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ABSTRACT We propose a plain files cipher by means of a stream cryp-
tosystem scheme with chaotic addition and a symmetric key. The sequence
of numbers used for encryption is generated by a continuous chaotic dynami-
cal system; in particular, we choose the forced Duffing equation since this kind
of systems is sensitive to the initial conditions. In a chaotic system, the answer
can became periodic during the process of numeric integration. We introduce
an heuristic method to break this periodicity.
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INTRODUCTION
Information transmission through free access media, such as the Internet,

demands confidentiality, which mean that nonauthorized people should not
be able to manipulate data or just read it. Cryptography makes use of mathe-
matical and numerical methods to hide data such as messages or files so that
only the intended information addressees can get them by applying decryp-
tion techniques that only they know. For centuries, cryptographic systems
have been used with different purposes. In the last decades, cryptography has
been applied in computer science with great success, allowing the encryp-
tion of a wide variety of files for safe transmission and storage (Schneier,
1996). Cryptography, considered as a discipline from information security, has
essentially four objectives:

1. Confidentiality or secret.
2. Informative integrity.
3. Emitter authenticity.
4. Nonrejection either by the sender or the receiver.

As far as ciphers’ classification is concerned, and according to the chosen
encryption scheme, it can be classified in stream or block cipher. A block cipher
operates with fixed-length groups of bits, termed blocks, with an unvarying
transformation. This kind of cipher uses a block of plaintext and a key as
inputs, and returns a block of ciphertext of the same size as output. On the
other hand, a stream cipher operates on individual digits, one at a time, and the
transformation varies during the encryption. It creates an arbitrarily long stream
of key material, which is combined bit-by-bit or character-by-character with the
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plaintext. The distinction between the two types is
not always clear: A block cipher, when used in cer-
tain modes of operation, acts effectively as a stream
cipher.

Independently from the selected encryption scheme,
ciphertext should have a pure random distribution
in order to successfully hide data without any evi-
dence of the original frequency patterns, so that
if the file to encrypt is a text, the outgoing mes-
sage will lose the language source. Consequently,
a goal in cipher schemes is to achieve a his-
togram as random as possible, and this is why in
the last decades the interest in the dynamic sys-
tems with chaotic answer has constantly grown.
They are useful in different fields such as physics,
mathematical, and engineering and are character-
ized by presenting an unpredictable evolution, whose
behavior is sensitive to their parameters and initial
conditions.

These latter proprieties are responsible for the
recent years growing tendency to use both contin-
uous and discrete chaotic systems to design cryp-
tosystems capable of generating robust ciphering
against statistical attacks (Stinson, 1995; Menezes,
Oorschot, & Vanstone, 1997; Pecora & Carroll,
1990; Boccaletti, Grebogi, Lai, Mancini, & Maza,
2000; Grebogi, Lai, & Hayes, 1997). A Logistic
map is perhaps the simplest example of a discrete
chaos. It models the population growth and can be
expressed as:

Xn+1 = λXn(1 − Xn), (1)

where X 0 and λ are, respectively, the initial condi-
tion and the system parameter. It has been shown that
Equation (1) has a period doubling route to chaos
in the system parameters range from 1 to 4. A well-
known cryptosystem making use of the logistic map
was developed by Batista (1998). The basic idea was
to encrypt each character of the message as the integer
number of iterations performed in the logistic equa-
tion, in order to transfer the trajectory from an initial
condition towards an interval previously associated to
the character.

In this paper, unlike other publications which based
on discrete dynamics, we propose a stream cipher-
ing scheme with a symmetrical key derived from
the chaotic properties that enclose some continuous
dynamic systems.

DUFFING EQUATION
In the literature (Amigo, Kocarev, & Szczepanski,

2007; Pareek, Patidar, & Suda, 2003; de Oliveira &
Sobottka, 2008; Vaidya & Angadi, 2003; Wong, Ho,
& Yung, 2003), different equations have been used
in chaotic cryptosystems, many of which are based
on discrete one-dimensional chaotic systems. However,
our method uses a two-dimensional dynamic system
described by Duffing’s equation. The equation is:

my′ + cy + kx + βx3 = f0 cos wt,

x′ = y (2)

where ′ = d
dt

This is a nonlinear second order equation that was first
studied by G. Duffing in 1918 and is used in differ-
ent disciplines. On a mechanic system, equation terms
can be interpreted as follow: cy is a viscous dissipa-
tion force, –(kx + βx3) represent a restoring force that
came from de potential V (x) = k/2 x2 + β/4 x4 and
the term f0 cos wt is due to a external force. In our
application, we take k = −1 and m = b = c = w = 1.

This dynamical system exhibits chaotic behavior
for certain values of f0 because of the nonlinear-
ity of its equations and being a not homogeneous
term (Chicone, 1999; Hale & Kocak, 1996; Strogatz,
1994).

It is almost impossible to find exact solutions when
the equations are nonlinear. There are several meth-
ods for the numerical resolution, as this is a subject
in constant development (Garcia, Martin, & Gonzalez,
2002; Press et al., 1986; Parker & Chua, 1989; Hairer,
Norsett & Wanner, 2000; Hindmarsh & Petzold, 1995).
We used the Runga-Kutta method of order 8 to inte-
grate the Duffing equation because of its numerical
stability. An aspect to emphasize is that it is not advis-
able to take very long integration intervals since numer-
ical methods accumulate errors generated in each stage
of integration, and this produces spurious solutions.
In Figure 1 we can observe the dynamics of the sys-
tem for some values of parameter f0; for f0 = 0.6 (solid
line) the variable x has a periodic behavior, whereas
for a slightly higher value of f0 = 0.8 (dashed line) the
dynamics is chaotic.

Another important feature of chaotic systems is
the sensitivity of the solution with respect to small
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FIGURE 1 X Progression Versus Time.
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FIGURE 2 Sensitivity under an initial conditions change.

fluctuations in the initial conditions. In Figure 2 we
compared two different solutions of the Duffing equa-
tion. The solid line represent a solution in which the
initial conditions are x(0) = 1, y(0) = 1; for the other
solution (represented by the dashed line), the initial
conditions have been slightly modified to x(0) = 1 and
y(0) = 1.03. Although a numerical experiment is not a
demonstration, Figure 2 qualitatively showed that they
are sensitive to changes in the initial values and that
there is an initial stage in which both solutions are
similar but finally become separated.

The numerical solution of the differential equa-
tion may be periodic due to numerical truncation
produced by computer finite representation. It is a
nondesirable feature in a good stream algorithm. In the
same way, if the local error produced by the trun-
cation of the method is not properly controlled, it
will miss the desired chaotic behavior. To illustrate, let
us consider that in the Taylor second-order scheme,
when increasing the integration step h above a cer-
tain critical value, solution stops being chaotic to
become into a periodic one as shown in Figure 3.

150 200 250 300
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x

t

FIGURE 3 Truncation effect in finite representation.

Therefore, when designing the resolution method, it is
also important to select carefully the integration step.

PROPOSED METHOD
Though there are interesting papers on cryptography

based on discrete dynamic systems (Amigo, Kocarev &
Szczepanski, 2007; Pareek, Patidar, & Suda, 2003; de
Oliveira & Sobottka, 2008; Vaidya & Angadi, 2003;
Wong, Ho, & Yung, 2003), we present here an alter-
native encryption scheme using a continuous one. The
proposed algorithm uses a sequence of chaotic values
of x and y generated by Duffing equation in order
to cipher the bytes of the original file one by one.
Although it operates with 1-byte blocks, the technique
used in encryption is essentially a stream cipher. As we
have noted, while dynamics is continuous, the numer-
ical solution of this equation is discrete, and we should
select equidistant values in time with separation D to
form a discrete table. In order to obtain a suitable suc-
cession for stream cipher, their elements must have a
low autocorrelation.

Then, let:

– Xi : be i-th value of the discrete succession of x.
– Xi−p: be the element of the discrete succession of x

that is p positions before Xi.

In Figure 4, we analyzed the correlation between Xi

and Xi−p as function of the displacement p for different
values of D. It has been considered the following val-
ues of D: 1 (line of point and ray), 0.25 (solid line) and
0.1 (dotted line). As expected, the graph shows that the
smaller interval D, the greater correlation between suc-
cessive terms. Thus we choose to construct successions
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FIGURE 4 Correlation coefficient versus displacement p.

of x and y taking a distance of D = 1. We introduce
them as Xi and Yi, respectively.

In order to explain the proposed method we intro-
duce the following steps:

1. Set the system parameters, as we will define later.
They include the initial conditions x0 and y0

obtained from the secret key.
2. Using these initial conditions, numerically integrate

the Duffing Equation (2) with Runga-Kutta method
of order 8 to obtain two lists of values

Xi = {x0, x1, x2, . . .}
Yi = {y0, y1, y2, . . .} (3)

where x0 = x(0), x1 = x(h), x2 = x(2h), etc., and h is
the integration step.
3. Our goal is to make use of these values to construct

a suitable keystream. So that this procedure would
be effective to prevent to non-authorized people to
accede to the information without having the com-
plete key, we must achieve that by a small change
in the key (such as a digit modification) the sys-
tem should produce a keystream totally different
from the original. Consider again Figure 2, where
there is an initial interval in which the solution is
not sensitive to those fluctuations. Therefore. in the
numerical integration, we will discard the first val-
ues of x(t) and y(t) while preserving that obtained
for t ≥ 100.

4. As we analyzed at the beginning of the section, to
provide a low autocorrelation take only values of
x and y with a distance of D = 1 time units. Then
we redefine (3) as

Xi = {x′
0, x′

1, x′
2, . . .}

Yi = {y′
0, y′

1, y′
2, . . .} (4)

Therefore x′
0 = x(100), x′

1 = x(100 + D),
x′

2 = x(100 + 2D), and so forth.
Taking D = 1. x′

0 = x(100), x′
1 = x(101),

x′
2 = x(102).

5. We are now able to build the keystream si. It is
constructed with q elements of Xi followed by q ele-
ments of Yi standardized to integers in the domain
[0,255]. Here, q is a system parameter and it must
be set carefully at the beginning of the process.
Then

si =
{

x′
0, x′

1, . . . , x′
q, y′

0, y′
1, . . . , y′

q, . . .
}

(5)

6. Next we are going to cipher the first 2q character of
the plaintext. Let:

– mi: be the ith character (in ASCII code) of a flat
file to cipher (source file).

– si: be the ith value of the keystream arranged
according to the criteria explained above.

– ci: be the ith character (in ASCII code) of the
ciphered file or ciphertext.

Then the ciphering of character mi is obtained by
means of the addition:

ci = (si + mi)Mod 256 (6)

7. To continue the encryption of the next char-
acter, we propose to reintegrate (2) with
new initial conditions. These are obtained as
follows:

x∗
0 = Xend

y∗
0 = (Max[y] − Min[y] × F

255 + Min[y])
(7)

where F = mi ⊕ mi−1 ⊕ mi−2 ⊕ . . . ⊕ mi−q; x∗
0: is

the new initial condition for x; y∗
0: is the new initial

condition for y; X end: is the last observed value of
x for the current solution (it was xq in the first iter-
ation); ⊕ is the binary XOR operator; and Max[y]
and Min[y]: are the maximum and minimum values
of the sequence Yi from the current solution.
Note that by construction 0 ≤ F ≤ 255, and that
it depends on the string. Max[y] and Min[y] is
obtained from the sequence of q previous values
of y.

8. Thus we obtain new lists Xi, Yi and the process is
repeated from step 3) to 8) until the encryption of
the entire plaintext is completed.

323 Chaotic Cipher Using the Duffing Equation

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
o
d
a
,
 
F
e
r
n
a
n
d
o
]
 
A
t
:
 
1
5
:
4
4
 
1
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



There are two remarkable features in this algo-
rithm:

1. Since the Duffing system is two-dimensional and
for every n xi-values there are n yi-values in corre-
spondence, we can encrypt 2n characters, being this
feature an additional advantage compared with one-
dimensional systems because it reduces the length
of integration.

2. We have adopted the approach that, every q ele-
ments Xi and Yi, the Duffing equation is re-
integrated with new initial conditions. It has two
significant outcomes: the first one is that the cipher
is sensitive to changes in the plaintext as we will
analyze in the next section. The second one is the
elimination of cycles in the x and y sequences,
present when a chaotic map becomes discrete on a
digital computer.

One of the weakest cryptosystems facets is the key,
so a way to enhance its security is to increase the num-
ber of bits in the key. When cryptosystems are based on
dynamical systems, the key is usually associated with
the initial conditions.

Since in a computer implementation, the initial con-
ditions are real numbers, its dimensions are 32, 64, or
128 bits, depending on the used arithmetic. We have
employed a two-dimensional system, which requires
a word for each initial value. This increases the key
dimension over one-dimensional systems.

Relative to the key scheme, our system is classified
as symmetric, making use of a private key. In such sys-
tems, both sender and receiver use the same secret key
at each end of communication. The receiver applies the
secret key to a decryption algorithm whose operation
is inverse to that used in encryption. In the proposed
scheme, the feasibility of this operation is guaranteed,
since during decryption, the process retrieves the mi-
characters as resulting from the subtraction (ci − si)Mod
256. Thus it obtains q necessary elements to change the
initial conditions and go on with the process.

We proposed a simple key scheme, composed of
two sequences of up to seven numeric digits each one.
These are converted to a single precision floating-point
representation (as in IEEE 754 of 32 bits each), in
which the sequence is taken as the positive decimal
part and the exponent value is set to 1. It produces
two numbers to be used as initial conditions x0,
y0. For example, the sequences 01234567, 76543210

will result in the initial conditions x0 = 0.1234567,
y0 = 7.654321. Although the Duffing´s chaotic behav-
ior depends essentially on the values of its coefficient,
we took the initial conditions near the stable fixed
point of the homogeneous equation on x(0) = 1,y(0)
= 0 in order to always get chaotic orbits.

In summary, we have developed a symmetric-key
algorithm based on the integration of the Duffing
equation in a chaotic regime. From this one, q values
of x and q values of y are determined in order to
cipher 2q bytes of the source file. Then initial condi-
tions are changed using the information of the source
text and the procedure is repeated again to cipher other
2q bytes, until the source file is completely encrypted.

RESULTS
We have considered three important properties to be

fulfilled in the cryptosystems development:

1. Sensitivity with respect to the original message:
a change in a character must generate a totally
different ciphertext.

2. Sensitivity with respect to the key: a change in
one digit of the key results in a totally different
ciphertext.

3. The ciphertext obtained must have the appearance
of a text generated as random pattern with no
evidence of the frequency of the original message.

In order to evaluate these properties, in the exam-
ples given below we have used a 218828 KB text file
with a Spanish message and we have set the following
parameters: q = 10, f0 = 0.8, y0 = 1, x0 = 0.5 (or as
specified in each case).

To analyze the first goal, in Figure 5 we included
two sequences of encrypted characters. The dashed
line represents the interpolation of encrypted charac-
ters (in code ASCII) of the original message (the last
one represented by the solid line) and the dotted line
corresponds to the encryption of an analogue message
in which the nineteenth character was changed from ‘a’
to ‘h’. The graph clearly shows that both curves are sep-
arated, giving evidence of the generation of different
ciphertexts.

Regarding sensitivity with respect to the key-change,
in Figure 6 we have shown encrypted ASCII characters
with two slightly different keys. Dotted line repre-
sents the resultant ciphertext using a key generating
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FIGURE 5 Sensitivity with respect to the alteration of the text.
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FIGURE 6 Sensitivity with respect to a key change.

the initial conditions x0 = 1, y0 = 0.5. Dashed line
shows the ciphertext for the initial conditions x0 = 1,
y0 = 0.501. In the graph we can check up on the
differences between both ciphertexts showing the cryp-
tosystem’s sensitivity with respect to the key.

Finally, we qualitatively analyzed the ciphertext dis-
tribution in search of randomness. We used pseudoran-
dom numbers from a programming language in order
to obtain a random plain file. In Figure 7 we show
its frequency distribution (dotted line) and the corre-
sponding one for the ciphertexts obtained using the
developed algorithm with a Spanish text (solid line).
In this graph it can be observed that both curves have
an almost uniform distribution in the whole range,
from 0 to 255. Furthermore, the plaintext frequencies
cannot be distinguished in the ciphertext distribution.

Now we introduce a run time survey of the pro-
posed scheme to evaluate efficiency. For this analysis,
our method has been programmed with Mathematica
6.0 and has been executed for three different files size
and different values of the parameter q on an Intel
Pentium IV-3 GHz PC with 512 MBytes RAM mem-
ory. The parameters used were the same mentioned in

F
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FIGURE 7 Ciphertext distribution versus a random one.

the examples above and the initial conditions obtained
from the key were x0 = 1. and y0 = .05. The sam-
ples were built with the encryption times of four runs
for each case, of which we evaluated its mean values.
In addition, in order to achieve a first approach to a
comparative analysis with other major chaotic schemes,
we expose some results obtained by Wong (2002). They
relate to the following algorithm:

1. Batista original method (1998)
2. The Batista modified method that generates only

one random number for each input block (Alvarez
et al., 1999)

3. The Wong fast method with input block size equal
to 8 bits (2002)

These algorithms were implemented using C++ pro-
gramming language running on a personal computer
with Pentium III-800 MHz processor and 256 MB
RAM.

Table 1 summarized the results, and in Figure 8
we sketched a linear interpolation of the run times to
illustrate its upward trends.

TABLE 1 Encryption Time (in seconds) of Three Referenced
Chaotic Cryptosystems and the Proposed Algorithm for
Different Values of q

File 1 File 3 File 3
98304 210944 487000

Method bytes bytes bytes

Batista 12, 50 24, 20 56, 20
Modified method 6, 80 13, 60 31, 70
Wong 8-bits 5, 40 11, 00 24, 70
Proposed method q = 10 39, 37 84, 50 194, 56
Proposed method q = 100 8, 91 19, 17 44, 42
Proposed method q = 1000 5, 89 12, 76 29, 55
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FIGURE 8 Performance comparison of chaotic cryptographic algorithms.

It is important to remark that our algorithm was
executedunder an interpreter and is slower thanacompi-
lation. Therefore, this is only an initial approximation of
theprocessing time, and it isdifficult todoacomparative
efficiency analysis with other algorithms. Nevertheless,
we should not forget one very important feature: In the
proposed cipher, the size of the ciphertext file is the same
as that of its corresponding plaintext file, because the
cryptosystem maps one to one correspondence between
plaintext and ciphertext file. It is important because in
an efficient communication if the ciphertext file is big,
a large amount of time will be required to transmit it
over a public network or Internet, and this may became
a hinder to practical use. However, in the cryptographic
schemedevelopedbyBaptista (1998) and then improved
by Alvarez et al. (1999) and Wong (2002), the cipher-
text files are twice the sizes of their respective plaintext
files as we showed en Table 2. Hence, although the
implementation of these algorithms is fast, they gener-
ate large files that take much longer in its transmission
and greater storage cost.

As mentioned in the method description, the param-
eter q must be carefully set because it determines the
processing time and the sensitivity with respect to a
character change. In fact, the higher the value of q, the
faster execution, but lower sensitivity. Figure 9 show
the same encryption time gave in Table 1 for the pro-
posed scheme, but now we present its evolution with
the q variations. The lines are rational least-squares
fits of the encryption times for each file. Dotted line

TABLE 2 Size of the Ciphertext Files (in Bytes)

File 1 File 2 File 3
98304 210944 487000

Method bytes bytes bytes

Batista 196608 421888 974000
Modified method
Wong 8-bits
Proposed method 98304 210944 487000

0 200 400 600 800 1000
q

50

100

150

200

Se
c

FIGURE 9 Processing time fall for different values of q.

corresponds to the processing of file 1, dashed line cor-
responds to the processing of file 2 and the solid one to
the processing of file 3. This exemplify how important
is to choose a suitable value for q.

The encryption time decreases sharply as we enlarge q
from10to100,butwhenweincreaseto1000,thevariation
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is not so significant. This illustrates that the number of
reintegration cycles decrease for big values of q, and it is
no longer a critical factor on the processing time.

We have not considered different key sizes in this
analysis because, on the underlying numerical method,
a bigger key size does not require additional computing
effort. The values of the initial conditions are lost after
the first iteration of the method, and the complexity of
the next iterations do not depend on them.

CONCLUSION
In this survey we have not emphasized the system

efficiency but instead proposed an alternative chaotic
cryptosystem to obtain a robust cipher against sta-
tistical attacks. We have developed a symmetric-key
cryptosystem based on a continuous dynamic system.
We have make use of the Duffing equation as it is
characterized by: 1) the numerical stability of the solu-
tion obtained by Runge-Kutta’s method, 2) having six
parameters and only for specific values it has a chaotic
behavior, and 3) requiring two initial conditions differ-
ent from one-dimensional discrete chaotic methods.
By using two sets of values and a mechanism that
changes the initial conditions at constant intervals,
we avoided the periodicity caused by computer finite
representation. This cryptosystem qualitatively satisfies
the following three important properties: a) sensitivity
with respect to the original message, b) sensitivity with
respect to the key, and c) lost of evidence from the
original text. Finally, we introduce a brief analyze of
the system efficiency and showed how the parameters
settings affects system performance. In particular, we
studied the system behavior for different values of
the parameter q, and we noticed that the higher the
value of q, the faster execution but lower sensitivity.
Nevertheless, a large increase in this parameter does not
imply that the processing time fall down in proportion.
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