
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Sensors and Actuators B 155 (2011) 183–190

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journa l homepage: www.e lsev ier .com/ locate /snb

On data analysis in PTR-TOF-MS: From raw spectra to data mining

Luca Cappellina,b, Franco Biasioli a,∗, Pablo M. Granittoc, Erna Schuhfriedb, Christos Soukoulisa,
Fabrizio Costaa, Tilmann D. Märkb, Flavia Gasperia

a IASMA Research and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E. Mach, 1, 38010, S. Michele a/A, Italy
b Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
c CIFASIS, French Argentina International Center for Information and Systems Sciences, UPCAM (France)/UNR-CONICET (Argentina), Bv 27 de Febrero 210 Bis, 2000 Rosario, Argentina

a r t i c l e i n f o

Article history:
Received 20 August 2010
Received in revised form
12 November 2010
Accepted 22 November 2010
Available online 1 December 2010

Keywords:
Proton transfer reaction-mass spectrometry
Time of flight
Data analysis
Data mining
Volatile organic compounds

a b s t r a c t

Recently the coupling of proton transfer reaction ionization with a time-of-flight mass analyser (PTR-
TOF-MS) has been proposed to realise a volatile organic compound (VOC) detector that overcomes the
limitations in terms of time and mass resolution of the previous instrument based on a quadrupole mass
analysers (PTR-Quad-MS). This opens new horizons for research and allows for new applications in fields
where the rapid and sensitive monitoring and quantification of volatile organic compounds (VOCs) is
crucial as, for instance, environmental sciences, food sciences and medicine. In particular, if coupled with
appropriate data mining methods, it can provide a fast MS-nose system with rich analytical information.
The main, perhaps even the only, drawback of this new technique in comparison to its precursor is related
to the increased size and complexity of the data sets obtained. It appears that this is the main limitation to
its full use and widespread application. Here we present and discuss a complete computer-based strategy
for the data analysis of PTR-TOF-MS data from basic mass spectra handling, to the application of up-to
date data mining methods. As a case study we apply the whole procedure to the classification of apple
cultivars and clones, which was based on the distinctive profiles of volatile organic compound emissions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years increasing attention has been paid to the devel-
opment of proton transfer reaction-mass spectrometry (PTR-MS), a
rapidly developing technique which is proving, thanks to its short
response time and low detection limits, quite successful for the
on-line monitoring of volatile organic compounds (VOCs) [1] and
for the rapid fingerprinting of the head space of complex sam-
ples, in particular food samples [2]. In fact, PTR-MS allows for the
real-time detection of VOC concentrations at pptv levels [1]. It
is based on proton transfer from the H3O+ ion, which undergoes
non-dissociative proton transfer reactions with most VOCs, while
it does not react with the constituents of clean air. PTR-MS, in its
quadrupole based version (PTR-Quad-MS) has been applied to a
large variety of fields, ranging from environmental research [3] to
medical applications [4,5] and food analysis [6,7]. The PTR-Quad-
MS instrument is characterized by unit mass resolution and simple
spectral fingerprints consisting in fact of histograms with 100–200
bins. Several studies showed that PTR-Quad-MS fingerprints can
be efficiently coupled with data mining or multivariate methods
to develop useful models for sample classification [2] or for cor-
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relation with other characteristics of the samples, such as sensory
analysis [8] or genetic information [9]. Recently, a new instrument
based on a time of flight mass analyser has been proposed [10] and
successfully commercialized as PTR-TOF-MS [11]. The main advan-
tages of this new instrument are the higher mass range, the faster
measuring time (a complete mass spectrum in a split second) and
the higher mass resolution, which multiply the analytical informa-
tion contained in the spectra. However, such advantages come at
the expense of having to deal with larger and more complex spec-
tra. Hence arises the necessity to develop new procedures to extract
manageable datasets, which can be employed in preliminary data
visualization and analysis or as inputs for data mining procedures.
From our experience with PTR-TOF-MS [12,13] we know that han-
dling the data produced by PTR-TOF-MS is a difficult task which
can hinder the widespread use of this interesting technique and
the exploitation of its full potentiality.

In the present work we describe in detail a full methodology,
summarised in Fig. 1, that can be applied directly to standard
PTR-TOF-MS spectra generated from commercial instruments, i.e.,
from spectra to data visualization/exploration and application of
up-to-date data mining methods. It starts with the internal cali-
bration of PTR-TOF-MS spectral data, in accordance with a recently
proposed method [14], followed by data pre-processing, such as
denoising and baseline removal. For the spectra treated in this
manner we then developed a semi-automatic method for peak
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identification and peak area extraction, which can be used to pro-
duce data matrices for preliminary data exploration or to feed data
mining algorithms which will also be further discussed. Finally,
as a case study, we apply the whole procedure to a practical
problem: the classification of apple cultivars and clones. Here we
do not concentrate solely on preliminary data analysis and PTR-
TOF-MS characterisation that have been, at least partly, addressed
elsewhere [11,15]. Nor do we describe the fundamentals of PTR-
Quad-MS or PTR-TOF-MS which have been thoroughly described
and reviewed elsewhere [1,11,16]. We rather present the develop-
ment and test of a complete procedure for data analysis and data
processing for PTR-TOF-MS that can be applied “as is” to fundamen-
tal and applied issues as a very fast and highly sensitive MS-nose
with rich analytical information. The functions to implement the
proposed procedure in MATLAB (R2007a) will be freely provided
upon request. This paper is organized as follows: in the next section
we describe the proposed procedure for data analysis and data min-
ing of PTR-TOF-MS data; in Section 3 we discuss a case study using
different apple cultivars and clones, closing the work in Section 4
with our conclusions.

2. PTR-TOF-MS data analysis

2.1. Internal calibration

Fundamental issues in mass spectrometry are mass calibration
and mass accuracy. Indeed, through them the observed spectro-
metric peaks can be identified with the help of mass to charge
ratios, isotope ratios and fragmentation patterns. For the small (up
to 300 Da) volatile organic compounds commonly monitored by
PTR-MS analysis, a mass accuracy of 5 ppm is usually sufficient for
the exact determination of the elemental composition. In the case of
PTR-TOF-MS spectra the advantage of attaining a good mass accu-
racy is twofold. Besides compound identification, it also reduces the
peak shifts between different spectra thus allowing for consider-
able signal to noise ratio improvements by averaging many spectra
from the same sample. Mass accuracy of PTR-TOF-MS raw data is
limited to external calibration, which refers to fixing a proper set of
calibration coefficients which are employed during the entire dura-
tion of mass spectral acquisition. However, our experience shows

that, due to a lack of stability in instrumental parameters, exter-
nal calibration in the commercial PTR-TOF-MS instrument does not
guarantee mass accuracy for a sufficiently long time. A common
solution to this problem is the use of an internal calibration based
on the known exact mass of selected ions. In the case of PTR-MS
useful choices are, for instance, NO+, O2

+ and protonated acetone at
nominal masses 30, 32 and 59, which are always present at reason-
able concentrations [17]. Other ions can be used if, for example, GC
analysis can identify the nature of some of the more intense peaks.
External calibration is useful for the automatic identification of such
peaks within the PTR-TOF-MS spectrum. Internal calibration then
proceeds straightforwardly using the formula [14]

At2 + Bt + C = m

z
,

where A, B, C are fitting constants, to fit theoretical mass/charge
(m/z) values versus measured time of flights of the selected cali-
bration peaks. Time of flights are estimated by determined peak
centroids using for example a Gaussian function to fit the peak
shape. When selecting calibration peaks it is important to avoid sat-
urated peaks and low intensity peaks, for which centroids cannot be
properly determined. In practice we consider only peaks of which
the maximum height lies in the 10–1000 cps range. In practise this
ensures that the peak centroid can be properly estimated, in par-
ticular that the peak height is large enough for the peak to be well
shaped and small enough to avoid saturation effects [18]. For fur-
ther details see Ref. [14]. MATLAB data processing capabilities have
been used directly (as the interface to HDF5 files) to implement
specific functions for calibration.

2.2. Noise reduction and baseline removal

PTR-TOF-MS spectra are affected by two main sources of error:
electronic random noise and saturation effects.

Various solutions exist to overcome the former problem. If many
spectra of the same sample are available, random noise is reduced
and the quality of the signal is improved by simply averaging over
the spectra. However, there is an important caveat. The averaging
procedure is appropriate only if the spectra are properly aligned
in terms of mass scale. Here the discrete nature of TOF-MS sig-

Acquisition 

External calibration 

Definition of 
reference peaks 

Internal calibration 

Pre-processing 

•

•

Noise reduction 

Baseline removal 

Peak extraction 

Data visualisation 
Data exploration 

Modelling 

•Classification 

•Calibration 

•Validation 

Feature selection 

Spectra analysis 

Multivariate analysis 
and

data mining 

Analytical 
information

Sum formula 
determination of 
the relevant peaks 

•Exact mass 

•Isotope pattern 

HS concentration 
of the relevant 
molecules 

Fig. 1. Schematics of the data analysis methodology presented.
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Fig. 2. Example of PTR-TOF-MS spectrum (average of 25 spectra belonging to the
same sample). For the sake of clarity, only the low mass region is displayed.

nals plays an important role, becoming a limitation and a possible
source of error. A spectrum can be composed of about 400.000 (as
in the data presented below) or more non-negative numbers, each
referring to an equally separated range of ion time of flights. Inter-
nal calibration assigns a mass over charge value corresponding to
each bin. But bin positions may be in principle different for differ-
ent spectra. Therefore, averaging over spectra first requires setting
a m/z axis common to all spectra and then evaluating the spectral
signals at selected m/z values. Proper alignment would require to
know the signal shape a priori, so that no error will arise from this
step. This not being the case, one choice would be to take the mean
or the distance-weighted mean of two signal values at the closest
m/z. However, if the purpose is not only to obtain a good calibration
but also to properly estimate compound concentrations, computing
a mean is not completely appropriate since it may cause a distortion
in the ion counts. Thus we propose to not modify ion counts, and
to simply shift the spectrum to the closest among the selected m/z
values. We propose this method as a reasonable trade off between
optimum calibration and ion count uncertainties, the error induced
to the calibration being less than 1 ppm.

Further noise reduction may be achieved by using standard
denoising methods [19,20]. In particular, wavelet denoising [21]
has proved useful to smooth the spectrum without causing large
distortions. In the spectral data processing and analysis procedure
proposed in the present work, wavelet denoising is only employed
as an intermediate step to slightly improve the performance of
the automatic peak finder even if this is often not necessary for
PTR-TOF-MS data.

Fig. 2 exemplifies that PTR-TOF-MS spectra are characterized
by a baseline that especially affects those peaks that are close
to saturated peaks. It is safe to say that standard applications
of PTR-TOF-MS do not lead to saturated peaks at masses above
approximately 250 a.m.u. In the case of masses below this value,
there exist no compounds that have m/z values at semi-integer m/z.
It is therefore straightforward to build the baseline for each nom-
inal mass by using the spectral signal at m/z values at about the
following and the preceding semi-integer values, and then apply-
ing a polynomial fit to approximate the baseline at the m/z value
under consideration. The baseline is then subtracted. For high nom-
inal masses the baseline is close to zero and therefore there is no
need to correct against it. Specific MATLAB functions have been
implemented for these data pre-processing procedures.

2.3. Peak detection

The PTR-TOF-MS technique is designed to measure intensities
of ions corresponding to the protonated form of volatile organic
compounds (VOCs) [11,1]. The peak position is determined by the
m/z value of the protonated VOC while the peak area represents
the number of ions that reach the MS detector during the set
acquisition time. Peaks referring to isobaric compounds and more

Fig. 3. Shape of PTR-TOF-MS spectral peaks. If isolated peaks in the same spectrum
are rescaled by the maximum height and by the centroid m/z value, they approxi-
mately converge onto the same curve. Twelve peaks at nominal masses in the range
18–205 a.m.u. are represented in this figure with the following m/z values: 18, 21,
59, 89, 103, 117, 131, 145, 159, 173, 187 and 205. The peaks displaying slightly larger
FWHM are those at lower nominal masses (18, 21 and 59).

generally to compounds having close enough m/z values, are super-
imposed within the spectrum, resulting in highly complex peak
structures. Disentangling such spectral signals and reconstruct-
ing signal peaks corresponding to different VOCs is a difficult, and
sometimes impossible task [15]. However, this step is compulsory
when the purpose is to estimate VOC concentrations in the mea-
sured sample. But, on the other hand, it is not needed if the goal is to
provide a fingerprint of the sample. For each spectrum, we propose
to construct a standardized data matrix based on a partial disentan-
glement of spectral peak structures. We start with the investigation
of PTR-TOF-MS peak shapes and in particular of peak widths, which
is related to the instrument’s mass resolution, defined as

R = m

�m
,

where �m is the peak full width at half maximum (FWHM).
We observed a roughly constant mass resolution over a wide

range of masses. However, our analysis shows that there is some
evidence for deviation: the resolution is generally found to be
slightly increasing with mass, variations usually being less than 20%
in the 1–400 Da mass range. This is in agreement with suggestions
of Coles and Guilhaus [22], who also provided a proper modelling
of such non-linearities. The implementation of this model in our
strategy via the fitting of the proposed function to the peak widths
in the averaged spectrum is straightforward and has been used
recently [15]. In the following we will use the same approach. It
is however useful to notice that, in practical cases, the use of a con-
stant resolution will avoid the preliminary calibration and yield
basically the same results. A further effect influencing peak widths
and thus the estimation of instrumental resolution is the detector
dead time [23]. Commercially available PTR-TOF-MS instruments
employ Poisson statistics to correct against dead time effects. A well
known effect of dead time is to distort the peak shape, therefore
if the applied correction is not completely appropriate, a change
in the estimated resolution may be caused. This is likely to hap-
pen at high ion intensities, typically a few ions/pulse, where the
standard corrections based on Poisson statistics is not appropriate
[18]. In order to overcome this problem we do not consider peaks
displaying an intensity larger than 5 ions/pulse.

The overall peak shape is another issue for which, to our knowl-
edge, there is no definitive solution in the literature. PTR-TOF-MS
peaks are approximately Gaussian, especially in the top part, while
asymmetries often appear as right-side (higher m/z) tails. An impor-
tant observation is that peak shapes are roughly independent on ion
intensities and ion m/z values. Fig. 3 exemplifies this: when isolated
peaks in the same spectrum are rescaled by the maximum height
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Fig. 4. Example of results from the peak detection algorithm described in the
present work. At nominal mass 47 (upper panel) three peaks are detected and a lin-
ear sum of three Gaussian functions is fitted. Vertical lines highlight the estimated
positions of the corresponding peak centroids. Results for nominal mass 48 corre-
sponding to the mono substituted isotopologues (lower panel) are also reported.
Note that in this case peak detection would not be possible using a single spectrum
instead of the average of 25 spectra, the signal intensity always being below 1 cps
which is close to the noise level in single spectra.

and by the centroid m/z value, they approximately overlap, which
indicates that proper modelling of the peak shape is possible. In
the present work, we employ Gaussian functions to fit mass spec-
trometric peaks, since this provides a satisfactory shape matching
while reducing computational effort. Other possible choices are for
instance to employ modified Gaussian functions [15] or functions
consisting of a Gaussian part and an extreme value distribution
[24].

Let us assume that the peak shape and the resolution are known
for a given nominal mass within the spectrum. A strategy to par-
tially disentangle a complex spectrometric peak structure, as for
example the one shown in Fig. 4, could be the following. We choose
the number N of peaks that are likely superimposed in the struc-
ture. Peak widths are given by the resolution. Since peak shapes
are known, only two parameters per peak have to be calculated
(centroid and height), amounting to 2N parameters. These param-
eters are obtained by fitting the peak structure with a linear sum
of peaks of the known shape. On the basis of the goodness of the
fit we can optimize the number of peaks. Given that we are using
a Gaussian function instead of the exact peak curve and that the
resolution can be affected by an error of up to about 20%, the real
application of this method is more complex than in the given ide-
alized example. The achievable disentanglement is in general not
complete, and depends on the signal to noise ratio and on the errors
in the determination of peak shape and width. The error affecting

the resolution is accounted for by allowing the peak width param-
eters to vary within a range corresponding to an error of 20% in
the resolution. The problem concerning the approximation of peak
shapes with Gaussian functions cannot be solved in absence of a
reliable theory on peak shapes and such a refinement could also
prevent, at the present time, the complete automation of the pro-
cedure. We propose therefore to employ the automatic procedure
as a preliminary but rather efficient screening, which then requires
a further refinement or validation, for instance taking advantage
of the graphical facilities provided by MATLAB (see below). Spe-
cific MATLAB functions have been developed for peak finding and
disentanglement.

2.4. Multivariate analysis and data mining

The data matrix (rows = number of samples, columns = number
of identified peaks) constructed via the described procedure is rel-
atively large (usually more than 1000 columns) and characterized
by strong collinearity induced by diverse causes as, for example,
fragmentation. Thus, multivariate analysis and data mining meth-
ods are needed for data exploration and visualization, in order to
set classifications or calibration models and for feature extraction.

A preliminary analysis can be carried out by employing principal
component analysis (PCA) [25] which is often suitable for deriving
and visualizing unsupervised classification models. However, we
expect that supervised classification methods should, in general,
give a better performance. Among them we mention Random Forest
(RF) [26], Penalized Discriminant Analysis (PDA) [27], Discriminant
Partial Least Squares (PLS) [27] and Support Vector Machines [28],
all of which have already been successfully applied to PTR-Quad-
MS data [2,29]. Validation of supervised methods is necessary and,
in the case of relatively small samples sets, leave-one-out (LOO)
validation is often the best choice: at each step a sample is selected
as test set and excluded from the data used to fit the models; these
are then used to classify the independent test samples. Classifica-
tion results are analysed by means of confusion matrices, in which
the true classes correspond to rows and the predicted ones corre-
spond to columns [30]. Results are given as the number of samples
belonging to the class or subclass identified by the row title that is
assigned by the classifier to the class or subclass identified by the
column title, so that the diagonal entries of the confusion matrix
correspond to correct classifications.

An advantage of RF as compared with other classification tools,
is the possibility of an unbiased graphical investigation of the clas-
sification efficiency, in analogy to the well known PCA. As pointed
out by Granitto et al. [31], RF complements PCA analysis since it
employs information about real classes. At the same time, visual-
izations from RF is less biased than that of PDA and PLS, because RF
bases its output plots on unseen samples.

Other than knowing if samples can be discriminated, it is always
important to know which are the peaks that contribute most to the
separation of the different classes. An efficient way to do this is to
use an appropriate feature selection method, as for example Ran-
dom Forest-Recursive Feature Elimination (RF-RFE), introduced by
Granitto et al. [29]. This is a recursive method, which at each step,
selects (and eliminates) the less relevant peaks in the input data
using information extracted from an RF model fitted to the same
data. Technical details of the method can be found in Granitto et al.
[29], where the authors also showed that RF-RFE can identify the
most relevant peaks in a multivariate and collinear data matrix,
even in situations when the number of samples is much lower than
the number of measured peaks. It is worth mentioning that the
peaks obtained by RF-RFE are only the most relevant ones to the
problem and not the ones that lead to the smallest error in the
classification models. Other versions of RFE, for example the orig-
inal SVM-RFE [32] can also be used at this step. Here, multivariate
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analysis and data mining were carried out here using R packages
[33].

3. Case study: apple cultivars

As an example we discuss in detail the entire procedure as
applied to a PTR-TOF-MS dataset obtained by the VOCs profiling
of apple fruits.

We consider three genetically distinct varieties indicated as 1, 2
and 3. For the first one we have two different clones indicated by 1-
A and 1-B. Since clones often generate from point mutagenic events,
they share almost the same genetic constitution and expected dif-
ferences are smaller than the ones among cultivars. This results in
four different classes and for each class we measured 8 single apple
fruits.

3.1. PTR-TOF-MS measurements

Measurements were performed two months after harvest as
described in [14], with a commercial PTR-TOF-MS 8000 appara-
tus supplied by Ionicon Analytik GmbH, Innsbruck (Austria) in its
standard configuration [11]. The sampling time per channel in the
TOF is 0.1 ns, amounting to about 350,000 channels for a mass spec-
trum up to 400 Th, and the proton transfer ionization conditions are
controlled by drift voltage (600 V), drift temperature (110 ◦C) and
drift pressure (2.25 mbar).

For VOCs profiling fruits were taken after two months of cold
storage and kept at room temperature overnight before the actual
measurement. Each single fruit was placed in glass jars (1000 ml,
30 ◦C) supplied with two teflon/silicone septa on opposite sides.
After 30 min a Peek tube (110 ◦C, 0.055′′ diameter) was connected
between the inlet of the PTR-MS and the headspace collecting
glass jars via the septum and 100 standard cubic centimetres of
headspace air per minute were continuously extracted for 25 s via
one of the septa, whereas the other septum was connected to clean
air, allowing to obtain 25 TOF spectra from virtually 0 up to 400 Th
within this time. Every single spectrum is the sum of 28,600 acqui-
sitions lasting for 35 �s each: the complete dataset consists of 25
spectra for each apple sample, amounting to 800 complete PTR-
TOF-MS spectra each consisting of 350,000 points.

3.2. Calibration and pre-processing

Mass calibration was carried out and all spectra were aligned on
a common m/z axis according to the above described procedures.
The identification of spectrometric peaks to be used in the cali-
bration step in the case of apple fruits has already been described
elsewhere [14]. Noise was reduced by averaging over the 25 spectra
belonging to the same sample (element), that is to the same apple
fruit, and the baseline was then removed. In the following we will
always refer to these average baseline corrected spectra. A mean
spectrum of all three classes was also computed and an average
resolution was calculated by fitting Gaussian functions to estimate
FWHM of calibration peaks. Our algorithm for automatic peak find-
ing was then applied to such a mean spectrum. Fig. 4 exemplifies
the results for nominal mass 47 and 48. For instance, for mass 47
we found three peaks at m/z = 47.013, 47.023, 47.049 Th, that, in
agreement with the findings of Herbig et al. [17], are compatible
with CH3O2

+, H3N2O+, C2H7O+, respectively. See below for further
details on the assignment of the sum formula to detected peaks.
Our interactive graphical tool was used for the refinement steps
in order to include peaks that are clearly visible in single element
spectra, while being averaged out in the mean spectrum, and to
eliminate spurious peaks which are proposed by the peak finding
program because of the already mentioned discrepancies between

Fig. 5. First and second component of the PCA analysis of the PTR-TOF-MS spectral
data of all samples.

a Gaussian function and the proper peak curve. This is the only non-
automated and time consuming step that can require up to 3 h of
work for a trained operator. However, this step is needed only once
for a given sample typology (apples in this case).

3.3. Peak extraction

Finally, automatic peak extraction is performed on the spectra
corresponding to each of the elements, but this time the number
of peaks and their positions are fixed from the results obtained
after the refinement step on the mean spectrum: for each nominal
mass a linear sum of Gaussian functions with fixed mean parame-
ters is fitted and the peak heights are estimated as the maximum
height of the corresponding Gaussians. Peak widths are then deter-
mined from an average resolution estimated as in the case of the
mean spectrum (see Section 2.3). This practice gives more reliable
estimates than using the peak widths resulting from the fits. There-
fore at the end of the whole procedure a data matrix of peak areas
is constructed, each row corresponding to different elements (32
apples in this case) and each column corresponding to a peak with
a defined m/z value (951 peaks were detected in this case study).
Such a matrix is the starting point for further data analysis and data
mining.

3.4. Multivariate analysis and data mining

A first analysis of the 32 samples is carried out via PCA, which
clearly highlights the separation into three different classes (see
Fig. 5). However, the two subclasses composing class 1 are super-
posed and cannot be distinguished in this analysis. Hence the need
arises for supervised classification methods.

Fig. 6 shows the first two components of the RF visualizations of
these data sets. The figure clearly confirms that two classes cannot
be easily separated, as suggested by the PCA analysis. However, in
this supervised visualization the two subclasses of class 1 seem to
be more separated than in the PCA analysis, which is in agreement
with the results of the four discriminant methods and indicated
by the confusion matrices in Table 1. The classification errors are
9%, 6%, 12% and 9% for RF, PDA, PLS and SVM, respectively. The
three classes are perfectly separated, while small errors arise in the
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Fig. 6. Random Forest graphical output for the discriminant analysis of the PTR-
TOF-MS spectral data of all samples.

Fig. 7. Mean classification error rate as a function of the number of peaks selected
by the RF-RFE method for the 3 classes (32 samples) problem. Note the log scale on
the number of peaks.

classification of the samples belonging to the two subclasses (in
agreement with the visual analysis in Fig. 6).

The selection of discriminant peaks is done in two steps. First,
an analysis of the mean discrimination error of the RF-RFE method
as a function of the number of masses in the problem is shown in
Fig. 7. This figure is used to select a number of masses for the dis-

Fig. 8. Fraction of times that each peak was selected among the 9 more discriminant
features over the 32 LOO replicated experiments, for the 3 classes problem. The
dotted line shows the 20% lower limit considered in this work.

crimination models that should be as low as possible, but also with
as little loss in discriminant capabilities as possible. In our case
study the selection is easy, as the minimum average error rate is
obtained with only 9 masses. In the second step, we analyse which
are the most important peaks for models constructed by RF-RFE
using 9 masses. The results are reported in Fig. 8. The figure indi-
cates how often (over the 32 LOO replicated RF-RFE experiments)
masses listed in the figure are selected among the 9 most rele-
vant by RF-RFE. In order to simplify the subsequent analysis, we
only considered the 12 masses that appear in more than 20% of
the replicated experiments, which can be considered as the more
relevant for the separation of the four classes. Of course, this limit
can be changed in order to broaden or narrow the number of peaks
considered for further analysis.

We also investigate which peaks are responsible for the dis-
crimination of the two subclasses 1-A and 1-B. For addressing this
issue we applied RF-RFE to the 16 samples composing class 1. We
repeated the two-step procedure described before for this reduced
problem (figures not shown). In this case we considered subsets
with only 5 peaks. The second step highlighted masses 79.0385,
81.0414, 40.0263, 80.0421 and 107.0519 as the most relevant for
the problem. Some of the peaks correspond to isotopes of the same
component, and have, correspondingly, a very high correlation. This
is a limitation of this analysis based on RFE rankings, that in some
cases is not able to keep only one of a pair of correlated but highly
discriminant masses.

An interesting case for further analysis is mass 107.0519. The
previous results showed that it is one of the five more relevant
peaks for the discrimination of the two subclasses. In Fig. 9, we
show the signals at nominal mass 107 for the samples belonging
to subclasses 1-A and 1-B. The discriminant peak m/z = 107.0519
indicated by the RF-RFE method appears superimposed to a more
intense peak, the superimposed signals of subclass 1-A being higher

Table 1
Confusion matrices for the classification by RF, PDA, PLS and SVM of all apple samples. 1-A and 1-B indicate the clones of the same cultivar while 2 and 3 are the other two
cultivars.

RF 1-A 1-B 2 3 PDA 1-A 1-B 2 3 PLS 1-A 1-B 2 3 SVM 1-A 1-B 2 3

1-A 6 2 0 0 1-A 7 1 0 0 1-A 6 2 0 0 1-A 6 2 0 0
1-B 1 7 0 0 1-B 1 7 0 0 1-B 2 6 0 0 1-B 1 7 0 0
2 0 0 8 0 2 0 0 8 0 2 0 0 8 0 2 0 0 8 0
3 0 0 0 8 3 0 0 0 8 3 0 0 0 8 3 0 0 0 8
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Fig. 9. PTR-MS-TOF signals at nominal mass 107 for class 1. Gray and black spec-
tral extracts refer to elements belonging to subclass 1-A and 1-B, respectively. The
arrow indicates the position of the discriminant peak identified by our methodology
coupled with RF-RFE.

Fig. 10. Example of PTR-TOF-MS signal at nominal masses m/z = 79, 80, 81 Th.
The black vertical lines mark the theoretical peak positions for C2H7O3

+

(m/z = 79.0390 Th) and its isotopologues. Note that the isotope at nominal m/z = 81 Th
appears as a (left) shoulder of a more intense peak.

than those of subclass 1-B. Nevertheless, a marked difference
between the spectra of the two subclasses is now evident. Our
variable selection methodology proves able to highlight the role of
relevant features that would be difficult to detect with more naïve
approaches. The presence of superimposed peaks is indeed very
common in PTR-TOF-MS spectra and it is therefore important to
have a tool that allows the extraction of relevant information from
complex peak structures.

As an example of the analytical information provided by PTR-
TOF-MS we can consider three top masses identified by RF-RFE in
Fig. 8: 79.0385, 80.0421 and 81.0414. An illustrative PTR-TOF-MS
signal at those masses for one sample is depicted in Fig. 10. With the
given mass accuracy (better then 0.001 Th for m/z = 79 Th [14]) the
chemical formulas encompassing C0-10H0-100O0-10S0-10N0-10, com-
patible with 79.0385 are C2H7O3

+ (m/z = 79.0390 Th) and H5N3O2
+

(m/z = 79.0376 Th). The isotopic abundances calculated for M+1
(2.41% of the base peak) and M+2 peak (0.70%) then allow to rule
out H5N3O2

+. We could have reached the same conclusion by notic-
ing that mass 80.0421 is compatible with the mass of the isotope
of C2H7O3

+ but not with that of the isotope of H5N3O2
+.

4. Conclusions

PTR-TOF-MS is a powerful method that can be used for the very
rapid classification and characterisation of samples on the basis of
their fingerprint obtained by measuring their head space volatile
organic compound profiles. The main obstacle for its wider use is
probably the size and complexity of the data sets generated and the
lack of clear receipts for data analysis. Here we described a complete
methodology ranging from data pre-processing and peak detection
to data mining and feature selection. The key aspect of our proce-

dure is the analysis as a whole since it straightforwardly allows for
extracting highly relevant features from large amounts of complex
spectral data. Our methodology is not restricted to, but has proved
very successful in many food science and technology studies, rang-
ing from cheese samples [13] to yoghurt fermentation studies [12].
Future developments of the presented method should include the
use of a proper peak shape, not yet available, instead of the nonethe-
less well established Gaussian approximations. The investigation
and correction of the effects caused by the dead time of the detector
are another issue that should be addressed in order to improve and
extend the capabilities of our methodology. Many relevant aspects
affecting the analysis, such as, e.g., the employed primary ion/ions
and the proper compound concentration determination, have not
been discussed here since they are not typical of TOF analysers and
have already been addressed elsewhere [1,34,35].
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