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Noninvasive blood glucose sensors are still under development stage considering that they are far from being suitable for use in
anartificial pancreas. The latter has three main parts: the blood glucose sensor, the insulin pump and the controller. However, for
the biosensor analyzed here, some common failures such as signal shifts and unreal picks were found. They must be taken into
account, for computing the correct insulin dosage for diabetic persons. Hence, a fault detection system based on discrete wavelets
transform (DWT) is applied here. The main idea is, when the fault occurs, to do a proper measurement compensation for sending
the corrected value to the predictive functional controller (PFC) algorithm. The study is done by reproducing the fault on the blood
glucose measurements. They are obtained from a mathematical model of the endocrine system of an adult diabetic patient. This
model was approved by the FDA in 2008. Then, the simulation environment includes faulty blood glucose measurements and a
fault diagnosis and identification (FDI) system based on DWT. The FDI system gives to the PFC algorithm the correct information
to turn it into a fault-tolerant controller (FTC). The main goal is to deliver the correct insulin dosage to the patient.

1. Introduction

Diabetes mellitus is a disease that often causes difficulties
to maintain a normal level of blood glucose concentration
in a patient, mainly because either insufficient insulin is
produced by the beta cells in the pancreas, or the body is
unable to effectively utilize that insulin. The problem is that
high blood glucose levels induce secondary complications,
such as nephropathy and retinopathy, and low levels lead
to hypoglycaemic events, which can lead to insulin shock
as well as death. It is a very frequent chronic disease that
in the last years has reached the proportion of an epidemy.
The prevalence of diabetes for all age groups worldwide was
estimated to be 7.8% by 2030 by the International Diabetes
Federation (IDF Diabetes Atlas). The total number of people
with diabetes is projected to rise from 171 million in 2000 to
439 million by 2030.

Nowadays, to treat this disease, diabetic patients measure
their blood glucose content by pricking their fingers several

times a day and inject doses of insulin accordingly. From a
control point of view, this is an open-loop method that tries
to correct blood glucose no more than 6 times a day, usually
before having a meal. The way that an artificial pancreas is
thought to regulate glucose content in blood in real time by is
just as the healthy human pancreas does. This could be done
by means of a blood glucose sensor accurate enough to give
the correct measurement in real time, the control algorithm
which is responsible for calculating this amount of insulin in
real time and an insulin pump that delivers the insulin that
the body needs. This is recognized as an automatic closed-
loop behavior.

To date, many control algorithms have been tested in
computer-based environments with virtual diabetic patients.
PID (proportional integral derivative) [1] and MPC (model
predictive control) [2, 3] control laws are among the
most well-known methodologies proposed the in literature.
However, model-based control strategies have been used
with more encouraging outcomes in tighter regulation of
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blood glucose levels. The knowledge incorporated by the
models in these types of controllers is what makes them more
appealing. It is worth mentioning that other types of control
algorithms have been tested too, for example, robust H∞ [4]
and fuzzy control [5].

Therefore, a real need exists for a continuous and accu-
rate glucose monitoring system for the overall day. To satisfy
this need, glucose sensors are of prime necessity so that con-
trol algorithms could determine precisely the insulin quan-
tity a determined person needs. This quantity of insulin is
then given subcutaneously to the diabetic patient functioning
as an artificial pancreas. Most common and accurate mon-
itoring systems are invasive or minimally invasive, causing
pain, irritation, or difficulties in their daily use. This is why
a lot of attention is paid to the development of noninvasive
glucose monitoring systems. In Section 2, a brief summary of
the most common technologies available nowadays is given.

In this work, the control algorithm used is a predictive
functional controller. The PFC corresponds to the family of
MPC. The authors have tested it before [6] with promising
results. Now, PFC is evaluated coupled with a fault detec-
tion system using an impedance spectroscopy noninvasive
biosensor. This type of sensor presents some typical faults
(Section 2.2) that are going to be corrected by the FDI system
based on DWT developed here. The performance evaluation
is carried out using a novel simulation environment of the
endocrine system of a type 1 diabetic patient. It is equipped
with a cohort of 30 type 1 diabetic patients that range
from child to adults and was obtained from [7]. It is based
on real individuals data, spanning the observed variability
of key metabolic parameters in the general population of
people with type 1 diabetes mellitus. Several results are pre-
sented here to demonstrate the potentiality of the proposed
methodology.

2. The Biosensor for Blood Glucose
Concentration

There are many methods available for glucose determination,
with the majority based on enzymatic reactions. In order
of accurateness, the most common are directly measuring
glucose in blood (invasive), measuring glucose in the
interstitial fluid (minimally invasive), and estimating glucose
using other corporal fluids like oral mucosa, aqueous humor
of the eye, sweat, urine, saliva, tears, and so forth (nonin-
vasive). The technologies employed could be polarimetry,
electromagnetism, ultrasound, Raman spectroscopy, reverse
iontophoresis, impedance spectroscopy, and so forth.

Why noninvasive measurement is important is evident;
the pain caused by finger pricking or invasive sensors is
the main reason. It is very common that minimally invasive
glucose sensors cause irritation, infections, or even bruising.
These sensors have to be renewed every 5 or 6 days, and, at
worst, may require that the sensor be recalibrated at frequent
intervals with a fingerstick meter. Noninvasive monitoring
avoids all these disadvantages but is not as accurate as the
invasive technologies.

The ideal glucose sensor [8] should be selective for
glucose with a fast, predictable response to changing glucose

Figure 1: Pendra continuous glucose monitor.

concentrations. It should depend on a reversible and repro-
ducible signal to provide results, and sensor fabrication must
be reproducible and cheap on a large scale. It should have a
long operational lifetime under physiological conditions, but
most of all must be acceptable to the patient. Therefore, it
should be noninvasive, should not require user calibration,
and would ideally provide real-time continuous information
regarding glucose. Continuous glucose monitoring provides
data about the direction, magnitude, duration, frequency,
and potential causes of fluctuations in blood glucose levels,
providing patients with real-time data and alarms at times
of hypoglycaemia or rapid glucose change. Continuous
glucose monitoring is also required to implement closed-
loop control.

2.1. Noninvasive Glucose Sensor. The noninvasive blood
glucose biosensor taken into account in this work is one
based on impedance spectroscopy [9]. It comprises a sensor
attached to the skin by means of a double-sided adhesive tape
to ensure defined skin contact and a measurement system.
The measurement system consists of a signal generator
and a microprocessor that controls the operation of the
device. Glucose levels are then calculated by means of an
algorithm based on changes in frequency, impedance, and
temperatures. A visual display can provide information on
glucose levels, rate of change, time, and battery status. Data
can be downloaded to a computer for further data analysis.
The device is powered by means of a rechargeable battery
lasting up to 4 days. The entire system is the size of a
wristwatch and can be seen in Figure 1.

This sensor uses electromagnetic waves in the selected
frequency band that interacts with the skin and underlying
tissue, to be able to monitor its electrical properties. This
is the reason why the sensor can be represented as a serial
resonant contour terminated to the fringing working capac-
itance. The impedance of the sensor at a given resonance
frequency depends on impedance changes within the human
skin and underlying tissue. The equivalent circuit of the
sensor mounted on the skin is presented in Figure 2. The
impedance of this RLC resonant circuit is measured over
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Figure 2: Electrical model of the sensor mounted on the skin.
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Figure 3: Schematic presentation of the impedance measurement
with a resistive divider.

the specified frequency range by means of a vector network
analyzer (VNA) or a resistive divider. It has been shown that
the resonance frequency, the minimum of ‖Z‖, as well as
the Q factor of the resonant circuit changes with different
blood glucose concentrations. In the defined frequency range
(1–200 MHz), the described sensor can, therefore, provide
sensitive measurements of the electrical properties of the skin
and the underlying tissue. The sensitivity of the signal was
between 20 and 60 mg/dL Glucose/Ω.

The impedance, in the case of the noninvasive portable
glucose sensor, is measured in the same frequency interval
by means of a resistive divider (Figure 3). A specifically
designed stable, low harmonics voltage controlled oscillator
(VCO), with uniform amplitude (<0.3 V) over the whole
frequency range, sweeps through the selected frequency band
in steps of 0.1 MHz. The VCO voltage Uref is fed over the
series resistance Rs to the sensor impedance Z, where the
sensor voltage Usens is measured. The impedance can then be
approximated as follows:

ZsensRs
Usens

Uref −Usens
. (1)

This approximation allows the measurement of the phase
between the voltages Uref and Usens to be avoided.

2.2. Typical Faults of This Sensor. This type of noninvasive
biosensor has shown some typical faults that are going to be
taken into account by the fault diagnosis and identification
system applied in this work.

It is known that in daily life situations, the impedance
spectra are not only correlated with glucose changes, but
also affected by a variety of other factors that perturb the

determination of glucose concentration. A more recent work
of Huber et al. [10] considered relevant disturbing factors
such as temperature fluctuations, variations of the skin
moisture and sweat, and changes in perfusion characteristics,
as well as body movements affecting the sensor-skin contact.
Their approach was based on the data obtained from
multiple sensors of different variables: impedance, some
optical properties and hydration levels (sweat/humidity) of
the skin and underlying tissue, the pressure applied to the
sensor as well as its acceleration and position relative to
the center of gravity, and the skin surface temperature and
ambient humidity close to the impedance sensor. Their work
consists of linear regression models and variable selection
techniques to estimate the blood glucose concentration.
However, in a previous work, they reported some failures
related to the body movements that affect the sensor-skin
contact [11]. These failures are the ones that the system
presented here would deal with and are explained in more
detail in the next sections.

As this sensor is a kind of wristwatch, a typical problem
was that as the user moves his arm very often, the sensor
moves itself as well. This results in a rather noisy signal
with level shifts when the movement is enough. This can
be seen in Figure 4 shortly after 9:12 h and before 16:24 h.
Figure 4 shows the sensor signal compared to blood glucose
and interstitial fluid glucose levels during glucose clamps
with glucose administered intravenously.

Another common error is the one shown in Figure 5.
Again, the raw sensor signals are superimposed as raw
data onto the blood glucose profile during an oral glucose
administration. Spikes in the recorded signals shortly before
12:00 h and around 16:00 h are due to short removals of the
sensor from the skin, exposing the open resonant circuit to
air. Due to the permittivity of air = 1 (human body ca. 80),
the impedance minimum is out of the sensor’s measurement
range. Such events induce spikes in the raw sensor signals.

3. Fault Detection and Identification System
Based on Wavelet Decomposition

The fault detection and identification system applied in this
work is based on the wavelet decomposition theory. This
technique was chosen because it is capable of revealing
aspects of data that other signal analysis techniques miss,
aspects like trends, breakdown points, discontinuities in
higher-order derivatives, and self-similarity. Apart from that,
it helps estimating the magnitude of the deviation which is
one of the most useful characteristics that were followed in
this work. These properties are really useful in a closed-loop
environment like the one presented in this work.

Taking into account that, where the systems are under
control, like in this case, several times, the faults are masked
by the control. In fact, for the sensor fault considered here
(measurement offset), it looks like a perturbation effect
in the blood glucose level. It has a transitory of short
duration, usually of high frequency that seems to disappear
due to the regulation capacity of the control structure.
Indeed, as the measurement (erroneous) remains in the
desired operating point, the real process variable changes



4 Journal of Sensors

08:00 09:12 10:24 11:36 12:48 14:00 15:12 16:24 17:36 18:48
0

50

100

150

200

250

300

350

400

97
98
99

100
101
102
103
104
105
106
107
108
109

Time (hh:mm)

Sensor signal

Blood glucose

ISF glucose

Failure Failure

Se
n

so
r 

si
gn

al
 (
Z

)

B
lo

od
gl

u
co

se
(m

g
dL
−1

)

Figure 4: Typical failure no. 1.
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Figure 5: Typical failure no. 2.

towards another undesirable point, related to the failure
magnitude. This effect is not directly observable from the
process measurements, and it is necessary to rely on any
tool that has the ability to quickly detect and estimate this
abnormal event. One of the only tools available, capable of
analyzing the transient response with good temporal and
frequency resolution, is the well-known wavelet transform.
The decomposition at different levels of the process measure-
ments allows us to identify anomalies at different frequency
ranges and to estimate their magnitudes at the right moment.
This is the main reason for proposing the fault detection
using wavelet decomposition.

3.1. Wavelet Analysis. Wavelet analysis [12] represents a
logical step in signal processing tools; it is a windowing
technique of variable dimension. Hence, using greater time
intervals, the information at low frequencies becomes more

precise, and with smaller regions, the focus is posed in the
information at high frequencies. The resulting mapping is of
the scale-time form, being the frequency related to the scale.

In the wavelet transform, the base functions are little
signals called wavelets. Therefore, the signal being analyzed
s(t) is decomposed utilizing scaled versions and temporarily
displaced of a unique function Ψ(t) called mother wavelet.
This set of signals,

ψ(a, b, t) = 1√
a
ψ
(
t − b
a

)
, (2)

forms an orthogonal basis (not redundant) of functions,
where a and b are the scale and displacement parameters,
respectively. Having s(t) as the signal to be analyzed, the
DWT is defined by the internal product,

C(a, b) =
∫
s(t)ψ(a, b, t)dt, (3)
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Figure 6: Wavelets decomposition structure.

where a = 2 j and b = k2 j with j, k ∈ Z, are the discrete
values of scaling and displacement also known as dyadic
values. Index j is known as level and 1/a or 2− j as resolution.
From an intuitive point of view, the wavelet decomposition
consists of calculating a similarity index C(a, b) between the
signal and the wavelet localized in b and scaled by a.

Similar to other signal-processing tools, there exists
an inverse wavelet transform. That is to say, a synthesis
methodology by which the original signal is reconstructed is
utilizing the wavelet coefficients of the decomposition. This
inverse transform could be expressed as

s(t) = Σ j∈ZΣk∈ZC
(
j, k
)
ψ
(
j, k, t

) = Σ j∈ZDj(t), (4)

where Dj(t) = Σk∈ZC( j, k)ψ( j, k, t) is the detail of the
original signal at level j. Taking as a reference a given level,
say J , it could be expressed as

Σ j∈ZDj = D1 +D2 + · · · +DJ +DJ+1 + · · · +DN = DJ + AJ ,
(5)

where Aj = Σ j>JDj is called approximation at level J
and groups all the details at levels higher than J which
represent an approximation of the signal at lower resolution.
The details of higher resolution ( j ≤ J) are grouped
into Dj = Σ j≤JDj and are called the details of the
signal at level J . Therefore, a relation between the levels of
the approximations and details could be obtained in the
following form:

AJ = AJ+1 +DJ+1, (6)

resulting in a pyramidal decomposition structure or decom-
position tree as shown in Figure 6, where A0 = s(t) indicate
the beginning of the structure.

To achieve a wavelet decomposition, an efficient algo-
rithm was developed by [13]. This algorithm is based on
reformulating the wavelet decomposition as a pyramidal
structure composed of convolutions with quadrature mirror
filter (QMF) and variable sample rate depending on the
level j (multiresolution filtering). A decomposition instance
could be observed in Figure 7 for a generic j level. The
approximation discrete signal Aj+1 is convolved with the

filters G̃ and H̃ to be decimated in dyadic form after that.

˜G

˜H

↓ 2

↓ 2 Aj+1

Dj+1

Aj

Figure 7: Mallat decomposition algorithm.
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Figure 8: FTPFC Scheme.

The filters G (high-pass) and H (low-pass) with impulse
responses g(k) and h(k), respectively, are mirror filters, and
they are directly defined by the wavelet ψ(t) and the selected
scaling function φ(t).

3.2. FDI Approach. We adopted the FDI based on wavelets
decomposition because of the successful application pre-
sented in [14]. According to the faulty behavior of the
noninvasive sensor explained in Section 2.2, it is clear
that if an FDI is available and able to detect the quick
changes in the measured signal, it will be useful for having
accurate measurements provided by the noninvasive sensor.
Another important reason is the fact that only if the correct
glycaemia value is available, the insulin dosage will be
properly administrated. For the application considered here,
the Daubechies wavelet family of the second order was used,
and the decomposition scale was selected to be equal to
one. In Section 6 (Figure 11), it will be presented the wavelet
detail decomposition of the noninvasive sensor signal when
failure no. 1 occurs. There it can be easily seen how the
wavelet detail at level 1 can detect the moment when the
sensor gives the wrong measurement. Negative deviations
(peaks) correspond to positive shift in the sensor signal and
vice versa. In addition, the height of the peak is closely
related with the magnitude of the shift measurement. For
more details about the implementation of DWT to a faulty
biosensor, the reader should see [15].

4. Fault-Tolerant Predictive
Functional Controller

If we incorporate the technique presented in Section 3.2 to
a PFC, we have a FTPFC (Figure 8) that can be used to
regulate the blood glucose content of a diabetic patient using
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a noninvasive sensor and the in silico model described in the
appendix.

The PFC technique is the third generation of a family of
model algorithmic control. It has been used many times in
very different industrial applications with excellent results.
Particularly, this type of controller has a great capacity to
handle nonlinear systems, unstable and with large dead
times. Moreover, PFC methodology has incorporated what
is called control zone. This means that the set point changes
(±Δ%—control zone) depending on the difference between
the process output and the desired value, making it more
versatile.

PFC basically consists of four main elements such as a
process dynamic model, a reference trajectory yr(n), a self-
compensation of the predicted error, and a specific structure
for the manipulated variable. The future error between
yr(n) and the predicted output over the coincidence horizon
[H1,H2] is estimated. A self-compensation is done account-
ing for the actual mismatch between real data and model
output. The estimation of the future error at the coincidence
horizon by a specific kind of extrapolation, allows to improve
the model prediction. Within PFC, feedforward and feedback
control actions can be jointly designed, and constraints are
taken into account in a very natural way.

Calling the inputs of the manipulated variable u(n)
(insulin from the pump) and the perturbation d(n) (a meal),
the first-order model response at the coincidence point (n +
H) becomes

ym(n +H) = αHmxmi(n) + αHd xmd(n)

+
H−1∑
j=0

α
H−1− j
m Kmi(1− αm)u

(
j + n

)

+
H−1∑
j=0

α
H−1− j
d Kdi(1− αd)d

(
j + n

)

u(n) = K0ε̂(n) + K1ymi(n) + · · · + K2ymd(n)

+ K3d(n) + K4ym(n),

K0 =
(
1− λH)

Kmi
(
1− αHm

) ,

K1 = −αHm
Kmi

(
1− αHm

) ,

K2 = −αHd
Kmi

(
1− αHm

) ,

K3 =
−Kdi

(
1− αHd

)

Kmi
(
1− αHm

) ,

K4 = 1
Kmi

(
1− αHm

) .

(7)

The reference trajectory, which is the path to the future set
point, is resetted at every instant and is given by

C
(
n + j

)− yr
(
n + j

) = λj
(
C(n)− yp(n)

)
, 0 ≤ j ≤ H ,

λ = e−3Ts/CLTR,
(8)

where C(n) is the set point, yp(n) is the real process
output and λ is a parameter that represents the exponential
convergence of the algorithm, and thus, fixes the closed-
loop behaviour. Ts is the sampling time and was con-
sidered as 5 minutes because of the sensor readings per
hour.

The parameters to be tuned for the PFC are as fol-
lows: number of coincidence points (H), closed-loop time
response (CLTR) of the reference trajectory, the control zone
considered so that CLTR could move linearly between two
extremes values recognized as CLTR L (low) and CLTR H
(high), the transition zone (%) that sets the allowed zone
for the controlled variable expressed as ±Δ(%) with respect
to the set point value, and constraints to the manipulated
variable are also included by fixing maximum (Umax),
minimum (Umin), and variations for it [(dU/dt)max].

Here, just a brief summary of the PFC technique was
presented. For more details about the implementation of
PFC, the reader should see [16].

4.1. Models for the PFC Controller Implementation. The PFC
has three inputs, the glucose measurement, the glucose set
point (100 mg/dL in our case), and the glucose rate of
appearance into the glucose compartment (Ra). The last
input is only present if the meal is announced. To avoid
the nonlinearities in the stomach compartment, the model
for the controller was linearized without this compartment
present. As a consequence of this, the meal disturbance has to
be given as a filtered response into the glucose compartment
and not as a step response into the stomach compartment
[17].

To announce a meal, the mean of all model parameters
for each group of patients was taken, and the glucose rate of
appearance of each group was saved in a matrix. Then, the
controller receives a mean absorption profile. Another way
of solving this problem could be detecting when a patient
receives a meal as shown in [18].

In our case, the relationship between insulin infusion
(manipulated variable) and blood glucose (controlled vari-
able) is called Gmi. Meanwhile Gdi refers to the relationship
between exogenous glucose (glucose rate of appearance Ra
from a meal) and blood glucose. Both models were set to
be first order with time delay, and their identification was
done by means of a step excitation in the insulin delivery
and in the meal ingestion at the nominal condition. The step
used depends on the group studied. For the manipulated
variable, having the information of the total daily insulin
(TDI (U)) consumed by each patient, the mean value of all
patients was taken. For the perturbation, the Ra =∑Rai was
calculated.

4.2. PFC Tuning. The PFC was tested in a previous work
[6] for the data of 30 patients but considering accurate
measurements of blood glucose. The controller was adjusted
for each patient and rigorously evaluated through the control
variability grid analysis (CVGA) methodology. The results
shown in this work are based on just one adult patient
because the specific faults considered here are absolutely
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independent of the own characteristics for each subject. The
main parameters were set as follows:

(1) for the patient, two first-order models with time delay
were proposed (the plant and the disturbance):

Gmi = Kmie−θmis

1 + Tmis
,

Gdi = Kdie−θdis

1 + Tdis
,

(9)

(2) the CLTR L, CLTR H, H1, and H2 were computed as

(i) CLTR L = Tmi/2,

(ii) CLTRH = 10Tmi,

(iii) H1 = θmi,

(iv) H2 = θmi + 3Tmi,

Then, the only parameter manually determined to finally
tune the controller was [(dU/dt)max].

The parameter [(dU/dt)max] represents the aggressive-
ness of the controller. If it is set in a low value, the response
of the controller is very soft. Increasing it, the controller
becomes more and more aggressive. The adopted parameters
for the simulations shown in this work are included in
Table 1.

5. The In Silico Preclinical Trial

The performance of the controller and the FDI was tested
on a 1-day virtual protocol (Figure 10) based on [19]. For an
adult:

(1) admission state: patient blood glucose steady is at
100 mg/dL at 18:00 Day 1;

(2) control loop is closed at 21:00 Day 1;

(3) at 7:30 Day 2, the patient has breakfast lasting about
2 min with a carbohydrate (CHO) content of 50
grams;

(4) at approximately noon (12:00) Day 2, the patient
takes a lunch meal containing 65 grams CHO. Meal
duration is 15 min;

(5) at 18:00 Day 2, the patient takes a dinner meal
containing 80 grams CHO. Meal duration is 15 min.

6. Results and Discussion

The error of the first kind of fault as mentioned in Section 2.2
was reproduced in silico as can be seen in Figure 9. This
diagram shows the blood glucose time evolution when this
type of fault occurs at nearly 8:00 o’clock during breakfast
without FTPFC strategy. In this case, the controller masks
the fault and behaves quite similar as when a perturbation
enters in the system producing a good rejection of it. The
problem is that blood glucose moves towards hyperglycemic
values because of the fact that as the blood glucose content

Table 1: Controller parameters.

Parameter Value Units

CLTR L 180 (min)

CLTR H 1300 (min)

Δ 30 (%)

Umin 0 (pmol/min)

Umax 150 (pmol/min)

(dU/dt)max 20 (pmol/min2)

Kmi −0.6259 ((mg/dL)/(pmol/min))

Tmi 360 (min)

θmi 170 (min)

Kdi 46.2210 ((mg/dL)/(mg/kg/min))

Tdi 120 (min)

θdi 5 (min)

H 1 (dimensionless)

H1 170 (min)

H2 1250 (min)

Ts 5 (min)
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Figure 9: Sensor fault without FTPFC.

seen by the controller is smaller than its real value, the insulin
dose administered is smaller leading to higher blood glucose
values.

Another situation can be seen in Figure 10 when the
FTPFC is working. The corrected signal given to the con-
troller is superimposed to see the difference with the previous
case. The real blood glucose is returned to its original and
safety value without posing a threat to the patient thanks
to the FDI integration. In this case, the risk of suffering
from hyperglycaemic problems is diminished by the use of
the FTPFC. In Figure 11, the wavelet detail of level 1 is
shown. As can be seen, the high-frequency content of the
wavelets when there is a fault changes dramatically, making
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Figure 10: Sensor fault with FTPFC.
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it easily recognizable as an abnormal event by the FDI. This
characteristic allows one to make accurate correction of the
signal to be accounted for by the PFC. So, Figure 12 shows
how the FTPFC delivers the correct insulin dosage. The
FTPFC delivers more insulin than the PFC without FDI and
gives better results.

The other typical failure (no. 2) is tackled with the same
technique leading to excellent results. In Figure 13, it can
be seen how the FDI detects the uncorrect signal coming
from the biosensor at nearly 11:00 in the morning and
compensates its value. Hence, the controller receives the
correct blood glucose content in real time.

7. Conclusions

According to the reported problems on a type of noninvasive
biosensor of blood glucose, the obtained results demonstrate
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that the use of the FDI system, based on DWT, is helpful for
improving the accuracy of these devices. It was challenged
with the most recorded typical faults throwing excellent
results. So, the use of an efficient detection and identifi-
cation provided the correct insulin dosage and prevented
hyperglycaemic problems. In particular, it is crucial for
the patients or if a control algorithm works as a decision
support maker for proper insulin dosage determination.
Even though, the preliminary good results are obtained here
through simulation, the use of the well-recognized model
of a type 1 diabetic patient gives confidence to be taken
into account as a good contribution to this field. Another
important point is the fact that the FDI is helpful for being
integrated into the control algorithm to turn it as fault
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tolerant. The proofs done with the PFC show the potentiality
of the overall methodology.

Appendix

A. The Simulation Environment,
Type 1 Diabetic Patients

The mathematical model used in this work to synthesize and
test the controller is the one developed by [20] because it
is one of the few models that have been validated against
clinical and experimental data and have been approved by
the FDA as a substitute to animal trial in the preclinical
testing of closed-loop control algorithms. This model allows
simulating the dynamic effect of exogenous glucose and
insulin dosage under different specific tests for diabetic
patients, and it is summarized in the following subsections.

A.1. Glucose Intestinal Absorption. It is modeled by a recently
developed three-compartment model:

Q̇sto1(t) = −kgriQsto1(t) + d(t),

Q̇sto2(t) = −kempt(t,Qsto(t))Qsto2(t) + kgriQsto1(t),

Q̇gut(t) = −kabs + kempt(t,Qsto(t))Qsto2(t),

Qsto(t) = Qsto1(t) +Qsto2(t),

Ra(t) = f kabsQgut(t)

BW
,

(A.1)

where Qsto (mg) is the amount of glucose in the stomach
(solid,Qsto1, and liquid phase,Qsto2),Qgut (mg) is the glucose
mass in the intestine, kgri is the rate of grinding, kabs is
the rate constant of intestinal absorption, f is the fraction
of intestinal absorption which actually appears in plasma,
d(t) (mg/min) is the amount of ingested glucose, BW (kg)
is the body weight, Ra (mg/kg/min) is the glucose rate of
appearance in plasma, and kempt is the rate constant of gastric
emptying which is a time-varying nonlinear function of Qsto:

kempt(t,Qsto(t)) = kmax +
kmax − kmin

2
[A(t)], (A.2)

where

A(t)= tanh[α(Qsto(t)− bD(t))]−tanh
[
β(Qsto(t)− dD(t))

]
,

α = 5
2D(t)(1− b)

,

β = 5
2D(t)d

,

D(t) =
∫ t f
ti

(t)dt,

(A.3)

with ti and t f , respectively, start time and end time of the last
meal, b, d, kmax and kmin model parameters.

A.2. Glucose Subsystem. A two-compartment model is used
to describe glucose kinetics:

Ġp(t) = EGP(t) + Ra(t)−Uii(t)− E(t)− k1Gp(t) + k2Gt(t),

Ġt(t) = k1Gp(t)−Uid(t)− k2Gt(t),

G(t) = Gp(t)

VG
,

(A.4)

with Gp(0) = Gpb, Gt(0) = Gtb, G(0) = Gb. Here Gp and
Gt (mg/kg) are glucose masses in plasma and rapidly
equilibrating tissues and in slowly equilibrating tissues,
respectively, G (mg/dL) is plasma glucose concentration,
suffix b denotes basal state, EGP is endogenous glucose
production (mg/kg/min), Ra is glucose rate of appearance
in plasma (mg/kg/min), E is renal excretion (mg/kg/min),
Uii and Uid are insulin-independent and -dependent glucose
utilizations, respectively (mg/kg/min), VG is the distribution
volume of glucose (dL/kg), and k1 and k2 (min−1) are rate
parameters.

A.3. Glucose Renal Excretion. Renal excretion represents the
glucose flow which is eliminated by the kidney, when gly-
caemia exceeds a certain threshold ke2:

E(t) = max
(

0, ke1
(
Gp(t)− ke2

))
. (A.5)

The parameter ke1 (1/min) represents renal glomerular
filtration rate.

A.4. Endogenous Glucose Production. EGP comes from the
liver, where a glucose reserve exists (glycogen). EGP is
inhibited by high levels of glucose and insulin:

EGP(t) = max
(

0, EGPb − kp2

(
Gp(t)−Gpb

)

−kp3(Id(t)− Ib)
)

,

(A.6)

where kp2 and kp3 are model parameters and Id (pmol/L) is
a delayed insulin signal, coming from the following dynamic
system:

İ1(t) = kiI(t)− kiI1(t),

İd(t) = kiI1(t)− kiId(t),
(A.7)

where I (pmol/L) is plasma insulin concentration or insu-
linemia and ki (1/min) is a model parameter.

A.5. Glucose Utilization. Glucose utilization is made up of
two components: the insulin-independent one Uii, which
represents the glucose uptake by the brain and erythrocytes,
and the insulin-dependent component Uid, which depends
nonlinearly on glucose in the tissues:

Uid(t) = Vm(X(t))
Gt(t)

Km +Gt(t)
, (A.8)
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where Vm (1/min) is a linear function of interstitial fluid
insulin X (pmol/L)

Vm(X(t)) = Vm0 +VmxX(t), (A.9)

which depends on insulinemia in the following way:

Ẋ(t) = p2u(I(t)− Ib)− p2uX(t), (A.10)

where Km, Vm0, and Vmx are model parameters, Ib (pmol/L)
is the basal insulin level, and p2U (1/min) is called rate of
insulin action on peripheral glucose.

A.6. Insulin Subsystem. Insulin flow s, coming from the
subcutaneous compartments, enters the bloodstream and is
degraded in the liver and in the periphery:

İp(t) = m1Il(t)− (m2 +m4)Ip(t) + s(t),

İl(t) = m2Ip(t)− (m1 +m3)Il(t),

I(t) = Ip(t)

VI
,

(A.11)

whereVI (L/kg) is the distribution volume of insulin andm1,
m2, m3, and m4 (1/min) are model parameters.

A.7. Subcutaneous Insulin Subsystem. The subcutaneous
insulin subsystem is modeled here with two compartments,
S1 and S2 (pmol/kg), which represent, respectively, polymeric
and monomeric insulin in the subcutaneous tissue:

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t),

Ṡ2(t) = kdS1(t)− ka2S2(t),

s(t) = ka1S1(t) + ka2S2(t),

(A.12)

where u(t) (pmol/kg/min) represents injected insulin flow,
kd is called degradation constant, and ka1 and ka2 are
absorption constants.

A.8. Subcutaneous Glucose Subsystem. The delay of the
sensor was modeled with a system of first order:

ĠM(t) = kscG(t)− kscGM(t). (A.13)
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