 8.79% 10.46% 

E-n30-k3 360 534 *–5.81% 0.00% *–5.06% –5.81% 0.00% 2.43% 

E-n31-k7 372 379 0.00% 0.00% 4.22% 2.90% 0.00% 24.27% 

E-n33-k4 396 835 0.00% 0.00% 1.68% 0.00% 0.00% 9.52% 

E-n51-k5 612 521 0.00% 0.00% 8.45% 0.00% 0.00% 17.08% 

E-n76-k7 912 682 0.29% 21.70% 13.78% 1.03% 21.70% 22.21% 

E-n76-k8 912 735 0.14% 0.27% 15.10% 0.48% 0.27% 27.21% 

E-n76-k10 912 830 0.00% 0.00% 12.05% 1.57% 0.00% 16.51% 

E-n76-k14 912 1021 0.20% 0.49% 7.93% 1.27% 0.49% 13.47% 

E-n101-k8 1212 815 0.25% 0.86% 37.30% 1.29% 0.86% 47.85% 

E-n101-k14 1212 1071 1.03% 0.84% 19.42% 2.05% 0.84% 30.86% 

Average – – –0.30% 2.53% 8.84% 0.37% 2.53% 17.39% 

Average without instance E-n30-

k3 

–  0.16% 2.75% 9.99% 0.88% 2.75% 18.63% 

Note: *The solutions found have a lower value of D, but a greater number of routes (k = 4) than the reference BKS. 

4. Discussion 

In this Section, we discuss the main results from the computational experimentation performed 
on real waste collection instances and on the benchmark set E. As a summary of the metaheuristics we 
present Table 7 in which we outlined the main features of the three metaheuristic. 
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Table 7. Main features of each metaheuristic. 

Feature SA LNS GA 

Type of algorithm Local search Neighborhood search Evolutionary algorithm 

Stopping criterion Time limit/maximum 

allowable number of iterations 

without improvement 

Time limit Time limit/maximum time 

without improvement 

Programming language VBA VBA Python 

Main parameters Initial temperature/ function 

that determines the cooling 

mechanism 

Auto-tuning by the author Population size, crossover and 

mutation probability, 

4.1. Real MSW instances 

Concerning the real instances of the MSW system of Bahía Blanca, the results are presented in 
Tables 2–4. Table 2 shows that SA obtained the smallest minimal distance in nine out of 12 instances 
while LNS provided the smallest distance in the three remaining instances. Regarding the median 
distances, SA produced the smallest median in eight out of 12 instances (however, in two instances the 
medians are not found to be statistically different from the ones obtained by LNS). LNS obtained the 
best median distance in five instances (however, in four instances these medians were not statistically 
different from those of SA). In instance A-F2DRY both algorithms obtained the same median. Both 
the SA and the LNS procedures always outperform the GA in terms of minimal values and median 
values. Neither the GA nor the SA cut were stopped before the maximum allowable computing time 
due to stagnation. 

The results of Table 3 show that CPLEX was able to obtain optimal solutions (with 0.00% CPLEX 
gap) in only two out of 12 instances, i.e., A-F2HUM and A-F3HUM. In the rest of the instances, the 
optimality CPLEX gap is larger than zero with the maximum gap in instance A + B-F3DRY (39.09%). 
Regarding the comparison between the metaheuristics and CPLEX, SA minimal distances are on 
average 3.27% better than CPLEX solutions, having the largest improvement in instance A + B-F3DRY 
(–14.12%). Regarding LNS, minimal solutions are on average 2.50% better than CPLEX, having the 
largest improvement also in instance A+B-F3DRY (–10.84%). The minimal solutions of the GA are 
on average 32.00% worse than the CPLEX solutions, having the smallest difference on instance A-F3 
DRY (7.58%). When comparing the median distances of the metaheuristics with CPLEX solutions, the 
relationship is maintained, being SA the metaheuristic that obtains the best average difference (–1.46%) 
followed by the LNS (–0.24%). Results of Table 4 showed that in relation to the average number of 
iterations carried out, SA and GA reach a greater number of iterations as the number of nodes grows. 
Conversely, in the case of LNS the number of iterations decreases as number of nodes increases. 

Another important feature to analyze is the variation of the results of the algorithms. Since 
instances were non-parametric, the interquartile range better represents these values. In order to better 
depict the differences between the algorithms, in Figure 3 we present the box plots of the four real-
world representative instances. A box plot is a simple way of visualizing statistical data on a plot in 
which a rectangle is drawn to represent the second and third quartiles with a vertical line inside to 
indicate the median value. The lower and upper quartiles are shown as horizontal lines either side of 
the rectangle. If there are outliers (values that surpass the lower and upper quartiles) these are plotted 
as extra scatter dots outside of the main box. For the sake of comparison, we also present the unique 
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value of CPLEX. From Figure 3 it can be depicted that the GA always obtains worse results than the 
other two metaheuristics and CPLEX. Moreover, the variability of the results also seems to be larger, 
especially in instance A + B-F2HUM (Figure 3(a)). LNS and SA are very competitive against CPLEX. 
Besides, the variability of these algorithms seems to be relatively small especially in instance A + B-
F3DRY (Figure 3(c)). 

(a) (b) 

(c) (d) 

Figure 3. (a). Boxplot of instance A + B-F2HUM. (b). Boxplot of instance A + B-F2DRY. 
(c). Boxplot of instance A + B-F3HUM. (d). Boxplot of instance A + B-F3DRY. Distance 
of the best distances in kilometers obtained by each metaheuristic and of CPLEX solution 
for each real-world instance. 

Another aspect that is relevant to analyze in connection with the efficiency of the solution 
algorithms used to solve the real scenarios, is the impact of the partition of the overall area into two 
sectors. Partitioning complex problems into smaller (more tractable) parts is a normal procedure 
employed to address the complexity of NP-hard problems [49], as it is the case of the CVRP that is 
addressed in this work. In this case, the partition is performed at the level of the input instance dividing 
the overall area into two smaller Sectors (Sectors A and B). Although this allows the resolution 
algorithm to face a smaller problem, which might be easier to solve, it can also generate a certain loss 
of quality of the obtained solution since the algorithm do not take into account the overall scenario. 
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The joint search space of the partitioned scenarios is smaller than the search space of the overall 
scenario since some possibilities are not feasible in the partitioned case (i.e., combining bins that 
belong to different sectors in the same route). For analyzing this behavior for the proposed algorithms, 
in Table 8 we report the percentage deviation between solving the two partitions separately and solving 
the global scenario computed according to Eq (11). 

ାܦ െ ሺܦ  ሻܦ
ሺܦ  ሻܦ

 (11)

where ܦ, ܦ, ܦା are the best distance values for sectors A and B, and the overall area A + B, 
respectively. Thus, a negative difference determines that the resolution approach is able to improve the 
results when considering the overall instance in comparison to the partitions. 

Table 8. Analysis of performance partition of the real scenario. 

Instance CPLEX SA LNS GA 

F2HUM –1.80% –4.19% –0.91% 20.87% 

F2 DRY 9.39% 3.56% 2.88% 13.57% 

F3HUM 3.35% –2.70% –3.38% 39.29% 

F3DRY 7.87% –1.89% 2.08% 24.09% 

Average 4.70% –1.31% 0.17% 24.45% 

From the results of Table 8, it can be seen that CPLEX is able to improve the solution only in 
instance of humid waste and collection frequency F2. SA is able to improve the solution when it 
considers the overall area in comparison to solving the partitions in three out of four cases, having the 
largest improvement in instances of dry waste and collection frequency F2 (4.19%). LNS improves 
the solution also in two out of four cases, having the largest improvement in humid waste and collection 
frequency F3 (3.38%). GA always provides a worse result when dealing with a larger scenario instead 
of the partitioned problem. Thus, the proposed SA was able to manage quite efficiently the increment 
in the collection area and take advantage of the enlargement of the search space, providing better 
solutions for the global scenario. On the other hand, GA could not take advantage of this possibility 
probably been more affected by the larger complexity of facing a larger scenario. 

4.2. Benchmark set E 

The results of the benchmark set E are reported in Tables 4 and 5. Results of Table 4 show that, 
regarding the minimal distances, the SA is able to obtain the best solution in 12 out of 13 instances 
while LNS in six instances out of 13. The relationship between both metaheuristics is reversed when 
comparing the median values that in this set of instances are all statistically different according to 
Kurskall-Wallis test. The medians of the results of LNS are better in 10 instances and those of SA are 
better in 7 instances. Although it is able to achieve the best minimal value in two instances, GA is 
usually outperformed by the other two metaheuristics in both minimal and median values. 

Regarding Table 5, it is necessary to clarify that both SA and GA find a lower value than the 
optimal value reported in the literature for the E-n30-k3 instance given that, since they do not have a 
restriction indicating the number of routes, they report a solution with an additional route. Table 5 
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shows that the SA is able to obtain solutions that are on average (excluding instance E-n30-k3) only 
0.16% worse in comparison to the value of 2.75% of LNS. The efficiency of SA is maintained when 
considering medians comparison, the solutions being around 0.86% distanced on average from the 
BKS while the LNS value is about 2.75%. As in the case of the real dataset, the GA provides worse 
results than those of the other two metaheuristics. Neither the GA nor the SA cut were stopped before 
the maximum allowable computing time due to stagnation. 

Regarding benchmark instances, no boxplots are presented since the results of the metaheuristics 
have less variability in this set of instances and, thus, the box plots were less illustrative. From Table 6, 
it can be seen that the interquartile range for most of the results of the LNS and the SA is zero. Only 
the GA, keeps a certain variability in the results. Instead of box plots, in Figure 4 we present a chart 
with the results of the best distance achieved by each metaheuristic and the BKS of each instance of 
the benchmark. Once again, it is seen that the GA usually obtains worse solutions than the other two 
metaheuristics although there are two exceptions in instances E-n76-k7 and E-n23-k3 (in which GA 
obtain a better result than LNS). As aforementioned, in E-n30-k3 both SA and GA obtain a better 
solution but they use a larger number of routes. 

 

Figure 4. Distance of the best distance obtained by each metaheuristic and of CPLEX 
solution for each real-world instance. 

5. Conclusions 

Finding new tools to make municipal/urban solid waste (MSW) logistics more efficient is a 
pressing concern in today's societies. This work is focused on solving waste collection problems for 
the Bahía Blanca area. In particular, it addresses a problem found in previous works where the exact 
solution of waste collection problems was inefficient, because the partitioning of the scenarios into 
smaller portions was required to achieve convergence to an acceptable feasible solution using 
reasonable computational times. 

Therefore, in this work a comparative study is presented between the exact resolution and three 
metaheuristic solution tools for the problem of MSW collection in Bahía Blanca. The exact solution is 
based on a linear programming formulation of the CVRP model using the CPLEX software. On the 
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other hand, with respect to the metaheuristic resolution, a simulated annealing algorithm (SA) is 
proposed, which is compared with an algorithm taken from the literature based on large neighborhood 
search (LNS) and a standard genetic algorithm (GA). In addition, the comparison among of 
metaheuristics using some instances of a well-known benchmark from the literature is carried out. The 
proposed SA has a similar performance to the LNS algorithm of the literature -obtaining values close to 
the optimal solution on several occasions- and markedly exceeds the performance of the standard GA.  

After analyzing the experimental work carried out, it can be affirmed that the application of these 
algorithms provides potentially acceptable and competent results, having the metaheuristics the 
advantage of the less computational effort required to reach the solution. The experience carried out 
on the benchmark problems and on the MSW instances of Bahía Blanca, marked a good performance 
of the proposed SA algorithm in comparison to other metaheuristics and CPLEX in both real MSW 
instances and benchmark instances. It showed to be particularly competitive when compared to a state-
of-the-art LNS algorithm from the related literature. On the other hand, GA exhibited a poor 
performance compared to SA and LNS, possibly due to the use of a standard genetic algorithm with a 
simple decoding function taken from applications in unconstrained problems such as the Traveling 
Salesman Problem.  

As research lines of work in the future, it is planned to experiment with larger scenarios of the 
city of Bahía Blanca, using the proposed metaheuristics, which were validated in the present work. It 
is also intended to incorporate other realistic features to the problem such as time limits for the routes 
or a finite size of the collection vehicles fleet. Furthermore, it is proposed to develop the coding 
function of the genetic algorithm with an approach that is better adapted to the type of CVRP problem 
addressed in this paper. Finally, it is expected to continue performing the comparison between the three 
metaheuristics with different set of instances and parametric configurations in order to expand the 
analysis. 
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Appendix 

Results and comparison of statistical tests 

In this appendix we present the results of the Shapiro-Wilk normality test and the Kruskal-Wallis 
statistical test applied to analyze if the medians are equal or not. In the case of the Shapiro-Wilk test 
the null hypothesis of this test is that the data has a normal distribution and the alternative hypothesis 
is that the data cannot be assured to have a normal distribution. In the case of the Kruskal-Wallis test 
the null hypothesis of this test is that the medians are equal and the alternative hypothesis is that the 
medians are not equal. Both tests were applied with a statistical confidence level of 0.95. Table A.1and 
A.2 reports from left to right: the instance, the metaheuristic comparison performed, the statistic value 
of the test, the p-value, the conclusion of the test, and an indication of which median is smaller in case 
significant differences among medians were found.  

From Table A1 it is concluded that in most of the experiments of 30 runs, according to the Shapiro-
Wilk normality test, the results have a normal distribution in 43 out of 75 experiments composed by 
12 experiments of SA, 12 of LNS and 19 of the GA. Finally, 32 out of 75 cannot be assured to have a 
normal distribution composed by 13 experiments of SA, 13 of LNS and 6 of the GA. 

Table A1. Results of the Shapiro-Wilk test. 

Instance Comparison Statistic p-value Conclusion 

E-n13-k4 SA 0.4522 0.0000 Data cannot be assured to have a normal distribution 

LNS 1.0000 1.0000 Data has a normal distribution 

GA 0.4381 0.0000 Data cannot be assured to have a normal distribution 

E-n22-k4 SA 0.4983 0.0000 Data cannot be assured to have a normal distribution 
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Instance Comparison Statistic p-value Conclusion 

LNS 1.0000 1.0000 Data has a normal distribution 

GA 0.8781 0.0026 Data cannot be assured to have a normal distribution 

E-n23-k3 SA 0.4044 0.0000 Data cannot be assured to have a normal distribution 

LNS 1.0000 1.0000 Data has a normal distribution 

GA 0.9604 0.3166 Data has a normal distribution 

E-n30-k3 SA 1.0000 1.0000 Data has a normal distribution 

LNS 0.5774 0.0000 Data cannot be assured to have a normal distribution 

GA 0.8827 0.0033 Data cannot be assured to have a normal distribution 

E-n31-k7 SA 0.8452 0.0005 Data cannot be assured to have a normal distribution 

LNS 0.3223 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9669 0.4570 Data has a normal distribution 

E_n33_k4 SA 0.5701 0.0000 Data cannot be assured to have a normal distribution 

LNS 1.0000 1.0000 Data has a normal distribution 

GA 0.9650 0.4129 Data has a normal distribution 

E-n51-k5 SA 0.6876 0.0000 Data cannot be assured to have a normal distribution 

LNS 0.4088 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9517 0.1879 Data has a normal distribution 

E-n76-k7 SA 0.9162 0.0215 Data cannot be assured to have a normal distribution 

LNS 0.2898 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9618 0.3441 Data has a normal distribution 

E-n76-k8 SA 0.8816 0.0031 Data cannot be assured to have a normal distribution 

LNS 0.3599 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9646 0.4042 Data has a normal distribution 

E-n76-k10 SA 0.9708 0.5600 Data has a normal distribution 

LNS 0.2898 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9218 0.0299 Data cannot be assured to have a normal distribution 

E-n76-k14 SA 0.9630 0.3686 Data has a normal distribution 

LNS 1.0000 1.0000 Data has a normal distribution 

GA 0.6130 0.0000 Data cannot be assured to have a normal distribution 

E-n101-k8 SA 0.6634 0.0000 Data cannot be assured to have a normal distribution 

LNS 0.4862 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9721 0.5970 Data has a normal distribution 

E-n101-k14 SA 0.8568 0.0009 Data cannot be assured to have a normal distribution 

LNS 0.4522 0.0000 Data cannot be assured to have a normal distribution 

GA 0.9749 0.6795 Data has a normal distribution 

A - F2HUM SA 0.9707 0.5579 Data has a normal distribution 

LNS 0.9672 0.4648 Data has a normal distribution 

GA 0.9550 0.2297 Data has a normal distribution 

A - F2DRY SA 0.9351 0.0672 Data has a normal distribution 

LNS 0.8530 0.0007 Data cannot be assured to have a normal distribution 

GA 0.9381 0.0807 Data has a normal distribution 

B - F2HUM SA 0.8772 0.0024 Data cannot be assured to have a normal distribution 

LNS 0.7387 0.0000 Data cannot be assured to have a normal distribution 
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Instance Comparison Statistic p-value Conclusion 

GA 0.8970 0.0071 Data cannot be assured to have a normal distribution 

B - F2DRY SA 0.7840 0.0000 Data cannot be assured to have a normal distribution 

LNS 0.9556 0.2385 Data has a normal distribution 

GA 0.9543 0.2202 Data has a normal distribution 

A+B - F2HUM SA 0.9576 0.2686 Data has a normal distribution 

LNS 0.9272 0.0414 Data cannot be assured to have a normal distribution 

GA 0.9577 0.2699 Data has a normal distribution 

A+B - F2DRY SA 0.9687 0.5037 Data has a normal distribution 

LNS 0.9788 0.7941 Data has a normal distribution 

GA 0.9559 0.2420 Data has a normal distribution 

A - F3HUM SA 0.9380 0.0804 Data has a normal distribution 

LNS 0.9097 0.0146 Data cannot be assured to have a normal distribution 

GA 0.9516 0.1860 Data has a normal distribution 

A - F3DRY SA 0.9684 0.4956 Data has a normal distribution 

LNS 0.9830 0.8988 Data has a normal distribution 

GA 0.9316 0.0543 Data has a normal distribution 

B - F3HUM SA 0.9150 0.0199 Data cannot be assured to have a normal distribution 

LNS 0.9048 0.0110 Data cannot be assured to have a normal distribution 

GA 0.9361 0.0712 Data has a normal distribution 

B - F3DRY SA 0.9683 0.4936 Data has a normal distribution 

LNS 0.9342 0.0634 Data has a normal distribution 

GA 0.9634 0.3777 Data has a normal distribution 

A+B - F3HUM SA 0.9337 0.0616 Data has a normal distribution 

LNS 0.9588 0.2887 Data has a normal distribution 

GA 0.9448 0.1225 Data has a normal distribution 

A+B - F3DRY SA 0.9576 0.2690 Data has a normal distribution 

LNS 0.9880 0.9769 Data has a normal distribution 

GA 0.9312 0.0527 Data has a normal distribution 

From Table A2, it is concluded that in most of the comparisons between experiments of 30 runs, 
according to the Kruskal-Wallis test, in 68 out of 75 comparisons medians are not equal. Particularly, 
in the 25 comparisons between LNS vs. SA, in 14 the median of LNS is smaller than of SA, in 7 the 
median of SA is smaller than of LNS and in 4 no significant difference was found. In the 25 
comparisons between LNS vs. GA, in 21 the median of LNS is smaller than of GA, in 1 the median 
of GA is smaller than of LNS and in 3 no significant difference was found. In the 25 comparisons 
between SA vs. GA, in 24 the median of SA is smaller than of GA and in 1 the median of GA is 
smaller than of LNS. 

Table A2. Results of the Kruskal-Wallis test. 

Instance Comparison Statistic p-value Conclusion Result 

E-n13-k4 SA vs LNS 5.3636 0.0206 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 15.9076 0.0001 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 28.7221 0.0000 Medians are not equal Median of LNS is smaller than GA 
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Instance Comparison Statistic p-value Conclusion Result 

E-n22-k4 SA vs LNS 6.5455 0.0105 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 36.6350 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 48.0029 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n23-k3 SA vs LNS 55.7773 0.0000 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 43.0556 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 2.0233 0.1549 Medians are equal — 

E-n30-k3 SA vs LNS 53.3937 0.0000 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 50.5859 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 2.8237 0.0929 Medians are equal — 

E-n31-k7 SA vs LNS 24.0734 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 42.4360 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 48.1851 0.0000 Medians are not equal Median of LNS is smaller than GA 

E_n33_k4 SA vs LNS 10.3367 0.0013 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 46.2732 0.0000 Medians are not equal Median of GA is smaller than SA 

LNS vs GA 50.5859 0.0000 Medians are not equal Median of GA is smaller than LNS 

E-n51-k5 SA vs LNS 4.7031 0.0301 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 45.5182 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 48.1793 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n76-k7 SA vs LNS 49.0410 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.5507 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 0.2650 0.6067 Medians are equal — 

E-n76-k8 SA vs LNS 20.5138 0.0000 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 44.4562 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 48.7022 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n76-k10 SA vs LNS 39.0546 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.3029 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 48.7067 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n76-k14 SA vs LNS 27.2187 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.2906 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 50.5827 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n101-k8 SA vs LNS 9.3821 0.0022 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.3288 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 46.5721 0.0000 Medians are not equal Median of LNS is smaller than GA 

E-n101-k14 SA vs LNS 42.1153 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.2783 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 47.7389 0.0000 Medians are not equal Median of LNS is smaller than GA 

A - F2HUM SA vs LNS 0.5917 0.4418 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 44.4525 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.4835 0.0000 Medians are not equal Median of LNS is smaller than GA 

A - F2DRY SA vs LNS 2.4603 0.1168 Medians are equal — 

SA vs GA 44.6181 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.6907 0.0000 Medians are not equal Median of LNS is smaller than GA 

B - F2HUM SA vs LNS 23.6180 0.0000 Medians are not equal Median of SA is smaller than LNS 
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Instance Comparison Statistic p-value Conclusion Result 

SA vs GA 44.4599 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.6469 0.0000 Medians are not equal Median of LNS is smaller than GA 

B - F2DRY SA vs LNS 0.5579 0.4551 Medians are equal — 

SA vs GA 44.4724 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.4935 0.0000 Medians are not equal Median of LNS is smaller than GA 

A+B - F2HUM SA vs LNS 42.5142 0.0000 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.3547 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.3597 0.0000 Medians are not equal Median of LNS is smaller than GA 

A+B - F2DRY SA vs LNS 10.3878 0.0013 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.3807 0.0000 Medians are not equal Median of LNS is smaller than GA 

LNS vs GA 44.3807 0.0000 Medians are not equal Median of SA is smaller than GA 

A - F3HUM SA vs LNS 25.9155 0.0000 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 44.4922 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.5732 0.0000 Medians are not equal Median of LNS is smaller than GA 

A - F3DRY SA vs LNS 5.3204 0.0211 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.5208 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.5271 0.0000 Medians are not equal Median of LNS is smaller than GA 

B - F3HUM SA vs LNS 15.1231 0.0001 Medians are not equal Median of LNS is smaller than SA 

SA vs GA 44.5109 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.5196 0.0000 Medians are not equal Median of LNS is smaller than GA 

B - F3DRY SA vs LNS 0.0919 0.7618 Medians are equal — 

SA vs GA 44.3807 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.3906 0.0000 Medians are not equal Median of LNS is smaller than GA 

A+B - F3HUM SA vs LNS 0.6141 0.4332 Medians are equal — 

SA vs GA 44.3251 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.3337 0.0000 Medians are not equal Median of LNS is smaller than GA 

A+B - F3DRY SA vs LNS 44.2635 0.0000 Medians are not equal Median of SA is smaller than LNS 

SA vs GA 44.3547 0.0000 Medians are not equal Median of SA is smaller than GA 

LNS vs GA 44.3560 0.0000 Medians are not equal Median of LNS is smaller than GA 
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