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 18 

Abstract 19 

Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional 20 

fluorescence spectroscopy (EEM) second-order data were fused and chemometrically 21 

processed for geographical and grape variety classification of wines. Multi-levels data 22 

fusion strategies on three-way data were evaluated and compared revealing their 23 

advantages/disadvantages in the classification context. Straightforward approaches 24 

based on a series of data preprocessing and feature extraction steps were developed for 25 

each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-26 

way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices 27 

structured as two-way and three-way arrays, respectively. Classification results 28 

achieved on each model were evaluated through global indices such as average 29 

sensitivity non-error rate and average precision. Different degrees of improvement were 30 

observed comparing the fused matrix results with those obtained using a single one, 31 

clear benefits have been demonstrated when level of data fusion increases, achieving 32 

with the high-level strategy the best classification results. 33 

 34 

Keywords: Electrophoresis capillary, Multidimensional Fluorescence Spectroscopy, 35 

Three-way data modeling, Multi-level data fusion, Classification. 36 
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 40 

1. Introduction 41 

In multivariate classification setting, second-order data handling is producing a 42 

significant impact on the development of analytical strategies, especially for 43 

determining characteristic patterns of the analytes of interest in highly complex matrices 44 

[1, 2]. In particular, food characterization tasks are in an innovative progressive change 45 

going from the development of dedicated methods for quantification of specific 46 

compounds to the fingerprint acquisition by rapid, non-destructive and non-selective 47 

instrumental techniques [3–5].  48 

Hence, second-order data, especially three-way arrays modeling applications, 49 

could supply interesting improvements as regards results attained when extremely 50 

complex systems should be classified. Thereby, it has been demonstrated that data 51 

analysis can be more effective when modeling second- or higher -data with multiway 52 

algorithms compared to unfolding procedures [1, 6]. Otherwise, it has been recently 53 

revealed that the ability in terms of discrimination power can be improved by using 54 

second-order data arranged in a three-way structure instead of first-order data [2].  55 

Over the years, analytical methods and data analysis tools commonly used in 56 

food quality and process control had to be re-evaluated and modified to fit these new 57 

tasks [1]. In this progression of gathering more and better information, the multivariate 58 

statistical analysis of fused data has become a powerful tool for enhancing the reliability 59 

of the results. Being the key point how the information sources can be combined to 60 

provide the joint classification prediction of the samples, three levels of data fusion 61 

(DF) have been reported [7, 8].  62 

 Firstly, low-level DF (1-DF) implies a simple concatenation of the individual 63 

matrices to build a single array that is then used for calculating a single model for final 64 

classification. In the food authentication and quality control field, it has been the most 65 
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used fusion approach to improve the results since is a common, conceptually simple, 66 

first attempt with outputs from different sources providing first-order data [9–11]. 67 

Nevertheless, out of the food analysis scope, three-way arrays have been concatenated 68 

using low-level DF strategy in a recent original report [12]. 69 

Secondly, mid-level DF (2-DF) first extracts some relevant features from each 70 

data source separately and then these outputs are concatenated to build a single array to 71 

be then processed by the desired chemometric technique. This approach has been 72 

probably the one that has purposed more challenges chiefly for second-order data 73 

analysis, where witty strategies for data compression, extraction or reduction have been 74 

explored for improving outcomes. Mainly, the attempt has been addressed to evaluate 75 

the combination of first- and second order data provided by multiple platforms since 76 

data are very different in structure, size or scale [13–18]. Otherwise, the performance of 77 

mid-level applications has commonly been compared to low-level fusion as well as to 78 

single models [19–22]. 79 

Lastly, the high-level DF (3-DF) builds separate models for the different blocks, 80 

and the individual results are then integrated into a single final response. This strategy 81 

has been lesser explored than the two mentioned above. Although several 82 

methodologies for final identity declaration by modelling the individual matrices 83 

independently have been reported [8, 23], only few of them have been inquired in food 84 

classification context. High-level DF has been mainly implemented for the comparison 85 

with the other two DF levels [24, 25].  86 

The aim of this work was to develop multiple strategies to assess the three DF 87 

levels on two second-order arrays, with different data complexity, in order to know the 88 

correlation and analogy between both information sources for twofold classification 89 

purposes. The focus was put on the development of models able to distinguish among 90 



4 

 

white wines of three different grape varieties with geographical indication (GI) from the 91 

four main wine production regions of Argentina [26]. For that, fluorescence excitation–92 

emission matrix spectroscopy (EEM), and capillary electrophoresis with diode array 93 

detector (CE-DAD) were applied as non-target analysis in order to acquire a fingerprint 94 

to characterize the wines. 95 

To our best knowledge, it is the first time that the multi-levels of DF strategies 96 

on second-order data are evaluated and compared revealing their 97 

advantages/disadvantages in the classification context. Thus, we developed multiple and 98 

straightforward approaches based on a series of data preprocessing and feature 99 

extraction steps, which constitutes a significant improvement in the DF analysis, and it 100 

offers a wide range of possibilities when second-order data of different nature are 101 

assessed. Finally, the challenge consisted in finding the optimal combination of data 102 

preprocessing, fused data and data modeling that would provide the best results.  103 

 104 

2. Materials and methods 105 

2.1. Samples 106 

Thirty-nine samples of commercial white wine from four wine-producing 107 

origins, all belonging to provinces of Argentina (Mendoza-M, San Juan-SJ, Salta-S, and 108 

Rio Negro-RN) and three different grape varieties (Chardonnay-CH, Sauvignon Blanc-109 

SB and Torrontés-TO), were included in this study: 14 Chardonnay wines (10 from 110 

Mendoza and 4 from San Juan), 13 Sauvignon Blanc wines (10 from Mendoza, 1 from 111 

San Juan, and 2 from Río Negro) and 12 wines from grapes of the variety Torrontés  (4 112 

from Mendoza, 1 from San Juan, 5 from Salta, and 2 from Río Negro). Wine samples 113 

were selected from the 2011 to 2013 vintages and bought from a local market. The 114 
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alcoholic content ranged from 12.2 to 13.8% v/v of ethanol. These samples were 115 

analyzed in triplicate by the two techniques described below.  116 

 117 

2.2. Data acquisition 118 

2.2.1. EEM data 119 

All spectrofluorimetric measures were acquired according to the method 120 

reported by Azcarate et al. [26] using a Cary Eclipse Fluorescence Spectrophotometer 121 

(Agilent Technologies, Waldbronn, Germany) with a 1×1 cm quartz fluorescence cell, 122 

xenon flash lamp. CaryEcplise software package was used to control the instrument, 123 

data acquisition and data analysis. Fluorescence excitation spectra were recorded by 124 

varying the wavelengths between 245 and 341 nm (increment 5 nm), and by recording 125 

the emission spectra from 300 to 500 nm (spaced by 0.5 nm interval). Fluorescence 126 

measurements were done in triplicate for each sample.  127 

 128 

2.2.2. CE-DAD data 129 

The electrophoretic run conditions are treated in detail in our previous work [27] 130 

and here only main analysis steps will be recalled. All electropherograms were acquired 131 

on a CE system (Agilent Technologies, Waldbronn, Germany) equipped with a DAD 132 

and an uncoated fused silica capillary of 40 cm total length (31.5 cm effective length) 133 

and 75 µm inner diameter (MicroSolv Technology Corporation, Eatontown, NJ, USA). 134 

Separation was performed by applying a voltage of 24 kV and with a typical current of 135 

approximately 80 µA. The hydrodynamic injection was performed in the positive 136 

electrode of the capillary by applying a pressure of 40 mbar for 8 s. The cartridge was 137 

maintained at 25.0°C. The electropherograms were recorded during 10 min at 0.3 s 138 
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steps and recording UV spectra between 189 and 401 nm each 2 nm and samples were 139 

analyzed by triplicate. 140 

 141 

2.3. Data analysis 142 

In order to extract and/or merge the information presented in each data set 143 

obtained by the two different instrumental analysis of each sample, different 144 

chemometric algorithms were employed. As both techniques produced out-puts with the 145 

same data structure (i.e. three-way arrays), they were analyzed by similar algorithms in 146 

order to decompose and compress the data.  147 

The data analysis workflow developed in this study is schematized in Fig. 1. In 148 

general terms, it includes: 1) building separate classification models on data obtained 149 

from the individual analytical techniques by applying 3 different approaches; and 2) 150 

building classification multiplatform models by applying different DF strategies: l-DF,  151 

2-DF and 3-DF (assessing different approaches). Then, all the classification models 152 

obtained were assessed and compared.  153 

 154 

Insert here Fig. 1 155 

 156 

2.3.1. Data set and preprocessing 157 

In order to validate the classification models, the dataset corresponding to each 158 

technique, containing 39 samples, was split into a training set of 24 samples (12 CH, 12 159 

SB and 12 TO or 15 M, 4 SJ, 2 RN and 2 S) and a test set of 15 samples (6 CH, 5 SB 160 

and 4 TO or 9 M, 2 SJ, 2 S, 2 RN) by using the Duplex algorithm [28], keeping the 161 

triplicates in the same set (i.e. the training set contained 72 analysis and the test set 45 162 

analysis). The split between training and test sets was done by keeping the ratio of 163 
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samples of each class like in the original set, balancing the representation of each 164 

category and keeping the replicates together. Moreover, after checking by exploratory 165 

analysis that both sets spanned the whole variability domain, the same split was 166 

maintained for all the data sets (the individual and the fused data sets).  167 

To find the optimal classification results for each class studied (variety or 168 

origin), different preprocessing options were considered in each model: both mean 169 

centering and autoscaling were used depending on the nature of the data, as well as none 170 

preprocessing.  171 

 172 

2.3.2. Decomposition and compression methods  173 

As can be observed in Fig. 1, different decomposition and compression methods 174 

(i.e. exploratory and reduction data analysis) were applied. Then, the features obtained 175 

were used for the DF models. Thus, on the one hand, the original EEM and CE-DAD 176 

three-way arrays (117×49×41 and 117×676×107, respectively, considering the samples 177 

by triplicate) were unfolded in a multiset structure via row-wise augmentation and then 178 

these new matrices (a matrix of 117×2009 for EEM unfolded data and of 117×72332 for 179 

CE-DAD unfolded data), as well as the fusion of both, were used for the classification 180 

or compressed by principal component analysis (PCA). 181 

On the other hand, the EEM three-way array was decomposed by parallel factor 182 

analysis (PARAFAC) [29] into trilinear components, related to the main fluorophores 183 

present in the samples, whose scores (first mode loadings) were used as features for the 184 

classification, or to build a fused dataset previous to the classification process. A three-185 

factor model, constrained with non-negativity in all modes, was obtained as the 186 

optimum model according to the CORe CONsistency DIAgnostic test (COR-CONDIA) 187 

[18, 30], the explained variance, the visual inspection of the profiles and residuals [26]. 188 
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Therefore, the three-way array matrix was decomposed by PARAFAC to three new 189 

matrices containing the PARAFAC scores of the three fluorophores, as well as their 190 

excitation and emission loadings.  191 

Finally, CE-DAD array decomposition was carried out by Tucker3 and the 192 

resulted A matrix (Tucker3 output with the concentrations) was directly used, or fused 193 

in a new data set, for the classification purpose. In this study, Tucker3 was selected due 194 

to the high complexity of the CE-DAD data, which require different number of factors 195 

in each mode. The number of factors selected was 18, 18 and 6 for each recorder mode, 196 

obtaining a model with a 95% of total explained variance. Non-negativity was imposed 197 

as unique constraint in all modes in agreement with a previous work [27] and three 198 

matrices A, B and C were obtained containing the concentration, electropherogram and 199 

spectra profiles, respectively, together with a G core (18×18×6) corresponding to the 200 

magnitude of the interaction among factors in different modes. 201 

 202 

2.3.3. Classification methods  203 

In this work, two classification techniques derived from the regression algorithm 204 

partial least squares (PLS) were used: the PLS-DA (DA for discriminant analysis) [31] 205 

for first-order data and its multi-way or multilinear extension (NPLS-DA) [32] for 206 

second-order data (three-way arrays). In order to select the proper number of latent 207 

variables (LVs), i.e. the dimensionality of the model, the minimum classification error 208 

rate in cross-validation (venetian blind) was considered. In discriminant analysis, the 209 

dependent variable, Y, holds the class information (as many y-variables as number of 210 

classes). The raw predictions from a PLS-DA model is a value of nominally zero or one. 211 

A value closer to zero indicates the new sample is not in the modeled class; a value of 212 

one indicates a sample is in the modeled class [31]. 213 
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 214 

2.4. Individual and data fusion strategies 215 

In this study, four modeling strategies were tested in order to obtain the best 216 

classification of the wine samples according to their origin and/or grape variety: 217 

classification models of individual techniques and classification models by low-, mid- 218 

and high-level data fusion approaches (Fig. 1). 219 

Before the data fusion, three classification models were obtained with the 220 

individual data matrices EEM and CE-DAD: a NPLS-DA model obtained by each 221 

original three-way array, and two PLS-DA models, one with the unfolded matrices and 222 

other with the decomposed matrices by PARAFAC or Tucker3, respectively. The 223 

strategy followed is described at the top of Fig. 1.  Each matrix was split into a 224 

training/test set (72/45) before building the classification models. 225 

 226 

2.4.1. Low-level data fusion (1-DF) 227 

In the 1-DF approach, the data matrices are directly concatenated to provide 228 

sample classification [8]. In this study, the unfolded data from CE-DAD and EEM 229 

matrices were concatenated before any model calculation. These single blocks were 230 

joined in a single matrix providing an overall data set with 74341 variables (2009 231 

variables from the unfolded EEM matrix plus 72332 variables from the unfolded CE-232 

DAD matrix). After that, the data fused matrix was split into training and test sets. 233 

Then, two different 1-DF options were tested (Fig.1.).  234 

Despite there are many options to be carried out in this 1-DF approach (i.e. 235 

applying PCA on the concatenated matrix and then LDA on the scores, or the direct 236 

application of other classification algorithms), the selected option was to develop a 237 

PLS-DA model, with 6 LVs, and built directly with the concatenated data matrix, after 238 
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mean centering data preprocessing, by means of the previously described validation 239 

protocol (named as Low- level DF: opt1 in Fig.1) in order to perform the same 240 

classification method in all the strategies of the study. 241 

 242 

2.4.2. Mid-level data fusion (2-DF)  243 

In general, in 2-DF strategies, the analytical data are merged at the features level 244 

[25]. This means that relevant features are independently extracted from each analytical 245 

data matrix, which are then concatenated into a single global matrix that is used as input 246 

to perform a classification model8. In comparison with 1-DF strategies, this method 247 

allows to guarantee a more balanced representation of each source of information, in the 248 

case of each analytical data matrix has a huge difference in the number of variables 249 

[25]. However, in this 2-DF the main issues to control are the features to retain from 250 

each model and the method to extract them as well as the preprocessing method to 251 

adopt. In this study, two different 2-DF strategies were tested, differing from the feature 252 

extraction method used.  253 

In the first 2-DF option (named as Mid-level DF: opt-1 in Fig. 1), the relevant 254 

feature extraction was performed by the development of a PCA model for each data 255 

block. The number of principal components (PCs) chosen for each PCA model was 256 

again selected in order to give more than 90% of cumulative variance in both blocks. 257 

Thus, 7 and 4 PCs were selected for the unfolded both CE-DAD and EEM matrices 258 

(previously pre-processed by mean-centering), respectively. Then, the PCA-scores 259 

associated to the first 7 and 4 PCs for each data block (Str) were considered as extracted 260 

features and were then fused in a new matrix (with 11 variables). This fused matrix was 261 

pre-processed by auto-scaling or none-preprocessed and then modeled by means of 262 



11 

 

PLS-DA, obtaining PLS-DA models with 4 and 5 LVs according to the preprocessing 263 

method applied.  264 

In the second 2-DF option tested in this study (named as Mid-level DF: opt-2 in 265 

Fig. 1), the relevant features of each data block were obtained by the development of a 266 

PARAFAC and a Tucker3 model for EEM and CE-DAD matrices, respectively. These 267 

models are similar to those described above for the individual data modeling (Section 268 

2.3.2). Then, the scores associated to the 3 PARAFAC factors extracted from EEM’s 269 

array were concatenated with the 18 Tucker3 scores extracted from CE-DAD’s array, 270 

forming a fused matrix with 21 variables, which was autoscaled and used for building of 271 

a PLS-DA model of 6 LVs.  272 

In all these strategies, PLS-DA models were applied to the fused score-matrices 273 

starting from the training-test set split procedure.  274 

 275 

2.4.3. High-level data fusion (3-DF)  276 

In 3-DF strategies, the classification of the samples is performed independently 277 

on each analytical data block, and then the predictions provided by the models 278 

calibrated on the single blocks are combined together [8]. In other words, the 279 

information in the different data matrices is joined at the level of the prediction obtained 280 

by each individual model into a unique solution [33].  281 

In this study, a PLS-DA and N-PLS-DA models were first independently fit for 282 

EEM and CE-DAD data matrices (data unfolded and decomposed, and original three-283 

way arrays, respectively) and then the decisions/prediction obtained by each single-284 

block model were fused by two different 3-DF strategies proposed in the literature [34]: 285 

Majority voting and Bayesian consensus with discrete probability distributions.  286 
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On the one hand, Majority voting was carried out by directly merging the 287 

predictions of the single PLS-DA or NPLS-DA models (Fig. 1). This 3-DF method is 288 

based on a democratic (weighted) process that combines the predictions provided by the 289 

individual classification models and classifies a sample into a class according to the 290 

most frequent class assignment. Within this method, there are three criteria deriving by 291 

applying specific limits or thresholds. The ‘loose’ criterion is the simplest and most 292 

intuitive, in which a sample is assigned based on the most frequent class assignment, 293 

and a sample is not classified in case of ties (frequency of assignments to a class >50%). 294 

The “intermediate” and “strict” majority voting criteria classify a sample if the 295 

agreement of predictions is higher than or equal to 75% and 100% (full prediction 296 

agreement of all the considered models), respectively [34]. In this study, as only two 297 

analytical methods are fused, only a sample is classified into a class when both 298 

techniques classify it into the same class, so the criterion used was the ‘strict’ (100% of 299 

frequency assignments). 300 

On the other hand, from the confusion matrix, the Bayesian consensus estimates 301 

the probability that a sample belongs to a specific class on the basis of each analytical 302 

data block and then combines these probabilities into a joint probability used for the 303 

final assignation [34]. As Bayesian results are affected by the model sequence followed 304 

in the iteration process, all combinations of analytical sources were considered in our 305 

study (i.e. both blocks were selected as the initial block), and according to the 306 

classification results, the best order was to start with the EEM’s dataset and then with 307 

the CE-DAD’s dataset.  308 

In a first step, the prior probability has been estimated as equal probability. Considering 309 

three classes according to variety and four classes according to origin, the used prior 310 

probabilities were 0.33 and 0.25, respectively. Then, likelihood conditional probabilities 311 
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were estimated from the confusion matrix of each classification model being calculated 312 

by dividing the number of classes correct and incorrect predicted by the total of samples 313 

of each class. Then, once the posterior probabilities have been calculated for the first 314 

analytical block, the fusion approach proceeds iteratively, that is, the posterior 315 

probabilities of the first model were used as new prior probabilities in the second model. 316 

For that, the class predicted by the first-block classification model (with EEM array, 317 

unfolded or decomposed) was initially considered. Then, the posterior probabilities of 318 

the first model were used as new prior probabilities in the second model, where the 319 

class predicted by the second block model (i.e. those obtained from the CE-DAD array, 320 

unfolded or decomposed) was the new evidence. 321 

Finally, this last probability obtained (i.e. the consensus probability derived from 322 

the combination of the information of both data blocks) was the one used to predict the 323 

class according to the maximum posterior probability obtained. Hence, this last 324 

posterior probability was used to accept or reject the predicted class depending on a 325 

predefined probability threshold, that in this study was defined as >50%. The 326 

corresponding equations and further details of this method can be found in the literature 327 

[34, 35]. 328 

 329 

2.4. Evaluating models 330 

The classification models were internally validated by using venetian blind 331 

cross-validation (CV) and the final models’ performance was confirmed by a test set 332 

validation (TV). For that purpose, as it was mentioned above, the dataset was split into a 333 

training and test set, with 61.5% and 38.5% of the samples, respectively, by keeping the 334 

ratio of samples of each class like in the original set and the triplicates together. 335 
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The quality of the models was assessed from the classification and prediction 336 

abilities. The optimal conditions were decided by means of primary measures related to 337 

single classes as sensitivity (Sens.), specificity (Spec.) and precision (Prec.) of the 338 

calibration and prediction, which were calculated on each class separately encoding 339 

different aspects of the classification [34]. This information can be found in the 340 

Supporting Information as Table I and Table II for grape variety and geographical 341 

classification results, respectively. Additionally, to provide an overall evaluation of the 342 

classification quality, the global indices derived from primary class measures such as 343 

average sensitivity (non-error rate –NER-) and average precision (PREC.) were also 344 

calculated according the recommendation of Ballabio et al [34]. 345 

 346 

2.5. Software 347 

Spectra preprocessing, and low-level, mid-level and high-level DF strategies 348 

were carried out by means of hand-made routines written in Microsoft Excel v. 2016 349 

(Microsoft Corporation, USA) and Matlab R2014b (The Mathworks, Natick, MA, 350 

USA). Decomposition and compression methods (PARAFAC, Tucker3, PCA) and PLS-351 

DA classification models were calculated with the PLS_Toolbox 7.9.5 (Eigenvector 352 

Research Inc., Wenatchee, WA) working under MATLAB environment. 353 

 354 

3. Results and discussion 355 

3.1. Data visualization 356 

The fluorescence and CE-DAD landscapes of several samples belonging to the 357 

three grape varieties of the four geographical origins are shown in Fig. 2. On the one 358 

hand, it could be observed that the shape of the EEM spectra varied within the same 359 

origin among varieties, as well as within the same grape variety among origins. Thus, 360 
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the visual assessment of all the fluorescence features of the grape varieties pointed out a 361 

general trend for the spectral maxima to be shifted towards 450 and 350 nm of em/ex. 362 

Furthermore, similar fluorescence trend was observed for the different origins but 363 

maintaining the characteristic shape of its variety.  364 

On the other hand, as can be seen in the CE-DAD landscapes (Fig. 2), they 365 

showed many overlapping peaks corresponding to the complex mixture of chemical 366 

compounds that are present in the white wines. Moreover, as was shown in a previous 367 

report [27] a remarkable peak misalignment and shape deformation in electrophoretic 368 

mode was produced. It could be also observed some differences between geographical 369 

origins and grape varieties. Thus, all the samples showed marked peaks around 3 and 5 370 

min but with strong differences among varieties and origins. From these observations, 371 

all these differences could make possible the classification of the samples according to 372 

origins and varieties.  373 

 374 

Insert here Fig. 2 375 

 376 

3.2. Individual models  377 

3.2.1. General considerations 378 

In the first stage, excitation-emission matrices (EEM) and capillary 379 

electrophoresis (CE-DAD) data were treated separately to build the classification 380 

models. The data matrices were organized and analyzed as two- and three-dimensional 381 

arrays. Thus, three different classification approaches considering the data structures 382 

and modeling were performed: (a) three-way data by PLS-DA using factors obtained 383 

from a resolution method (PARAFAC or Tucker3); (b) three-way data by N-PLS-DA; 384 

and (c) full unfolded data using PLS-DA (schematized in Fig. 1).  385 
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It should be noted that both datasets differ in the complexity of the data 386 

structure. EEMs represents a well-known illustration of bilinear data fulfilling with the 387 

so-called low rank trilinearity condition, which can be decomposed into the excitation 388 

and the emission spectra for a given fluorescent component [2]. In return, the three-389 

dimensional array built from CE-DAD data is non-trilinear. Moreover, it presents 390 

certain drawbacks like remarkable peak misalignment and shape deformation in a data 391 

mode associated with deficiency rank in the other one.  In those cases, in which multi-392 

way data are involved for classification issues, the choice of the appropriate multi-way 393 

approach will be decisive in the validity of the solution found.  394 

For building models, the latent variables were selected considering the lowest 395 

CV classification error rate (data not shown). The best preprocess and region 396 

(variables), together with the optimal configuration of each model, such as the number 397 

of latent variables retained, were selected as those leading to the lowest inaccuracy and 398 

highest sensitivity and specificity obtained with the prediction set.  399 

 400 

3.2.2. Classification models for EEM data 401 

For the approach (a) of Fig. 1, EEM dataset was arranged in a three-way data 402 

array (72 training samples, 41 emission wavelengths and 49 excitation wavelengths) 403 

and then, it was analyzed by means of PARAFAC. A three-factor model was chosen 404 

representing the best compromise between explained variance (99.5%) and core 405 

consistency (71%). The obtained model presented results that were in good agreement 406 

with works presented in literature [26] where the loadings for second (emission) and, 407 

third (excitation) modes and PCA scores have already been reported. 408 

On the other hand, for the approach (c) of Fig 1, the EEM data array (72 × 49 × 409 

41) was unfolded into a two-dimensional array (72 × 2009). To check the repeatability 410 



17 

 

of the measurements, detect outliers and recognize patterns in the samples’ distribution, 411 

PCA analyses on PARAFAC factors and unfolded matrix were performed (Fig. IA. and 412 

IB. SM). By analyzing the scores plots, it could not be observed a clear differentiation 413 

of the samples by means of geographical origin on both two- and three-way data 414 

structures, showing in both cases a similar overlapping, mainly between samples of M 415 

and SJ. The same situation was observed when the differentiation among samples was 416 

assessed by means of the three grape varieties, as it was shown in a previous report [26].  417 

A PLS-DA model was performed on the PARAFAC factors and the unfolded 418 

matrix, which were prior preprocessed by autoscaling and mean centering, respectively. 419 

On the other side, a classification model based on NPLS-DA on the three-way data 420 

matrix was built (approach (b) of Fig 1). The obtained classification results of these data 421 

sets are reported in Table 1 and Table 2, when grape variety and geographical origin 422 

were used as classifier as well as in Fig. II and III. SM, respectively. Then separate 423 

models were evaluated comparing the number of latent variables retained and the 424 

indices derived from confusion matrix (Sens., Spec., Prec.; and PREC. and NER). 425 

All the built models for sample classification according to grape variety showed 426 

a similar performance that the obtained in a previous work [26]. However, in the present 427 

study, the best individual model for grape variety classification seemed to be the NPLS-428 

DA model reaching the highest NER and PREC values in prediction stage being 81.1% 429 

and 82.1%, respectively (Table 1).  430 

Furthermore, suitable classification results were attained according to 431 

geographical origin by the three built models. In this case, the model acquired from 432 

PLSDA on the PARAFAC factors was the optimal reaching the highest rate of well-433 

classified samples in the prediction set and displaying the highest NER values (Table 434 

2). 435 
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 436 

Insert here Table 1 437 

Insert here Table 2 438 

 439 

3.2.3. Classification models for CE-DAD data 440 

For the (a) and (b) approaches (Fig 1), CE-DAD dataset was arranged in a cube 441 

structure (72 training samples, 676 times and 107 wavelengths) and it was unfolded in a 442 

matrix of size (72 × 72332) for the strategy (c). In order to avoid drawbacks, three-way 443 

array was modeled by means of Tucker3 that allows using a different number of factors 444 

in each mode. Thus, the number of eigenvalues explaining 95% of the variance of the 445 

data were 18, 18 and 6, for modes 1, 2 and 3, respectively. After that, PCA analysis on 446 

unfolded matrix and Tucker3 factors were performed. The scatter plots of these PCA 447 

analyses are shown in Fig. IC. SM and Fig. ID SM, respectively. It can be seen that the 448 

CE-DAD data showed higher variability than EEM data when the reproducibility was 449 

assessed. 450 

In the same way, PLS-DA was performed on the Tucker3 factors and the 451 

unfolded matrix, applying autoscaling and mean centering as preprocessing, 452 

respectively. On the other side, a classification model based on NPLS-DA on the three-453 

way data array was built (approach b). It is relevant to highlight that both (b) and (c) 454 

approaches were able to deal rank deficiency [14].  455 

The three models for grape variety classification showed similar performances; 456 

however, for prediction set, the NPLS-DA model attained higher indices of 66.1 and 457 

70.8 for NER and PREC, respectively (Table 1). Concerning geographical origin 458 

classification, despite the obtained models with the CE-DAD data achieved promising 459 

results in the calibration stages, they were not able to predict the samples correctly. 460 
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Thus, they showed in all cases NER values lower than 56.9 % (Tabla 1). These 461 

classification results could be also observed by looking the scores and loadings plots of 462 

the PLS-DA models reported in Fig. II and III. SM. 463 

Thus, the application of fusion approaches was expected to increase the overall 464 

classification ability according to variety and origin classification, by integrating these 465 

different behaviors of single analytical sources. 466 

 467 

3.3. Data fusion models 468 

With the goal of improving the classification results according to geographical 469 

origin and grape variety, different strategies were assessed in the three data fusion 470 

levels.  Thus, in the case of having second-order data, several are the strategies that 471 

could be adopted. 472 

 473 

3.3.1. Low-level data fusion 474 

PLS-DA was carried out in the first 1-DF option, directly on the concatenated 475 

unfolded data matrix (Fig. 1). The validation results on the test samples are reported in 476 

Table 1 and Table 2. 477 

The models based on 1-DF achieved similar classification performances than 478 

models from individual blocks when grape variety classification was evaluated. Despite 479 

the two 1-DF options were able to correctly discriminate the same number of samples, 480 

they did not improve the prediction results respect to NPLS-DA model from EEM data, 481 

which obtained the best performance of all individual models. However, the option 1 482 

reached better results in the calibration stage. 483 

On the other side, the results obtained for geographical origin classification 484 

showed relevant improvements of both 1-DF approaches in comparison with the 485 
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individual models, inasmuch as a total of 39 samples pf the training set were correctly 486 

predicted. In this case, this strategy seemed to provide significantly better classification 487 

results reaching 94.4% and 87.5% for NER and PREC, respectively. It is important to 488 

highlight than these results exhibited an increment of more than 5% for NER and a great 489 

improvement in PREC of more than 16%, displaying the sterling model ability to avoid 490 

wrong predictions in the classes.  491 

As a second option, a PCA can be also applied as a necessary step to compress 492 

the information when algorithms as LDA are applied. Thus, it is important to be careful 493 

inasmuch as, as in this case, the concatenated data from 1-DF consists on an extremely 494 

large matrix where the number of irrelevant variables becomes larger than the really 495 

meaningful ones and therefore, the selection of the more relevant variables could result 496 

difficult [2, 40-41].  497 

The scores plot of the best 1-DF models for grape variety and geographical 498 

origin classifications are shown in Fig. 3A and 3C, respectively. By comparing these 499 

models to those for PLS-DA, obtained for the individual data matrices (Fig. II and III 500 

SM), the improvement in the separation of classes by the DF models is clearer.  501 

 502 

Insert here Fig. 3 503 

 504 

Data fusion showing better discrimination ability than individual spectroscopies 505 

have been also reported for fist-order data [36]. Indeed, most of the researches founded 506 

in the literature carried out 1-DF on first-order data [10, 37–39] due to the ease of 507 

performance together with the satisfactory results. Basically, 1-DF involves the 508 

straightforward concatenation by combining variables of the data blocks. Thus, direct 509 

first-order data concatenation is easier than second order-data concatenation since, in 510 
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these last, a prior step, e.g. data unfolding, could be needed when data arrays differ in 511 

structure and complexity. In this case, fewer studies could be found in the literature 512 

[18]. 513 

 514 

3.3.2. Mid-level data fusion 515 

As described above, two different approaches for 2-DF were evaluated. Option 1 516 

was based on a first extraction of the relevant features by the development of a PCA 517 

model for each unfolded data block, and then, the fusion of the PCA-scores matrices 518 

obtained, being this matrix used in the development of the PLS-DA classification 519 

models. Within this option, autoscaling or none-preprocessing were tested. The option 2 520 

was based on the feature extraction by PARAFAC and Tucker3 of the EEM and CE-521 

DAD matrices, respectively, and then the fusion of the scores associated to the 3-522 

PARAFAC factors from EEM array and the 18-Tucker3 scores from CE-DAD array, 523 

being the matrix used for building the PLS-DA classification models.  524 

On the one hand, with regards to the two 2-DF options, by observing both grape 525 

variety (Table 1) and geographical origin (Table 2) classification results for calibration 526 

steps, the option 2 showed better classification results, calibrating correctly almost the 527 

total of samples of the training set. On the other hand, by assessing the prediction rate of 528 

grape variety classification (Table 1), it was again difficult to select the best option due 529 

to once again, the two options were able to discriminate correctly the same amount of 530 

samples for prediction set, but none of them was able to improve the performance 531 

respect to the individual models. 532 

 Otherwise, the geographical origin classification rate of the option 2 was better 533 

than the option 1 achieving 91.7 and 95.5 for NER and 79.2 and 87.5 for PREC, 534 
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respectively (Table 2). These results can be also observable by looking the scores plots 535 

obtained by these PLS-DA models (bottom of Fig. 3B and Fig. 3D). 536 

By making a general comparison of these 2-DF results with the individual 537 

classification models, they also showed relevant improvements in the prediction rates in 538 

comparison to the individual classification results (mainly for geographical origin 539 

classification). However, similar classification results were achieved in comparison with 540 

the 1-DF approaches, for both grape variety and geographical origin classification. 541 

Nevertheless, better results in classification have been reported when 2-DF approach 542 

was compared with the analysis of individual datasets or with 1-DF [14, 18, 22, 25, 42].  543 

Despite both low- and mid- levels improved the individual classification results, 544 

being similar between them, there are different advantages and disadvantages that could 545 

be considered. For both cases, the data block obtained is then processed by the desired 546 

chemometric technique. However, on the one hand, 1-DF only implies that the matrices 547 

describing the individual blocks, after proper preprocessing, are concatenated to build a 548 

single array, being easier even more if the data has a first-order structure. However, a 549 

disadvantage of 1-DF is that typically data sets are obtained in which the number of 550 

observations is much smaller than the number of variables, which prevents to apply 551 

many multivariate data analysis techniques that are not directly applicable. The most 552 

popular way of trying to solve the problem of many variables is to reduce the 553 

dimensionality of each data matrix separately, before attempting to link them by means 554 

of DF and this is how 2-DF works.  555 

Otherwise, there are multiple possibilities that can be applied to carry out a 2-DF 556 

strategy. The most remarkable techniques reported in the bibliography for multiway 557 

data sets have been sequential and orthogonalized partial least squares (SO-PLS) [44] 558 

and coupled matrix and tensor factorization (CMTF) [45]. Other approaches based on 559 
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multiblock analysis less used but also suitable in data fusion context, is the Common 560 

Components and Specific Weights Analysis (CCSWA, also so-called ComDim) [18, 561 

46]. 562 

 563 

3.3.3. High-level data fusion 564 

In this level of DF, two different approaches were also developed and assessed: 565 

Majority Voting and Bayesian consensus methods. These approaches were implemented 566 

by using the classification results of the 3 individual models (NPLS-DA, and PLS-DA 567 

from the unfolded matrix and the extracted features matrix) of both analytical methods. 568 

The classification results obtained by both approaches are shown in Table 1 and Table 569 

2 for grape variety and geographical origin classification, respectively.  570 

Concerning the prediction results of Bayesian consensus DF, the model 571 

performed using the outputs of the individual NPLS-DA models for grape variety 572 

classification provided the best results. Although this model could only match the 573 

amount of samples correctly classified in the prediction set with the NPLS-DA 574 

individual model from EEM data (NER = 81.1), it was able to improve the calibration 575 

stage getting over in more than 15% in both indices NER and PREC. 576 

Otherwise, for geographical origin classification, the Bayesian consensus model 577 

developed from the PLS-DA results obtained with PARAFAC and Tucker3 scores 578 

provided the best predictions. These results agreed with the classification results 579 

obtained by the individual classification models discussed in section 3.2.2 and 3.2.3. 580 

Therefore, in general terms, discrimination performances based on Bayesian high-level 581 

fusion approaches resulted to be better than those obtained on single analytical sources, 582 

as occurs in another work founded in the literature [25]. Hence, this improvement was 583 

better observable in the case of geographical origin classification, for which the 584 
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Bayesian consensus fusion obtained the best prediction results achieving 97.2% and 585 

91.7% for NER and PREC. This improvement could indicate that the reliability and 586 

confidence of the final outcome are increased by the integration of heterogeneous 587 

predictions. Moreover, classification performances have been previously reported by 588 

means of Bayesian consensus 3- DF fusion achieving slightly better than those obtained 589 

in the mid- level approach [25]. 590 

However, the classification results obtained by the Majority Voting approach 591 

were worse than the results obtained by the PLS-DA models made with the individual 592 

data blocks. The main reason of that could be the fact that, considering only two 593 

analytical techniques, the criteria applied was the “strict”, which means that only the 594 

samples that were perfectly classified in both techniques could be classified into a 595 

specific class. Hence, in the present study, there were many cases in which one 596 

technique classified a sample to one class and the other technique classified the same 597 

sample as another class, making that the final decision was “not-classified”.  For this 598 

reason, Majority Voting as 3-DF strategy should be preferably applied when three or 599 

more techniques are studied simultaneously. 600 

In comparison to the other two DF strategies (i.e. 1-DF and 2-DF), 3-DF has not 601 

the problem of needing to adjust an adequate scaling due to each model is fitted 602 

independently with its best scaling. However, a disadvantage of 3-DF is that the order 603 

of combining the obtained predictions affects the final decisions.  604 

As a final remark, it is important to highlight the evident improvement of the 605 

classification results as level of data fusion increases. In fact, the improvement of the 606 

DF prediction models can be linked in the level advance. Despite the combination of 607 

multiple analytical sources increases the complexity of data treatment, this is 608 

compensated by significantly better classification ability. 609 
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 610 

4. Conclusions  611 

The proposed multi-level fusion strategies provide a useful and reliable way of 612 

improving the analytical quality of the results in second-order data for classification 613 

outcomes. The benefit of fusion is highlighted in prediction stage when samples cannot 614 

be classified from individual sources. In particular, these advantages were more evident 615 

when geographical origin classification was assessed, especially taking in account the 616 

complexity of the system presenting unbalanced classes. In addition, multi-level data 617 

fusion from multi-via modeling accomplished the best classification models. Thus, it is 618 

noteworthy that the benefits of data fusion at different levels are added to the second-619 

order data advantage, furnishing a synergistic effect on the classification results. 620 

Although both techniques provided good classification results separately, data 621 

fusion approaches improved the classification results and provided a larger description 622 

of the sample. Hence, the statistic mathematical integration of the information from the 623 

different analytical sources can be helpful because it leads to the minimization of the 624 

overall uncertainty due to a compensation effect among the single experimental 625 

uncertainties. This finally translates into increased reliability of the outcome, and, 626 

therefore, it can be concluded that high-level strategies are suitable approaches to obtain 627 

greater confidence on the combined (fused) analytical predictions. Notwithstanding the 628 

practical application seems to be more cumbersome insomuch as first, the independent 629 

models for each platform must be fit. However, model outputs combination is easy to 630 

implement and analyse, and it does not require higher effort to be performed. 631 
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Figure captions 799 

 800 

Figure 1. Schematic representation of data analysis workflow  801 

Figure 2. Typical landscapes of (A) EEM and (B) CE-DAD data for a wine sample 802 

showing within each geographical origin –Mendoza (M), San Juan (SJ), Río Negro 803 

(RN) and Salta (S)- each grape variety -Chardonay (CH) Sauvignon blanc (SB) and 804 

Torrontés (T)-  805 

Figure 3. Scores plots for the first three LVs exhibiting the best classification results 806 

obtained from (A and C) 1-DF and (B and D) 2-DF models showing the differentiation 807 

among wines from (A and B) grape variety and (C and D) geographical origin 808 

classifications. 95% confidence ellipses for each class are plotted in 3D in each scores 809 

plot.  810 
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Figure 1 824 
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Figure 2 832 
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Tables 856 

Table 1. Classification results according to grape variety (Chardonnay -CH-, Sauvignon 857 

blanc –SB-, and Torrontés -TO-) obtained in the calibration and prediction stage from 858 

individual data blocks (EEM and CE-DAD) and fused data (EEM-CE-DAD) evaluating 859 

1-DF, 2-DF and 3-DF. For each model it is displayed the number of samples correctly 860 

classified, not error rate (NER) and average precision (PREC) for both calibration 861 

(CAL) and prediction (PRED) sets of each evaluated model. 862 

 863 

GRAPE VARIETY 
CLASSIFICATION 

DATA 
STRUCTURE 

 Correct classified samples 
CAL/PRED NER 

(CAL) 
NER 

(PRED) 
PREC 
(CAL) 

PREC 
(PRED) CH 

24/18 
SB  

24/15 
TO 

24/12 

EEM 

Unfolded data 24/9 18/9 18//6 83.3 53.3 86.1 64.3 

Three-way data 18/15 15/9 18/12 70.8 81.1 71.0 82.1 

3-factors 
PARAFAC scores 

15/15 15/9 12/6 58.3 64.4 61.9 70.8 

CE-DAD 

Unfolded data 24/15 24/3 24/9 100.0 59.4 100.0 66.7 

Three-way data 18/15 21/6 24/9 87.5 66.1 87.8 70.8 

Tucker3 scores 24/12 24/6 24/9 100.0 60.6 100.0 66.7 

EEM-CE-DAD 

LOW-
LEVEL Opt. 1 24/15 24/6 24/9 100.0 66.1 100.0 74.1 

MID-
LEVEL 

Opt. 1 24/12 18/9 24/6 91.7 58.9 93.3 69.0 

Opt. 2                 24/15 24/3 24/9 100.0 59.4 100.0 66.7 

HIGH-
LEVEL 

Bayesian 
consensus 

24/18 21/0 24/9 95.8 58.3 100.0 58.3 

18/15 21/9 24/12 87.5 81.1 87.8 82.1 

24/15 24/9 24/9 100.0 72.8 100.0 77.1 

Majority 
voting 

24/6 18/0 18/3 83.3 19.4 86.1 40.7 

18/12 12/6 18/9 66.7 60.6 67.2 65.7 

15/9 15/6 12/6 58.3 50.0 61.9 52.2 
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 871 

Table 2. Classification results according to geographical origin (Mendoza –M-, Río 872 

Negro –RN- San Juan –SJ-, and Salta –S-) obtained in the calibration and prediction 873 

stage from individual data blocks (EEM and CE-DAD) and fused data (EEM-CE-DAD) 874 

evaluating 1-DF, 2-DF and 3-DF. For each model it is displayed the number of samples 875 

correctly classified, not error rate (NER) and average precision (PREC) for both 876 

calibration (CAL) and prediction (PRED) sets of each evaluated model. 877 

 878 

GEOGRAPHICAL 
ORIGIN 

CLASSIFICATION 

DATA 
STRUCTURE 

  
Correct classified samples 

CAL/PRED NER 
(CAL) 

NER 
(PRED) 

PREC 
(CAL) 

PREC 
(PRED) 

M  
45/27 

RN 
6/6 

SJ 
12/6 

S 
9/6 

EEM 

Unfolded data 36/18 6/3 12/3 9/3 95.0 54.2 85.0 60.4 

Three-way data 24/15 3/3 9/3 9/3 69.6 51.4 62.0 47.9 

3-factors 
PARAFAC scores 

36/15 6/6 3/6 3/6 59.6 88.9 63.3 70.8 

CE-DAD 

Unfolded data 45/24 6/0 12/3 9/0 100.0 34.7 100.0 27.9 

Three-way data 33/21 6/0 9/3 9/6 87.1 56.9 77.5 50.8 

Tucker3 scores 33/18 6/3 9/6 6/0 78.8 54.2 66.7 51.7 

EEM-CE-DAD 

LOW-
LEVEL 

Opt. 1 39/21 6/6 9/6 9/6 90.4 94.4 85.7 87.5 

MID-
LEVEL 

Opt. 1 33/18 6/6 6/6 6/6 72.5 91.7 65.5 79.2 

Opt. 2                 36/21 6/6 12/6 9/6 95.0 95.5 85.0 87.5 

HIGH-
LEVEL 

Bayesian 
consensus 

45/21 6/6 12/6 9/3 100.0 81.9 100.0 84.4 

39/15 6/6 12/6 9/6 96.7 88.9 91.7 75.0 

39/24 6/6 12/6 9/6 96.7 97.2 86.7 91.7 

Majority 
voting 

36/18 6/0 12/0 9/0 95.0 16.7 85.0 13.6 

21/12 3/0 6/0 9/3 61.7 23.6 55.9 25.0 

27/12 6/3 3/6 3/0 54.6 48.6 46.3 35.1 

 879 

 880 



Highlights  

1) Second-order data were fused and chemometrically processed. 

2) Multiple strategies for multi-levels data fusion were evaluated. 

3) Straightforward approaches for classification purposes are presented. 

4) Different degrees of improvement were observed on the results. 

5) High-level strategy provided the best classification results. 
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