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Abstract

Capillary electrophoresis with diode array detett{€E-DAD) and multidimensional
fluorescence spectroscopy (EEM) second-order dat@ iused and chemometrically
processed for geographical and grape variety fieason of wines. Multi-levels data
fusion strategies on three-way data were evaluated compared revealing their
advantages/disadvantages in the classification egantStraightforward approaches
based on a series of data preprocessing and feattreetion steps were developed for
each studied level. Partial least square discrimtimmalysis (PLS-DA) and its multi-
way extension (NPLS-DA) were applied to CE-DAD, EEMd fused data matrices
structured as two-way and three-way arrays, res@dgt Classification results
achieved on each model were evaluated through iglwiokces such as average
sensitivity non-error rate and average precisiaffei2nt degrees of improvement were
observed comparing the fused matrix results witts¢hobtained using a single one,
clear benefits have been demonstrated when levdhtf fusion increases, achieving

with the high-level strategy the best classificatiesults.

Keywords. Electrophoresis capillary, Multidimensional Fluaresce Spectroscopy,

Three-way data modeling, Multi-level data fusiotasSification.
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1. Introduction

In multivariate classification setting, second-ardata handling is producing a
significant impact on the development of analyticstirategies, especially for
determining characteristic patterns of the analgtaaterest in highly complex matrices
[1, 2]. In particular, food characterization taske in an innovative progressive change
going from the development of dedicated methods doantification of specific
compounds to the fingerprint acquisition by rapin-destructive and non-selective
instrumental techniques [3-5].

Hence, second-order data, especially three-waysmaodeling applications,
could supply interesting improvements as regardsili® attained when extremely
complex systems should be classified. Thereby,ag heen demonstrated that data
analysis can be more effective when modeling secondhigher -data with multiway
algorithms compared to unfolding procedures [1, @fnherwise, it has been recently
revealed that the ability in terms of discriminatipower can be improved by using
second-order data arranged in a three-way structatead of first-order data [2].

Over the years, analytical methods and data amatgsis commonly used in
food quality and process control had to be re-atell and modified to fit these new
tasks [1]. In this progression of gathering mord aetter information, the multivariate
statistical analysis of fused data has become @gulxool for enhancing the reliability
of the results. Being the key point how the infotiora sources can be combined to
provide the joint classification prediction of tlsamples, three levels of data fusion
(DF) have been reported [7, 8].

Firstly, low-level DF (1-DF) implies a simple catenation of the individual
matrices to build a single array that is then usedalculating a single model for final

classification. In the food authentication and gyatontrol field, it has been the most
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used fusion approach to improve the results sisc@ common, conceptually simple,
first attempt with outputs from different sourcesovpding first-order data [9-11].
Nevertheless, out of the food analysis scope, ttwaearrays have been concatenated
using low-level DF strategy in a recent origingdod [12].

Secondly, mid-level DF (2-DF) first extracts sone¢evant features from each
data source separately and then these output®acatenated to build a single array to
be then processed by the desired chemometric tponiThis approach has been
probably the one that has purposed more challeobedly for second-order data
analysis, where witty strategies for data compogg®xtraction or reduction have been
explored for improving outcomes. Mainly, the attérhps been addressed to evaluate
the combination of first- and second order datavidex by multiple platforms since
data are very different in structure, size or s¢aB-18]. Otherwise, the performance of
mid-level applications has commonly been compacekbw-level fusion as well as to
single models [19-22].

Lastly, the high-level DF (3-DF) builds separated®is for the different blocks,
and the individual results are then integrated atngle final response. This strategy
has been lesser explored than the two mentionedveabdlthough several
methodologies for final identity declaration by netichg the individual matrices
independently have been reported [8, 23], only ééwhem have been inquired in food
classification context. High-level DF has been maimplemented for the comparison
with the other two DF levels [24, 25].

The aim of this work was to develop multiple stggés to assess the three DF
levels on two second-order arrays, with differeatadcomplexity, in order to know the
correlation and analogy between both informationrees for twofold classification

purposes. The focus was put on the developmentooleta able to distinguish among
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white wines of three different grape varieties wgographical indication (Gl) from the
four main wine production regions of Argentina [2Bbr that, fluorescence excitation—
emission matrix spectroscopy (EEM), and capillalgceophoresis with diode array
detector (CE-DAD) were applied as non-target amslysorder to acquire a fingerprint
to characterize the wines.

To our best knowledge, it is the first time thag tulti-levels of DF strategies
on second-order data are evaluated and comparedealimy their
advantages/disadvantages in the classificatioreganthus, we developed multiple and
straightforward approaches based on a series ai gegprocessing and feature
extraction steps, which constitutes a significampriovement in the DF analysis, and it
offers a wide range of possibilities when secortkordata of different nature are
assessed. Finally, the challenge consisted inrfiqhdine optimal combination of data

preprocessing, fused data and data modeling thaldvwwovide the best results.

2. Materials and methods
2.1. Samples

Thirty-nine samples of commercial white wine frorouf wine-producing
origins, all belonging to provinces of ArgentinagMloza-M, San Juan-SJ, Salta-S, and
Rio Negro-RN) and three different grape variet@€bdrdonnay-CH, Sauvignon Blanc-
SB and Torrontés-TO), were included in this stuti: Chardonnay wines (10 from
Mendoza and 4 from San Juan), 13 Sauvignon Blanesv10 from Mendoza, 1 from
San Juan, and 2 from Rio Negro) and 12 wines fraapeas of the variety Torrontés (4
from Mendoza, 1 from San Juan, 5 from Salta, afid® Rio Negro). Wine samples

were selected from the 2011 to 2013 vintages angjftofrom a local market. The
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alcoholic content ranged from 12.2 to 13.8% v/vetihanol. These samples were

analyzed in triplicate by the two techniques déxatibelow.

2.2. Data acquisition
2.2.1. EEM data

All spectrofluorimetric measures were acquired adiog to the method
reported by Azcaratet al. [26] using a Cary Eclipse Fluorescence Spectropheter
(Agilent Technologies, Waldbronn, Germany) with>d lcm quartz fluorescence cell,
xenon flash lamp. CaryEcplise software package wgesl to control the instrument,
data acquisition and data analysis. Fluorescenceaérn spectra were recorded by
varying the wavelengths between 245 and 341 nmgiinent 5 nm), and by recording
the emission spectra from 300 to 500 nm (space@.5ynm interval). Fluorescence

measurements were done in triplicate for each sampl

2.2.2. CE-DAD data

The electrophoretic run conditions are treatedetaidlin our previous work [27]
and here only main analysis steps will be recallddelectropherograms were acquired
on a CE system (Agilent Technologies, Waldbronnin@ay) equipped with a DAD
and an uncoated fused silica capillary of 40 craltength (31.5 cm effective length)
and 75 pm inner diameter (MicroSolv Technology @oagion, Eatontown, NJ, USA).
Separation was performed by applying a voltagedok\2 and with a typical current of
approximately 80 pA. The hydrodynamic injection waerformed in the positive
electrode of the capillary by applying a pressurd®mbar for 8 s. The cartridge was

maintained at 25.0°C. The electropherograms weterded during 10 min at 0.3 s
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steps and recording UV spectra between 189 anch#Déach 2 nm and samples were

analyzed by triplicate.

2.3. Data analysis

In order to extract and/or merge the informatioespnted in each data set
obtained by the two different instrumental analysif each sample, different
chemometric algorithms were employed. As both tephes produced out-puts with the
same data structure (i.e. three-way arrays), theng\analyzed by similar algorithms in
order to decompose and compress the data.

The data analysis workflow developed in this stislgchematized ifrig. 1. In
general terms, it includes: 1) building separatessification models on data obtained
from the individual analytical techniques by apptyi3 different approaches; and 2)
building classification multiplatform models by dgipg different DF strategies: |-DF,
2-DF and 3-DF (assessing different approaches)n,Thk the classification models

obtained were assessed and compared.

Insert hereFig. 1

2.3.1. Data set and preprocessing

In order to validate the classification models, tla¢aset corresponding to each
technique, containing 39 samples, was split inti@iaing set of 24 samples (12 CH, 12
SBand 12 TO or 15 M, 4 SJ, 2 RN and 2 S) andtast#sof 15 samples (6 CH, 5 SB
and 4 TOor9 M, 2 SJ, 2S, 2RN) by using the Bymlgorithm [28], keeping the
triplicates in the same set (i.e. the trainingcsetitained 72 analysis and the test set 45

analysis). The split between training and test sets done by keeping the ratio of



164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

samples of each class like in the original setat@hg the representation of each
category and keeping the replicates together. M@aeafter checking by exploratory
analysis that both sets spanned the whole vatybdomain, the same split was
maintained for all the data sets (the individual #re fused data sets).

To find the optimal classification results for eaclass studied (variety or
origin), different preprocessing options were cdastd in each model: both mean
centering and autoscaling were used dependingeonature of the data, as well as none

preprocessing.

2.3.2. Decomposition and compression methods

As can be observed Fig. 1, different decomposition and compression methods
(i.e. exploratory and reduction data analysis) wapplied. Then, the features obtained
were used for the DF models. Thus, on the one hhedoriginal EEM and CE-DAD
three-way arrays (117x49x41 and 117x676x107, résphs considering the samples
by triplicate) were unfolded in a multiset struetwia row-wise augmentation and then
these new matrices (a matrix of 117x2009 for EENbladed data and of 117x72332 for
CE-DAD unfolded data), as well as the fusion ofthatere used for the classification
or compressed by principal component analysis (PCA)

On the other hand, the EEM three-way array wasrdposed by parallel factor
analysis (PARAFAC) [29] into trilinear components)ated to the main fluorophores
present in the samples, whose scores (first maalings) were used as features for the
classification, or to build a fused dataset presituthe classification proceds three-
factor model, constrained with non-negativity il alodes, was obtained as the
optimum model according to the CORe CONsistencyddidstic test (COR-CONDIA)

[18, 30], the explained variance, the visual insipecof the profiles and residuals [26].
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Therefore, the three-way array matrix was decongbdse PARAFAC to three new
matrices containing the PARAFAC scores of the tHieerophores, as well as their
excitation and emission loadings.

Finally, CE-DAD array decomposition was carried doyt Tucker3 and the
resultedA matrix (Tucker3 output with the concentrations)svaarectly used, or fused
in a new data set, for the classification purpdsehis study, Tucker3 was selected due
to the high complexity of the CE-DAD data, whiclyu@e different number of factors
in each mode. The number of factors selected was88&nd 6 for each recorder mode,
obtaining a model with a 95% of total explainediaace. Non-negativity was imposed
as unique constraint in all modes in agreement witbrevious work [27] and three
matricesA, B andC were obtained containing the concentration, edgtterogram and
spectra profiles, respectively, together witlisacore (18x18%6) corresponding to the

magnitude of the interaction among factors in défe modes.

2.3.3. Classification methods

In this work, two classification techniques derivieain the regression algorithm
partial least squares (PLS) were used: the PLSDA for discriminant analysis) [31]
for first-order data and its multi-way or multiliawe extension (NPLS-DA) [32] for
second-order data (three-way arrays). In orderetecs the proper number of latent
variables (LVs), i.e. the dimensionality of the ,ebdhe minimum classification error
rate in cross-validation (venetian blind) was cdesed. In discriminant analysis, the
dependent variabley, holds the class information (as mayyariables as number of
classes). The raw predictions from a PLS-DA moslal value of nominally zero or one.
A value closer to zero indicates the new sampl®tsin the modeled class; a value of

one indicates a sample is in the modeled class [31]
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2.4. Individual and data fusion strategies

In this study, four modeling strategies were testedrder to obtain the best
classification of the wine samples according toirtlegigin and/or grape variety:
classification models of individual techniques anasssification models by low-, mid-
and high-level data fusion approachEg(1).

Before the data fusion, three classification modetye obtained with the
individual data matrices EEM and CE-DAD: a NPLS-D#odel obtained by each
original three-way array, and two PLS-DA modelsg evith the unfolded matrices and
other with the decomposed matrices by PARAFAC ocKeu3, respectively. The
strategy followed is described at the top Ff. 1. Each matrix was split into a

training/test set (72/45) before building the dfasation models.

2.4.1. Low-level data fusion (1-DF)

In the 1-DF approach, the data matrices are dyrestthcatenated to provide
sample classification [8]. In this studihe unfolded data from CE-DAD and EEM
matrices were concatenated before any model célmolarhese single blocks were
joined in a single matrix providing an overall datet with 74341 variables (2009
variables from the unfolded EEM matrix plus 7233#iables from the unfolded CE-
DAD matrix). After that, the data fused matrix wsglit into training and test sets.
Then, two different 1-DF options were testé(1.).

Despite there are many options to be carried ouhis 1-DF approach (i.e.
applying PCA on the concatenated matrix and ther\ Idd the scores, or the direct
application of other classification algorithms)gtlkelected option was to develop a

PLS-DA model, with 6 LVs, and built directly witlheé concatenated data matrix, after
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mean centering data preprocessing, by means opréngously described validation
protocol (named as Low- level DF: optl Kig.1l) in order to perform the same

classification method in all the strategies of shedy.

2.4.2. Mid-level data fusion (2-DF)

In general, in 2-DF strategies, the analytical @gatamerged at the features level
[25]. This means that relevant features are independextigcted from each analytical
data matrix, which are then concatenated into glesiglobal matrix that is used as input
to perform a classification modelin comparison with 1-DF strategies, this method
allows to guarantee a more balanced representattieach source of information, in the
case of each analytical data matrix has a hugerdifte in the number of variables
[25]. However, in this 2-DF the main issues to contr@ e features to retain from
each model and the method to extract them as getha preprocessing method to
adopt. In this study, two different 2-DF strategiesye tested, differing from the feature
extraction method used.

In the first 2-DF option(named as Mid-level DF: opt-1 iRig. 1), the relevant
feature extraction was performed by the developnoérda PCA model for each data
block. The number of principal components (PCs) choseneémh PCA model was
again selected in order to give more than 90% aofidative variance in both blocks.
Thus, 7 and 4 PCs were selected for the unfolded 6&-DAD and EEM matrices
(previously pre-processed by mean-centering), ws@ty. Then, the PCA-scores
associated to the first 7 and 4 PCs for each datk I§Str) were considered as extracted
features and were then fused in a new matrix (dMtlvariables). This fused matrix was

pre-processed by auto-scaling or none-preproceasddthen modeled by means of

10
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PLS-DA, obtaining PLS-DA models with 4 and 5 LV<scading to the preprocessing
method applied.

In the second 2-DF option tested in this study @a&ms Mid-level DF: opt-2 in
Fig. 1), the relevant features of each data block were wétaby the development of a
PARAFAC and a Tucker3 model for EEM and CE-DAD nua&ts, respectively. These
models are similar to those described above forntdrridual data modeling (Section
2.3.2) Then, the scores associated to the 3 PARAFAC faagtracted from EEM’s
array were concatenated with the 18 Tucker3 soexéscted from CE-DAD’s array,
forming a fused matrix with 21 variables, which veagoscaled and used for building of
a PLS-DA model of 6 LVs.

In all these strategies, PLS-DA models were applethe fused score-matrices

starting from the training-test set split procedure

2.4.3. High-level data fusion (3-DF)

In 3-DF strategies, the classification of the saapts performed independently
on each analytical data block, and then the predist provided by the models
calibrated on the single blocks are combined taget8]. In other words, the
information in the different data matrices is jalreg the level of the prediction obtained
by each individual model into a unique solution][33

In this study, a PLS-DA and N-PLS-DA models werstfindependently fit for
EEM and CE-DAD data matrices (data unfolded andagosed, and original three-
way arrays, respectively) and then the decisioadiption obtained by each single-
block model were fused by two different 3-DF stgas proposed in the literature [34]

Majority voting and Bayesian consensus with discpgbbability distributions.

11
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On the one hand, Majority voting was carried out disectly merging the
predictions of the single PLS-DA or NPLS-DA mod@isg. 1). This 3-DF method is
based on a democratic (weighted) process that ecwslbhe predictions provided by the
individual classification models and classifiesamnple into a class according to the
most frequent class assignment. Within this mettioele are three criteria deriving by
applying specific limits or thresholds. The ‘loosaiterion is the simplest and most
intuitive, in which a sample is assigned basedhnnost frequent class assignment,
and a sample is not classified in case of tiegj(feacy of assignments to a class >50%).
The “intermediate” and “strict” majority voting ¢eria classify a sample if the
agreement of predictions is higher than or equal366 and 100% (full prediction
agreement of all the considered models), respdgt{3d]. In this study, as only two
analytical methods are fused, only a sample issifled into a class when both
techniques classify it into the same class, satierion used was the ‘strict’ (100% of
frequency assignments).

On the other hand, from the confusion matrix, tlagdsian consensus estimates
the probability that a sample belongs to a specifiss on the basis of each analytical
data block and then combines these probabilities @njoint probability used for the
final assignation [34]. As Bayesian results arec#d by the model sequence followed
in the iteration process, all combinations of atiedy sources were considered in our
study (i.e. both blocks were selected as the Initlack), and according to the
classification results, the best order was to stéh the EEM’s dataset and then with

the CE-DAD’s dataset.

In a first step, the prior probability has beenreated as equal probability. Considering
three classes according to variety and four claasesrding to origin, the used prior

probabilities were 0.33 and 0.25, respectively.nTHigelihood conditional probabilities

12
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were estimated from the confusion matrix of eaessfication model being calculated
by dividing the number of classes correct and iremirpredicted by the total of samples
of each class. Then, once the posterior probadslitiave been calculated for the first
analytical block, the fusion approach proceedsaiiegly, that is, the posterior

probabilities of the first model were used as nemrprobabilities in the second model.
For that, the class predicted by the first-blocsslfication model (with EEM array,

unfolded or decomposed) was initially considerelde, the posterior probabilities of
the first model were used as new prior probabditie the second model, where the
class predicted by the second block model (i.ese¢habtained from the CE-DAD array,

unfolded or decomposed) was the new evidence.

Finally, this last probability obtained (i.e. thensensus probability derived from
the combination of the information of both datadii®) was the one used to predict the
class according to the maximum posterior probgbibbtained. Hence, this last
posterior probability was used to accept or rejbet predicted class depending on a
predefined probability threshold, that in this studias defined as >50%. The
corresponding equations and further details ofrriieshod can be found in the literature

[34, 35].

2.4. Evaluating models

The classification models were internally validateg using venetian blind
cross-validation (CV) and the final models’ perfamae was confirmed by a test set
validation (TV). For that purpose, as it was memdid above, the dataset was split into a
training and test set, with 61.5% and 38.5% ofddm@ples, respectively, by keeping the

ratio of samples of each class like in the origsetland the triplicates together.

13



336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

The quality of the models was assessed from thesifilgation and prediction
abilities. The optimal conditions were decided bgams of primary measures related to
single classes as sensitivity (Sens.), specifi(Bpec.) and precision (Prec.) of the
calibration and prediction, which were calculated each class separately encoding
different aspects of the classification [34]. Thigormation can be found in the
Supporting Information asTable | andTable |l for grape variety and geographical
classification results, respectivekdditionally, to provide an overall evaluation dfet
classification quality, the global indices derivedni primary class measures such as
average sensitivity (non-error rate —NER-) and agerprecision (PREC.) were also

calculated according the recommendation of Ballabab [34].

2.5. Software

Spectra preprocessing, and low-level, mid-level &igh-level DF strategies
were carried out by means of hand-made routineenrin Microsoft Excel v. 2016
(Microsoft Corporation, USA) and Matlab R2014b (TMathworks, Natick, MA,
USA). Decomposition and compression methods (PARBFFRucker3, PCA) and PLS-
DA classification models were calculated with theSPToolbox 7.9.5 (Eigenvector

Research Inc., Wenatchee, WA) working under MATL&®/ironment.

3. Resultsand discussion
3.1. Data visualization

The fluorescence and CE-DAD landscapes of sevarapkes belonging to the
three grape varieties of the four geographicaliosigire shown irFig. 2. On the one
hand, it could be observed that the shape of thel Bgectra varied within the same

origin among varieties, as well as within the sayregpe variety among origins. Thus,

14
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the visual assessment of all the fluorescence resitof the grape varieties pointed out a
general trend for the spectral maxima to be shiftecards 450 and 350 nm of em/ex.
Furthermore, similar fluorescence trend was obserge the different origins but
maintaining the characteristic shape of its variety

On the other hand, as can be seen in the CE-DADstapesKig. 2), they
showed many overlapping peaks corresponding toctimeplex mixture of chemical
compounds that are present in the white wines. Mane as was shown in a previous
report [27] a remarkable peak misalignment and shdgformation in electrophoretic
mode was produced. It could be also observed saffezethices between geographical
origins and grape varieties. Thus, all the samgltesved marked peaks around 3 and 5
min but with strong differences among varieties andins. From these observations,
all these differences could make possible the ifleason of the samples according to

origins and varieties.

Insert here Fig. 2

3.2. Individual models
3.2.1. General considerations

In the first stage, excitation-emission matricesENE and capillary
electrophoresis (CE-DAD) data were treated sepsrdte build the classification
models. The data matrices were organized and athigz two- and three-dimensional
arrays. Thus, three different classification apphes considering the data structures
and modeling were performed: (a) three-way datd®b$-DA using factors obtained
from a resolution method (PARAFAC or Tucker3); thiee-way data by N-PLS-DA,;

and (c) full unfolded data using PLS-DA (schematizeFig. 1).
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It should be noted that both datasets differ in doenplexity of the data
structure. EEMs represents a well-known illustratad bilinear data fulfilling with the
so-called low rank trilinearity condition, whichrcdoe decomposed into the excitation
and the emission spectra for a given fluorescentpoment [2]. In return, the three-
dimensional array built from CE-DAD data is norutear. Moreover, it presents
certain drawbacks like remarkable peak misalignnaet shape deformation in a data
mode associated with deficiency rank in the other. oim those cases, in which multi-
way data are involved for classification issues, thoice of the appropriate multi-way
approach will be decisive in the validity of théwoon found.

For building models, the latent variables were tel# considering the lowest
CV classification error rate (data not shown). Thest preprocess and region
(variables), together with the optimal configuratiof each model, such as the number
of latent variables retained, were selected asetheading to the lowest inaccuracy and

highest sensitivity and specificity obtained witle fprediction set.

3.2.2. Classification models for EEM data

For the approach (a) of Fig. 1, EEM dataset waanged in a three-way data
array (72 training samples, 41 emission wavelengting$ 49 excitation wavelengths)
and then, it was analyzed by means of PARAFAC. wedkactor model was chosen
representing the best compromise between explavsthnce (99.5%) and core
consistency (71%). The obtained model presentadtsethat were in good agreement
with works presented in literature [26] where tbadings for second (emission) and,
third (excitation) modes and PCA scores have ajréaen reported.

On the other hand, for the approach (c) of Fighé,EEM data array (72 x 49 x

41) was unfolded into a two-dimensional array (72009). To check the repeatability
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of the measurements, detect outliers and recogatterns in the samples’ distribution,
PCA analyses on PARAFAC factors and unfolded matexe performedKig. |A. and

IB. SM). By analyzing the scores plots, it could not bseyved a clear differentiation
of the samples by means of geographical origin oth kiwo- and three-way data
structures, showing in both cases a similar oveitap mainly between samples of M
and SJ. The same situation was observed when ffieeeditiation among samples was
assessed by means of the three grape varietigsyas shown in a previous report [26].

A PLS-DA model was performed on the PARAFAC factarsl the unfolded
matrix, which were prior preprocessed by autosgadind mean centering, respectively.
On the other side, a classification model basedNBhS-DA on the three-way data
matrix was built (approach (b) of Fig 1). The ob&a classification results of these data
sets are reported ihable 1 and Table 2, when grape variety and geographical origin
were used as classifier as well asFig. 11 andI1l. SM, respectively. Then separate
models were evaluated comparing the number of tlatanables retained and the
indices derived from confusion matrix (Sens., Sperec.; and PREC. and NER).

All the built models for sample classification aotiog to grape variety showed
a similar performance that the obtained in a previork [26]. However, in the present
study, the best individual model for grape variggssification seemed to be the NPLS-
DA model reaching the highest NER and PREC valogsediction stage being 81.1%
and 82.1%, respectiveliyf éble 1).

Furthermore, suitable classification results wertdaied according to
geographical origin by the three built models. s tcase, the model acquired from
PLSDA on the PARAFAC factors was the optimal reaghihe highest rate of well-
classified samples in the prediction set and dysptpthe highest NER valued gble

2).
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Insert hereTablel

Insert here Table?2

3.2.3. Classification models for CE-DAD data

For the (a) and (b) approaches (Fig 1), CE-DAD skttavas arranged in a cube
structure (72 training samples, 676 times and 1l@vekengths) and it was unfolded in a
matrix of size (72 x 72332) for the strategy (0).order to avoid drawbacks, three-way
array was modeled by means of Tucker3 that allosusgua different number of factors
in each mode. Thus, the number of eigenvalues epdp95% of the variance of the
data were 18, 18 and 6, for modes 1, 2 and 3, casply. After that, PCA analysis on
unfolded matrix and Tucker3 factors were performBage scatter plots of these PCA
analyses are shown kig. IC. SM andFig. ID SM, respectively. It can be seen that the
CE-DAD data showed higher variability than EEM datiaen the reproducibility was
assessed.

In the same way, PLS-DA was performed on the T®&Wactors and the
unfolded matrix, applying autoscaling and mean e@my as preprocessing,
respectively. On the other side, a classificatimdat based on NPLS-DA on the three-
way data array was built (approach b). It is retev@ highlight that both (b) and (c)
approaches were able to deal rank deficiency [14].

The three models for grape variety classificatibaveed similar performances;
however, for prediction set, the NPLS-DA model iattd higher indices of 66.1 and
70.8 for NER and PREC, respectivelyaple 1). Concerning geographical origin
classification, despite the obtained models with @E-DAD data achieved promising

results in the calibration stages, they were nd¢ &b predict the samples correctly.
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Thus, they showed in all cases NER values lowen th&.9 % Tabla 1). These
classification results could be also observed lokilg the scores and loadings plots of
the PLS-DA models reported Fig. || andlll. SM.

Thus, the application of fusion approaches was @epleto increase the overall
classification ability according to variety andgn classification, by integrating these

different behaviors of single analytical sources.

3.3. Data fusion models

With the goal of improving the classification resulccording to geographical
origin and grape variety, different strategies wassessed in the three data fusion
levels. Thus, in the case of having second-or@dea,dseveral are the strategies that

could be adopted.

3.3.1. Low-level data fusion

PLS-DA was carried out in the first 1-DF optionreditly on the concatenated
unfolded data matrixHig. 1). The validation results on the test samples epented in
Tablel and Table2.

The models based on 1-DF achieved similar classifio performances than
models from individual blocks when grape varietgssification was evaluated. Despite
the two 1-DF options were able to correctly diseniate the same number of samples,
they did not improve the prediction results respediiPLS-DA model from EEM data,
which obtained the best performance of all indialdmodels. However, the option 1
reached better results in the calibration stage.

On the other side, the results obtained for gedgcap origin classification

showed relevant improvements of both 1-DF appraadne comparison with the
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individual models, inasmuch as a total of 39 samplethe training set were correctly
predicted. In this case, this strategy seemedduige significantly better classification
results reaching 94.4% and 87.5% for NER and PRESphectively. It is important to
highlight than these results exhibited an increnaémhore than 5% for NER and a great
improvement in PREC of more than 16%, displayirg sterling model ability to avoid
wrong predictions in the classes.

As a second option, a PCA can be also appliedreeassary step to compress
the information when algorithms as LDA are appli€dus, it is important to be careful
inasmuch as, as in this case, the concatenatedrdatal-DF consists on an extremely
large matrix where the number of irrelevant vagabbecomes larger than the really
meaningful ones and therefore, the selection ofribee relevant variables could result
difficult [2, 40-41].

The scores plot of the best 1-DF models for grapeety and geographical
origin classifications are shown kig. 3A and 3C, respectively. By comparing these
models to those for PLS-DA, obtained for the indual data matriced=(g. Il andlll

SM), the improvement in the separation of classeth&yDF models is clearer.

Insert hereFig. 3

Data fusion showing better discrimination abilihah individual spectroscopies
have been also reported for fist-order data [3&]ekd, most of the researches founded
in the literature carried out 1-DF on first-ordeata [10, 37—-39] due to the ease of
performance together with the satisfactory resuBssically, 1-DF involves the
straightforward concatenation by combining variabdé the data blocks. Thus, direct

first-order data concatenation is easier than skacder-data concatenation since, in
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these last, a prior step, edata unfolding, could be needed when data arrefer din
structure and complexity. In this case, fewer gsidiould be found in the literature

[18].

3.3.2. Mid-level data fusion

As described above, two different approaches fbiF2wvere evaluated. Option 1
was based on a first extraction of the relevantufes by the development of a PCA
model for each unfolded data block, and then, tisoh of the PCA-scores matrices
obtained, being this matrix used in the developm@nthe PLS-DA classification
models. Within this option, autoscaling or noneppoeessing were tested. The option 2
was based on the feature extraction by PARAFAC amcker3 of the EEM and CE-
DAD matrices, respectively, and then the fusiontlté scores associated to the 3-
PARAFAC factors from EEM array and the 18-Tuckec®res from CE-DAD array,
being the matrix used for building the PLS-DA clasation models.

On the one hand, with regards to the two 2-DF ostity observing both grape
variety (Table 1) and geographical origiT @ble 2) classification results for calibration
steps, the option 2 showed better classificaticulte, calibrating correctly almost the
total of samples of the training set. On the ottad, by assessing the prediction rate of
grape variety classificatio @ble 1), it was again difficult to select the best optatue
to once again, the two options were able to disoabe correctly the same amount of
samples for prediction set, but none of them wds &b improve the performance
respect to the individual models.

Otherwise, the geographical origin classificatiate of the option 2 was better

than the option 1 achieving 91.7 and 95.5 for NERI 9.2 and 87.5 for PREC,
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respectively Table 2). These results can be also observable by lodkiegcores plots
obtained by these PLS-DA models (bottontaj. 3B and Fig. 3D).

By making a general comparison of these 2-DF reswith the individual
classification models, they also showed relevamiravements in the prediction rates in
comparison to the individual classification resufteainly for geographical origin
classification). However, similar classificatiorsudts were achieved in comparison with
the 1-DF approaches, for both grape variety andymggical origin classification.
Nevertheless, better results in classification hibgen reported when 2-DF approach
was compared with the analysis of individual datase with 1-DF [14, 18, 22, 25, 42].

Despite both low- and mid- levels improved the wndiial classification results,
being similar between them, there are differentaativges and disadvantages that could
be considered. For both cases, the data blockrndatas then processed by the desired
chemometric technique. However, on the one hari2k bnly implies that the matrices
describing the individual blocks, after proper poEgssing, are concatenated to build a
single array, being easier even more if the dataahfirst-order structure. However, a
disadvantage of 1-DF is that typically data sets @btained in which the number of
observations is much smaller than the number ofbkes, which prevents to apply
many multivariate data analysis techniques thatnatedirectly applicable. The most
popular way of trying to solve the problem of mawmsriables is to reduce the
dimensionality of each data matrix separately, kefdtempting to link them by means
of DF and this is how 2-DF works.

Otherwise, there are multiple possibilities that ba applied to carry out a 2-DF
strategy. The most remarkable techniques reportetthe bibliography for multiway
data sets have been sequential and orthogonalemtidlgeast squares (SO-PLS) [44]

and coupled matrix and tensor factorization (CMT45]. Other approaches based on
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multiblock analysis less used but also suitablelata fusion context, is the Common
Components and Specific Weights Analysis (CCSWAp ao-called ComDim) [18,

46].

3.3.3. High-level data fusion

In this level of DF, two different approaches watso developed and assessed:
Majority Voting and Bayesian consensus methodssé fapproaches were implemented
by using the classification results of the 3 indual models (NPLS-DA, and PLS-DA
from the unfolded matrix and the extracted featunasrix) of both analytical methods.
The classification results obtained by both appneacare shown imable 1 andTable
2 for grape variety and geographical origin clasatfion, respectively.

Concerning the prediction results of Bayesian cosge DF, the model
performed using the outputs of the individual NPFD&- models for grape variety
classification provided the best results. Althoutis model could only match the
amount of samples correctly classified in the p®on set with the NPLS-DA
individual model from EEM data (NER = 81.1), it walle to improve the calibration
stage getting over in more than 15% in both inddE&® and PREC.

Otherwise, for geographical origin classificatitime Bayesian consensus model
developed from the PLS-DA results obtained with P&ARC and Tucker3 scores
provided the best predictions. These results agreihl the classification results
obtained by the individual classification modelsatissed in section 3.2.2 and 3.2.3.
Therefore, in general terms, discrimination perfances based on Bayesian high-level
fusion approaches resulted to be better than tbbened on single analytical sources,
as occurs in another work founded in the literaf@fg. Hence, this improvement was

better observable in the case of geographical rorassification, for which the
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Bayesian consensus fusion obtained the best pidiotsults achieving 97.2% and
91.7% for NER and PREC. This improvement could daté that the reliability and
confidence of the final outcome are increased g ititegration of heterogeneous
predictions. Moreover, classification performanteve been previously reported by
means of Bayesian consensus 3- DF fusion achiesligigtly better than those obtained
in the mid- level approach [25].

However, the classification results obtained by khajority Voting approach
were worse than the results obtained by the PLSaid8lels made with the individual
data blocks. The main reason of that could be #ut that, considering only two
analytical techniques, the criteria applied was ‘Stact”, which means that only the
samples that were perfectly classified in both méples could be classified into a
specific class. Hence, in the present study, tlveeee many cases in which one
technique classified a sample to one class anattier technique classified the same
sample as another class, making that the finalsaetiwas “not-classified”. For this
reason, Majority Voting as 3-DF strategy shouldpbeferably applied when three or
more techniques are studied simultaneously.

In comparison to the other two DF strategies @i-©F and 2-DF), 3-DF has not
the problem of needing to adjust an adequate sralue to each model is fitted
independently with its best scaling. However, adisntage of 3-DF is that the order
of combining the obtained predictions affects ihalfdecisions.

As a final remark, it is important to highlight tle¥ident improvement of the
classification results as level of data fusion @&ses. In fact, the improvement of the
DF prediction models can be linked in the levelatbe. Despite the combination of
multiple analytical sources increases the complexit data treatment, this is

compensated by significantly better classificatioity.
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4. Conclusions

The proposed multi-level fusion strategies prowadeseful and reliable way of
improving the analytical quality of the results second-order data for classification
outcomes. The benefit of fusion is highlighted rediction stage when samples cannot
be classified from individual sources. In particuthese advantages were more evident
when geographical origin classification was asskssspecially taking in account the
complexity of the system presenting unbalancedselasin addition, multi-level data
fusion from multi-via modeling accomplished the togassification models. Thus, it is
noteworthy that the benefits of data fusion ateddht levels are added to the second-
order data advantage, furnishing a synergisticetia the classification results.

Although both techniques provided good classifaatresults separately, data
fusion approaches improved the classification tesamd provided a larger description
of the sample. Hence, the statistic mathemati¢agnation of the information from the
different analytical sources can be helpful becauseads to the minimization of the
overall uncertainty due to a compensation effecoragnthe single experimental
uncertainties. This finally translates into increhseliability of the outcome, and,
therefore, it can be concluded that high-leveltsgigs are suitable approaches to obtain
greater confidence on the combined (fused) analypiealictions. Notwithstanding the
practical application seems to be more cumbersos@much as first, the independent
models for each platform must be fit. However, maulgputs combination is easy to

implement and analyse, and it does not requiregnigffort to be performed.
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Figure captions

Figure 1. Schematic representation of data analysis workflow

Figure 2. Typical landscapes of (A) EEM and (B) CE-DAD d#&ba a wine sample
showing within each geographical origin —Mendoza),(Man Juan (SJ), Rio Negro
(RN) and Salta (S)- each grape variety -Chardoi@y) (Sauvignon blanc (SB) and

Torrontés (T)-

Figure 3. Scores plots for the first three LVs exhibiting thest classification results
obtained from (A and C) 1-DF and (B and D) 2-DF elsdshowing the differentiation
among wines from (A and B) grape variety and (C a&»d geographical origin
classifications. 95% confidence ellipses for edelsare plotted in 3D in each scores

plot.
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Tables

Table 1. Classification results according to grape var{€gardonnay -CH-, Sauvignon

blanc —SB-, and Torrontés -TO-) obtained in thebcalion and prediction stage from

individual data blocks (EEM and CE-DAD) and fusedad(EEM-CE-DAD) evaluating

1-DF, 2-DF and 3-DF. For each model it is displayieel number of samples correctly

classified, not error rate (NER) and average pratisPREC) for both calibration

(CAL) and prediction (PRED) sets of each evaluatediel.

Correct classified samples

GRAPE VARIETY DATA CAL/PRED NER NER PREC PREC
CLASSIFICATION| STRUCTURE CH B To (CAL) | (PRED) | (CAL) | (PRED)

24118 | 24115 | 2412
Unfolded data 2419 | 189 | 18i6 83.3 53.3 86.1 64.3
EEM Threeway data | 18/15 | 15/9 | 18112 70.8 81.1 71.0 82.1

3-factors
PARARAG sores | 15/15 | 1519 12/6 58.3 64.4 61.9 70.8
Unfolded data | 24/15 | 24/3 24/9 100.0 59.4 100.0 66.7
CE-DAD Threeway data | 18/15 | 21/6 24/9 87.5 66.1 87.8 70.8
Tucker3scores | 24/12 | 24/6 24/9 100.0 60.6 100.0 66.7
Low-
Level | oet1 | 2ans | 24 24/9 100.0 66.1 100.0 74.1
vip. | oet1 | 2412 | 180 24/6 91.7 58.9 93.3 69.0
LEVEL | opt.2 | 24115 | 243 24/9 100.0 59.4 100.0 66.7
24118 | 21/0 2419 95.8 58.3 100.0 58.3
EEM-CE-DAD Bayesan | 4o/15 [ 2179 | 24112 87.5 81.1 87.8 82.1
consensus
b 24115 | 2419 24/9 100.0 72.8 100.0 77.1
LEVEL 24/6 | 1800 18/3 83.3 19.4 86.1 40.7
Majority | qa/15 [ 126 18/9 66.7 60.6 67.2 65.7
voting

159 | 1506 12/6 58.3 50.0 61.9 52.2
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Table 2. Classification results according to geographiaadjio (Mendoza —M-, Rio
Negro —RN- San Juan —-SJ-, and Salta —S-) obtameklei calibration and prediction
stage from individual data blocks (EEM and CE-DAdDd fused data (EEM-CE-DAD)
evaluating 1-DF, 2-DF and 3-DF. For each moded displayed the number of samples
correctly classified, not error rate (NER) and ager precision (PREC) for both

calibration (CAL) and prediction (PRED) sets of eavaluated model.

CEOGRADH AL DATA Correat qasafied samples | neg NER | PREC | PREC
CLASSIFICATION| STRUCTURE T TanT o T 5 (CAL | (PRED) | (CAL) | (PRED)

45127 | o6 | 1216 | 916
Unfolded data | 36/18 | 6/3| 12/3| or3 95.0 54.2 85.0 60.4
EEM Threeway data | 24/15| 33| 93| 93 69.6 51.4 62.0 47.9

3-factors
PARALAG sores | 36/15 | 66| 36| 36 59.6 88.9 63.3 70.8
Unfolded data | 45/24 | e/0| 123| 90|  100.0 34.7 100.0 27.9
CE-DAD Threewaydata | 33/21| e0| o3| o6 87.1 56.9 77.5 50.8
Tucker3scores | 33/18| e/3| 96| 6/0 78.8 54.2 66.7 51.7
Low-
Lever | opt1 3921 66| e | o 90.4 94.4 85.7 87.5
vip. | opt.1 | 3318| 66| 6| 66 72.5 91.7 65.5 79.2
LEVEL| opt.2 | 36/21| 6/6| 1206| o9/6|  95.0 955 85.0 875
4521 | e/6| 1258| 93| 1000 81.9 100.0 84.4
EEM-CE-DAD Bayesan | 5915 | 6/6| 12/6] 9l6 96.7 88.9 91.7 75.0
consensus
K 3024 | 66| 126| or6 96.7 97.2 86.7 91.7
LEVEL 36/18 | 60| 12/0] 90 95.0 16.7 85.0 13.6
Majority | 5110 [ 30| 60| 93 61.7 23.6 55.9 25.0
voting

27112 | 63| 36| 300 54.6 48.6 46.3 35.1
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Highlights

1) Second-order data were fused and chemometrically processed.

2) Multiple strategies for multi-levels data fusion were eval uated.

3) Straightforward approaches for classification purposes are presented.
4) Different degrees of improvement were observed on the results.

5) High-level strategy provided the best classification results.
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