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Abstract

After decades of being neglected, broad tapeworms attract growing attention
thanks to the increasing number of reports from dmsnbut also thanks to many
advancements achieved by application of moleculathods in diagnosis and
epidemiological studies. Regarding sparganosisorturiately general uniformity of
most species, their high intraspecific variabilignd lack of agreement among
researchers has led to confusion about the cleasdn of Spirometra/Sparganum
species. For the first time we determined adgigseand plerocercoid life cycle stages
and the molecular phylogeny 8parganum proliferunobtained from endangered wild
felids (Panthera onca, Leopardus pardalis, Leopardus gusiuhnd Herpailurus
yagoauroundi in one of the largest continuous remnants of sheide biodiversity, the
Atlantic Forest from South America. Our results whd that at least 57% of total
species of wild felids in this natural area coutd as definitive hosts dparganum
proliferum We conclude that the availability of more mormgital characteristics are
needed in order to secure reliable characterizatimh diagnosis of sparganosis. The
integration of these data with molecular analy$ismdochondrial DNA sequences will

be useful for species discrimination.

keywords: endangered faun&@parganum proliferupnwild carnivores; mitochondrial
genes
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1. Introduction

Sparganosis is an emerging parasitic zoonotic siseaainly caused by the second
larva stage (plerocercoid) of diphyllobothriid am#ts such asSpirometrassp. and
Sparganum proliferunfNoya et al. 1992, Kokaze et al. 1997; Miyaderalgt2901,
Brabec, Kuchta and Scholz, 2006; Kuchta et al.828€hauer et al. 2014;, Oda et al.
2016; Kikuchi, T., & Maruyama, H. 2020; Kikuchi at. 2020; Honget al, 2020).
Sparganum proliferunis a cryptic parasite which phylogeny and life leyare poorly
understood. The adult stage ®f proliferumhas not been observed and the precise
taxonomic relationships @&. proliferumwith other tapeworms remain unclear because
few genes have been sequenced (Netyal, 1992; Miyaderaet al, 2001; Okamotet
al., 2007). Recently, the genome and transcriptomalyars of plerocercoid of.
proliferum was reported and confirmed thas. proliferum and Spirometra
erinaceieuropaeiare closely releted but different species (Kikuehial., 2020). In
addition to taxonomic considerations, the pathoggniof S. proliferum(proliferative
sparganosis) and plerocercoids of Diphyllobotheidapeworms, including those 8f
erinaceieuropaei(non-proliferative sparganosis) are different (Kiku & Maruyana
2020). Sparganosisases are reported worldwide, but it has been pradmtly
diagnosed in Southeast Asia, mainly in China (Dahgl, 2009; Qiu and Qiu, 2009;
Liu et al, 2015). Human sparganosisequently occurs by consuming raw or
undercooked meat of infected reptiles or amphibidrisking water contaminated with
copepods as well as direct contact with the skimfafcted frogs or snakes (et al,
2011; Liuet al, 2015; Odeet al, 2016, Okincet al, 2017; Zhang et al., 202®lso, a
case of human infection by adult $f erinaceieuropaedias been reported in Vietnam
(Le et al, 2017). In Argentina, three cases of sparganoaige theen reported in

individuals from border countries. Two with cerdbi@cation (Boero, Garaguso and



69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Navarr, 1991; Jonest al, 2012) and one with cutaneous location (De Radl,
1993). Moreover, in Argentina there are few repatsSpirometraspp in animals.
Spirometra mansonoidd®s been found in cats (Santa Cruz and Lombard®8R8yY),S.
erinaceieuropaein cats (Venturini, 1980, 1989) and dogs (Denet®B3). In wildlife,
Martinez et al. (2010) has identified eggsSofmansonoidem the felined-. pardalis

F. yagouaroundiPanthera oncaandPuma concolarSpirometrahas been reported in
Pampas foxL(ycalopex gymnocercug¢Reigada, Bisceglia and Mifio, 2012; Petrigh
al., 2015). Despite numerous attempts to clarify &sohomy, host specificity and
geographic distribution (Faust et al, 1929; Wastlal, 1974), the genus remains one of
the most complicated groups of tapeworms, and aélnees of evidence concluded that
it is very difficult and almost impossible to digguish some of the 50 nominal species
of Spirometra based solely on morphological characteristics f@wal934, 1972;
Mueller, 1974; Daly, 1981; Odening, 1985; Kuchtd &tholz, 2017). In Asia, there are
several studies @. erinaceieuropadineages (Zhang et al., 2016), particularly indwil
frogs in China the prevalence is above 10% in smyg®ns. (Hong et al., 2020; Zhang
et al.,, 2017; Zhang et al.,, 2020). Regarding Afritteere are molecular reports of
findings of Spirometra spin human infections in South Sudan and Ethiopize(gard

et al, 2015). In Europe, there are also molecular axaf S. erinaceieuropaei
plerocercoid larvae in wild fauna from Poland (Ka#eefSobochskaet al, 2019). In
Brazil, there have been reportsSgirometraspp. larval stages in cold-blooded animals
(Rego and Schaffer, 1992) humans (kual, 2015) and adult stages in wild felids
(Vieira et al, 2008). The occurrence of a particUpirometra lineage in South
America has been reported (Almeielaal, 2016) and the molecular sequences obtained
were phylogenetically cluster in a separate node distant to the AsianS.

erinaceieuropaelineage.
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The objective of this work is to identify and chetexize diphyllobothriid infections in
wild animals of the Atlantic Forest of Misiones, gentina through an integrative
approach that links morphological, genetic and @gichl aspects. Here we report, for
the first time, the presence of adult and eggS.gbroliferumin wild animals in South
America, confirmed by molecular analysis. Our resgbuld be useful to understand
some of the underlying aspects of the life cycleSofproliferumand evaluate the
zoonotic importance in the interface areas to gpi@®ention measures for human and

animal welfare.

2. Methods

2.1. Study area

The study area contains one of the largest contilwemnants of Atlantic Forest (AF)
in the World. It is located in northern Misionesopince, Argentina54°1330.60'W,
25°5852.32'S). The area is 220 m in altitude and presentsrgpibtl climate with

annual rain precipitations between 1700 and 2100(bigrer, 2000).

2.2. Animal samples

Road-killed animals were actively searched on mafiooutes 101 and 12 that cross the
Iguazu National Park between the years 2015 to .2@fBnal necropsies were carried
out under approved protocols by the National Pak#sinistration technical office
(NEA 423 Rnv ex DCM 483 Dispo 23/2015). Only 1 -&/dl old animal carcasses were
selected for sampling. Five animals were colle@ed analysed in this work and are
summarized in Table 1. Each animal was individupdgked and labelled with relevant
information including place of origin, sampling datage category, and sex of the

animal.

2.3. Parasite samples
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The intestinal tracts of the analysed carnivoresewearefully removed from each
carcass and subsequently isolated by ligaturesroyland rectum). All samples were
kept at —20 °C for at least 1 month prior to preoeg in order to inactivate possible
parasite eggs from other species (Sciostial, 2013). Examination of the intestinal
content was performed as previously (Arradtadl, 2017) using the modification of the
techniqgue described originally by Eckert (2001).eBy, the small intestine was
separated from the large intestine, and then eectioa was placed in different trays
and cut lengthwise. Coarse material and large pesasf the small intestine were
removed. Then, each section was immersed in 9%esablution at 37 °C for 30 min.
Intestinal walls were scraped with a microscopaesland all the content of each section
were poured into individual glass bottles and tefstand for 20 min. The supernatant
was discarded and physiological saline solution agded to dilute the sediments. This
procedure was repeated several times until thersaf@t was almost translucent.
Obtained sediments were examined in small portanS —10 ml round petri dishes
with magnifier lens at x65 to identify small helrthis. The helminths found were
cleaned with saline solution and deposited in ieofg with either 4% formalin or 70%

ethanol for further taxonomic and molecular exartiam respectively.

2.4. Morphology studies

Strobilas of adult tapeworms, larvae and eggs \weadyzed under optical Primo Star
(Carl Zeiss Gmbh, @tingen, Germany) microscope using Axion Cam ERcd&msera
(Carl Zeiss Gmbh, @tingen, Germany). Each sample was whole mountedl an
registered with 4x, 10x and 40x using Carl Zeissidfi software for image analysis.
Moreover, strobilas and larvae tissue sections weepared in paraffin and were
sectioned in serial sections of 4 @i, mounted on glass slides, and stained with

hematoxylin-eosin (HE). The slides were analysedeumptical microscope and picture
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was taken at 4x, 10x and 40x. The main featuredyzsth in the larvae were
pleomorphism, color, symmetry and presence or istolex (Noya et al., 1992). The
main features analyzed in eggs were size, shaperasdnce or not of cap and pointed

ends (Mueller, 1936).

2.5. Molecular identification and phylogenetic analysis

Total parasite genomic DNA was obtained using tHée&sy Blood &Tissue Kit
(Qiagen GmbH, Hilden, Germany). Three molecular kaa from mitochondrial
genome were used to determine species. Cytochrooxélase subunit | (cox1) gene,
NADH dehydrogenase subunit 1 (nadl) gene and ATihage subunit 6 (atp6) gene
were selected since we know and used them in prslioreports from cestodes
(Kamenetzky et al., 2002; Arrabal et al., 2017) amede demonstrated to be useful to
classify isolates oSpirometrain previously reports (Almeida et al., 2016; Zhaeial.;
2017, 2020). The genes were amplified by polymerdssn reaction according to
Arrabal et al. (2017) (Supplementary Table 1). The PCR-productaiobd was
sequenced and firstly aligned with ClustalX (v24).With Spirometraand Sparganum
sequences extracted from complete mitochondriabmes available on GenBank and
considered as reference genomes (International iHrenomes Consortium; 2019).
To get insight into an accurate phylogenetic anglyd our parasite linage we
downloaded cox1 sequences form Asia, Africa, Euanpk South America totalling 275
cox1 sequences (Lavikainen et al., 2013; Zhand..e2@l7, 2020; Jeon & Eom 2019;
Kolodziej-Soboeinska et al., 2019; Hong et al., ®@02After several sequence
redundancy removal 42 coxl sequences were retaifbdse data set includes
Spirometracox1 sequences from wild frogs that were describdthve a high pairwise
genetic distance with the reference mitochondmalagne (Zhang et al., 2017). Multiple

alignments were edited with BioEdit (v7.1.3). Maxim likelihood phylogeny was
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performed using MEGA7. A discrete gamma distributiovas used to model
evolutionary rate differences among sites. Braedlgths were measured as the number
of substitutions per site. All positions with legbsin 80% site coverage were eliminated.
There was a total of 296 positions in the finabdat. Additionally, Bayesian phylogeny
was implemented by using BEAST. Substitution mod#Y+G+X with gamma
distribution was selected with PartitionFinder. 6¢@s in the evolutionary rates among
branches were performed by using random local aocllel (Drummond and Suchard,
2010). For earlier tree a basic coalescent moded selected. MCMC run was
performed with tree parameter values sampled eu€@Q0 steps over a total of
100,000.000 steps (Zhang et al., 2017).

3. Results

3.1 Morphological identification of Sparganum proliferum in wild carnivores

The analysis for intestinal tracts of wild carniesrallowed as isolating tapeworms
morphologically compatible t8pirometrain wild carnivores, this being the first report
of this parasites in the eco-region of Atlantic &sir OnelLeopardus pardaligocelot),
one Panthera onca(jaguar), oneLeopardus guttulugtirica) and oneHerpailurus
yagoauroundi (yaguarundi) (Figure 1). Parasites were identifiadcording to
morphological features, the individual selected fiother analysis has a resemblance
with Spirometraby their general appearance and size (Figure ¢. [arva has the
following major macroscopic features: pleomorphisvhjte color; length <5 mm, lack
of bilateral symmetry and without scolex (Figure )2Bccordingly to previously
Sparganum proliferuntarvae features described so far (Noya et al.2L98Ithough
numerous worms were found it was not feasible tniifly all specimens based on
morphological features because most of them wagniented and were not suitable for

morphological examination. Regarding strobilas egponding to adult tapeworms the
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major differentiating features of the eggs foundevdand shape and the evident cap
and pointed ends attributable to the genus (Mu€ell@86) (Figure 3). The average eggs
measures were 67.Q2n by 34.95um (n = 50). Histological sections of strobilas were
performed. The main characteristics (based in reaamd gravid proglottids) were i)
presence of anterior and posterior uterine coilthe longitudinal median line of the
proglottids ii) ventral middle uterine pore in ttierd of the gravid proglottid iii) uterus
opened by a pore well separated from and posténidhe vagina, and presence a
varying number of loops in the terminal heavy wallgortion in an “S” shape (iv)
uterus consisted of 5-7 loops and the dumbbell-ethagvary connected to the uterus
and situated near the posterior margin v) vagirssgx traversing from its vestibule in
an approximately straight path in the median lineown into lateral undulations of
different amplitude viii) cirrus surrounded by tseminal receptacle and opens out
separately from vagina and near to the uterine @ageaire 4). In this section the ratio of
width and length of gravid proglottids and uterim®rphology were consistent to

Spirometraspp. (lwata et al., 1972; Mueller, 1974).
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Table 1. Percentagdivergence between mitochondrial sequences fronplesnof wildlife Sparganum proliferunand reference genes 8pirometra

erinaceieuropae(KJ599680) an&parganum proliferunfAB015753).

Sample D Host Parasitic Per centage Divergence (SE)*
stagein host
Cox1 Nadl Atp6
Spirometra Sparganum Spirometra Sparganum Spirometra Sparganum
erinaceieuropaei  proliferum  erinaceieuropaei proliferum  erinaceieuropaei  proliferum

LPMiSP Ocelot Adult 14.4 (2.4) 4.2 (1.3) 12.5 (2.3) - 26.9 (2.6) -
LTMiSP Tirica Plerocercoid 14.4 (2.4) 4.2 (1.3) 12.5 (2.3) - 26.9 (2.6) -
HYMiSP Yaguarundi Adult (fragment) 14.4 (2.4) 4.2 (1.3) Nd --* nd --*
POMIiSP1 Jaguar Adult 14.4 (2.4) 4.2 (1.3) Nd - nd -
POMIiSP2 Jaguar 14.4 (2.4) 4.2 (1.3) Nd - nd -

Adult (fragment)

*There is no sequence information fr@parganum proliferunfAB015753) nadl and atp6 genes.

* Pairwise genetic distance was calculated with ME@Aing Tamura-Nei (1993) model

“POMIiSP1 and POMiSP2 samples belongs to the sarivednal host

" Genbank accession numbers: MK976918 (cox1), MK93q8ad1) and MK976920 (atp6).
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3.2 Molecular characterization of Sparganum proliferum in wild felids

First, we analysed by PCR and sequencing the abtdined from the ocelot (sample LPMiSP)
by three molecular markers. The sequences obt&ioedcox1 (295 nt), nadl (343 nt) and atp6
(594 nt) mitochondrial genes were concatenatedlitmregun a dataset of 1322 nucleotides to
analyze the complete information in an integratéylggeny. Multiple sequence alignment
comparisons with all mitochondrial reference gensmere performed in order to identify the
ocelot mitochondrial sequence. Redundant refereaqgeences were removed and a total of 10
orthologous sequences from mitochondrial completenogies were finally included
(Supplementary Table 2). The phylogenetic tree woaed based on the multiple alignment
showed that LPMiSP belongs fpirometralineage near t&. erinaceieuropaefKJ599680)
isolated from a human in Korea (Supplementary Fgl). The genetic divergence between
LPMISP andS. erinaceieuropaevas 14.4% for cox1, 12.5% for nadl and 26.9% 6 &Table

1). SinceS. erinaceieuropaecox1l non redundant sequences available in GenBank an
average genetic divergence of 8.8% and the gedettance obtained between LPMiSP and
Spirometraspp. was relatively higher (14.4%) we couldn't sifysit as belonging to the same
species. To get insight the presenceSpfrometrain wild felids we assessed to amplify and
sequence the same three molecular makers from saonples. The cox1 sequences from jaguar
(samples POMISP1 and POMIiSP2), tirica (sample LTRMi&nd yaguarundi (sample HYMiSP)
and additional nadl sequence from sample LTMiSRewbtained. The nadl sequence obtained
from tirica host was 100% identical to the previgusequenced obtained from LPMiSP-nadl.
Additionally, all cox1 sequences were 100% idemhtioseach other. Since atp6 was not possible
to be amplified, we hypothesize that several SNBspeesent between mitochondrial genomes

from Argentinean wild felids an8pirometraspp mitochondrial genomes reported, and may be
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different species. To test this hypothesis, waeedr a broader set of cox1l sequences available
for Spirometra/Sparganunn GenBank and performed multiple alignments. Thenber of
SNPs between coxl sequences from parasites fronenAngan wild hosts is shown in
Supplementary Figure 2. One interesting finding ted that cox1 sequences from wild felids
from Argentina have 4.2% of genetic divergence mBSparganum proliferuntox1l sequence
(AB015753) (Table 1). This finding was consistenthwthe phylogeny obtained from the
multiple sequences alignment. Even the tree topoiadicates that a taxonomic revision of
some sample is needed (sonspirometra decipiensclustered with S. erinaceieuropaei
sequences). Parasite samples obtained in this sltaked common ancestor wiBparganum
proliferum (Figure 5). Besides this, the sequences that whezacterized asSparganum
including those obtained in this study, are inctlidathin the same clade asSpirometralineage
registered in South America (KF572950 and KT3754%6ese sequences have 6.4% and 6.7%
of genetic divergence with LPMiSP, respectivelye Bpirometrasequences from the next near
node (e. g. KF988137) have 12.0% genetic divergevith LPMiSP. Taking into account the
tree topology and the genetic distance betw&earganumand Spirometracox1 sequences we
suggest that KF572950 and KT375456 accession nnates belongs t8. proliferumspecies.
We confirmed our results by Bayesian phylogenetialysis (Supplementary Figure 3). In this
phylogeny numbers along branches indicate postgriobabilities that support the groups
mentioned before. Moreover, the effective sampte §ESS) values for all parameters were

above 200 giving confidence to the analysis.

4. Discussion
After decades of being neglected, broad tapeworoms attract growing attention thanks to the

increasing number of human cases but also thankeotsiderable advance achieved by
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application of molecular methods in diagnosis apidemiological studies (Schok&t al, 2019).
Regarding sparganosis, general uniformity of masices, their high intraspecific variability
and lack of agreement among investigators has dedonhfusion about the classification of
Spirometra/SparganurgMueller, 1974; Daly, 1981; Kuchta and Scholz, 20Moreover, most

of the available material was obtained from hostnexed long time post mortem or even from
decomposed carcasses, which may have caused cagnifnorphological changes (Hernandez-
Ortset al, 2015). As a result, morphological and biometrigala in some species descriptions
may be misleading. Similarly, most clinical samptdslarval stages were not characterised
molecularly and were described under different rearfiis work showed th&. proliferumand

S. erinaceieuropaespecies have dissimilar cox1l, nadl and atp6 segserThe molecular
results of this work are in concordance with pregi@nalysis where both species were clearly
distinguished by cox1, nuclear sdhB and 18S rDNAr&§lon gene sequencing (Miyadetaal,
2001, Kikuchi et al., 2020). Also, discrepanciesSipirometraphylogeny and a possible new
species were also reported by Zhang et al. (200202 studying parasites from wild fauna.
Moreover, the low identity and high genetic dis@araetween atp6 sequences obtained from
ocelot (LPMiSP) and the reference atp6 sequencen f0 erinaceieuropaesupport these
findings. Mitochondrial atp6 sequences fr@nproliferumare not available in public databases
to make the necessary comparisons with the reshteined in the present work.. The isolates
analyzed in this work are not closely relatedStoerinaceieuropaedr other AsianSpirometra
lineage, but instead, might display close affisitie one of the lineages describedsagometra
from South America and witB. proliferum(AB015753) mitochondrial reference genor@eir
source of parasites are dead animals on the rbaldould be noted that the high temperature of

the region under study favours the decompositide@ oé carcasses. For this reason, helminth
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specimens not suitable for ideal morphological idieation are the most common outcome. We
overcome these problems by implementing an integraif morphological and molecular data
analysis. Morphologically similar species presemtinspiralled uterusS( decipiens, S. gracilis,
S. longicollis, and S. mansgnvere reported in wild felids from Brazil, as wall in proglottids
of Spirometraspp. (Almeida et al., 2016); however, the vagifaSo erinaceieuropeis
considered to lie next to the midline and descémdgaves of different amplitude (Palmetral,
2008). Also, the shape of the uterus lacks uniftyrim the number of turns (between three and
seven loops) having irregular arrangement and @wata, 1932; Mueller, 1974; Okinet al,
2017). Our results showed that the proglottidsSofproliferum and also the eggs found,
presented the same morphological characteristatsStherinaceieuropeandit is because of that,
these species need to be evaluated using molemadeers. Recently, Kuchta et al. (in press)
suggestedSparganum proliferunbelongs to a lineage @. decipiensdescribed in South
America. However, since their results are baseg onbenetic data and we analyzed not only
this data but also novel adult morphological feaguthat classification may be revised. More
isolates analyzed with other molecular markers sashnuclear genes or complete genome
sequences are needed to confirm the preserseprbliferumin wild hosts. meanwhile the three
mitochondrial genes employed in this work could bsed as molecular markers for
epidemiology studies. The sequence comparison atf@pimgmetrafrom Brazil andSparganum
from Argentina indicates that they are differenelhges. Species 8parganunoccur in warmer
latitudes similar to the region analyzed here (Muell974; Daly, 1981). Fatal proliferative
sparganosis was reported from domestic cats inhN@merica (Buergelt, Greiner and Senior,
1984; Woldemeskel, 2014) and dogs in Europe (Stef Enge, 2011). However, the impact of

diphyllobothriid cestodes in wild animals is nogeat yet. Our findings showed for the first time
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S. proliferumadults and larvae in the intestine track of thidiglids. In Spirometraspecies it
was already described that once in the secondatgbrate host, the procercoid can develop into
a plerocercoid larva in different tissues, which sarvive predation and reach a wide variety of
vertebrates (Mueller, 1974; Opuni and Muller, 19Ids et al, 2015). We founcs. proliferum
plerocercoides larvae in tirica intestine, indiogtithat the preys it feeds on are harbouring
pleroceroides that survive the gastric digestioggdding the unknown complete life cycleSf
proliferum, the human activities in the region under studge lthe conversion of natural
landscapes to urban areas may increase predatidorbgstic dogs and cats on wild amphibian
and reptile populations, thus potentially enhandimg incidence of proliferative sparganosis
(Borteiroet al, 2015). The possible role of amphibians and reptihay have in the occurrence
of human cases in South America is an issue nogbeell investigated yet. In Argentina, there
are few reports oBpirometraspp., mostly in domestic definitive hosts Ventyr{d980, 1989);
Santa Cruz and Lombardero, (1987); Denegri (1993%garding wildlife, identifiedS.
mansonoidegggs were reported in felids (Martinetzal, 2010),Spirometraspp. in the Pampas
fox (Lycalopex gymnocercu$Reigada, Bisceglia and Mifio, 2012; Sciosstial, 2014; Petrigh

et al, 2015).The present work showed that at leastddterent species of wild felids, out of the
six existing in the natural area under study avelired in the sylvatic life cycle db. proliferum
and could act as definitive hosts in the Atlanticdst. This region is shared with other groups of
carnivores (canids, mustelids and procyonids) twaitld also be participating in the cycle.
Sparganumproliferum is a good model for ecological interaction studiekich allows us to
understand and define the trophic levels of thermediate and definitive hosts, and then to
establish the distribution of parasites within ath@opulation (Denegri, 2008). For these reasons,

the knowledge of prevalence 8parganumn wild animals of Argentina is necessary, due to
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ongoing changes on the environment that affectsgiaracology and its transmission dynamics.
In Argentina few cases of human sparganosis haea beported but the real prevalence is
unknown in the country. In the meantime, a relidhlnomic criterion based on morphological
characteristics integrated with molecular analysismitochondrial DNA sequences will be

useful for species discrimination.
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Legendstothefigures

Figure 1.Animals road-killed in Iguazu National Ra¥lisiones, Argentina. The intestinal tracts
of each carnivore felid were necropsied and passgmoved from intestine. ARanthera onca
(jaguar); BHerpailurus yagouaroundiyaguarundi); Q-eopardus guttulugtirica); D-Leopardus

pardalis (ocelot).

Figure 2.Sparganum proliferumvorms from intestinal tracts of wild cats. A- Lae/from tirica;
B- Adult from ocelot; C- Adult from jaguar; D- Laavor plerocercoid from tirica. (A-C.

Macrocopical images, D. Stereoscopic magnifyinggianage).

Figure 3. Whole mounted samples fr@parganum proliferunadult found in wild felids host
A- Proglottids showing uterus with eggs from oceBt C and E - Light brown eggs with
evident cap and pointed ends attributable to tmeigi&om jaguar. D- Gravid uterus from ocelot

*VA: vagina; UP: uterine pore; U: uterus

Figure 4. Histological cut from mature proglottidosving the uterus (U) and vagina (VA) and
cirrus sac (CS). Showing the cirrus (C), uterus @nital pore (GP), vaginal pore (VP), uterine

pore (UP), and ovary (OV) . Aceto carmine stain.

Figure 5.Sparganum proliferun€OX1 phylogeny. A total of 48 sequences from défé host
species and geographic origin were analyzed by iMami Likelihood method including 296
positions in the final dataset. Genbankaccessionbeu are shown. The codes of the samples

obtained in this work are the same as Table 1.rRetes species are marked with a black dot.

Supplemenetary Figure 1: Phylogenetic analyzeSpafrganunmsamples. Maximum Likelihood
method of three molecular markers concatenated frarasite ocelot isolate (LPMiSP) and 10
orthologous sequences from reference genomes. Weseea total of 1245 positions in the final

dataset.
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Supplementary Figure 2: Multiple sequence alignmaintox1l Sparganumand Spirometra

species perfomerd with ClustalX (v2.0.12). Dots¢ates identical nucleotides.

Supplementary Figure 3: Bayesian phylogenyspirometraand Sparganunbased on the data
set of cox1. The numbers along branches indicaséegor probabilities. The ESS value for all

parameters were above 200. Sequences ID are tleeasaRigure 5.
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