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Abstract
For Banach spaces 𝑋 and 𝑌 we study the vector-valued spectrum ∞

(
𝐵𝑋,𝐵𝑌

)
, that

is the set of non null algebra homomorphisms from ∞(
𝐵𝑋

)
to ∞(

𝐵𝑌

)
, which is

naturally projected onto the closed unit ball of ∞(
𝐵𝑌 ,𝑋

∗∗). The aim of this article

is to describe the fibers defined by this projection, searching for analytic balls and

considering Gleason parts.
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1 INTRODUCTION

Let ∞(
𝐵𝑋

)
be the space of bounded holomorphic functions on the open unit ball of a complex Banach space 𝑋. The study of

the spectrum of this uniform algebra 
(
∞(

𝐵𝑋

))
began with the seminal work of Aron, Cole and Gamelin [2] where this set

was fibered over 𝐵𝑋∗∗ , the closed unit ball of the bidual of 𝑋. For 𝑋 infinite dimensional, unlike what happens in the one dimen-

sional case, it was proved in the same article that each fiber is quite large. Following this way the description of the fibers and

the study of conditions that assure the existence of analytic balls inside the fibers was addressed in several articles, as [5, 14, 20].

Inspired by what is known about the spectrum 
(
∞(

𝐵𝑋

))
our aim here is to study, for Banach spaces 𝑋 and 𝑌 , the

vector-valued spectrum ∞
(
𝐵𝑋,𝐵𝑌

)
defined by

∞
(
𝐵𝑋,𝐵𝑌

)
=
{
Φ ∶ ∞(

𝐵𝑋

)
→ ∞(

𝐵𝑌

)
algebra homomorphisms

}
⧵ {0}.

Even if homomorphisms between uniform algebras are a typical object of study (see, for instance, [7, 21, 23, 24, 26, 31]), the

treatment of this set as a whole just started in [17]. Now, we continue that work with a slight change of perspective and focus

but maintaining a structure modeled on the ideas of [2].

As was noticed in [2], in order to obtain information about the spectrum of ∞(
𝐵𝑋

)
it is useful to first study the spectrum of

𝑏(𝑋), the Fréchet algebra of holomorphic functions of bounded type on 𝑋 (that is, holomorphic functions which are bounded

on bounded sets, with the topology of uniform convergence on bounded sets). The same idea leads our work here: with the goal

of describing the vector-valued spectrum ∞
(
𝐵𝑋,𝐵𝑌

)
we begin by focusing on the set 𝑏,∞

(
𝑋,𝐵𝑌

)
given by

𝑏,∞
(
𝑋,𝐵𝑌

)
=
{
Φ ∶ 𝑏(𝑋) → ∞(

𝐵𝑌

)
continuous algebra homomorphisms

}
⧵ {0}.
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As in the scalar-valued case, this set has a rich analytic structure in the form of a Riemann domain over the space

∞(
𝐵𝑌 ,𝑋

∗∗), when 𝑋 is symmetrically regular (see Section 2). The study of the fibers of 𝑏,∞
(
𝑋,𝐵𝑌

)
over ∞(

𝐵𝑌 ,𝑋
∗∗)

is developed in Section 3. Following the Aron–Cole–Gamelin program, a radius function can be defined for the homomorphisms

in 𝑏,∞
(
𝑋,𝐵𝑌

)
and then extended to ∞

(
𝐵𝑋,𝐵𝑌

)
giving a way to relate both spectra. This is presented in Section 4.

Each function 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) with 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ naturally produces a composition homomorphism

𝐶𝑔 ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
given by

𝐶𝑔(𝑓 ) = 𝑓 ◦𝑔, for all 𝑓 ∈ ∞(
𝐵𝑋

)
,

where 𝑓 ∈ ∞(
𝐵𝑋∗∗

)
is the canonical extension of 𝑓 (see reference below). Conversely, as in [17], we can define a projection

𝜉 ∶ ∞
(
𝐵𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌 ,𝑋
∗∗),

Φ →
[
𝑦 → [𝑥∗ → Φ(𝑥∗)(𝑦)]

]
.

The image of this projection is the closed unit ball of∞(
𝐵𝑌 ,𝑋

∗∗) (see explanation in Section 5). One of the goals of this article

is to describe the fibers over this closed ball, that is, for each 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗), the set of homomorphisms Φ ∈ ∞

(
𝐵𝑋,𝐵𝑌

)
such that 𝜉(Φ) = 𝑔.

Finally, Section 6 looks into the notion of Gleason parts for the vector-valued spectrum ∞
(
𝐵𝑋,𝐵𝑌

)
.

We begin by recalling some usual definitions and properties about polynomials and holomorphic functions in Banach spaces.

For general theory on the topic we refer the reader to the books of Dineen [19], Mujica [33] and Chae [11].

Given Banach spaces 𝑋 and 𝑌 we say that a function 𝑃 ∶ 𝑋 → 𝑌 is a continuous 𝑚-homogeneous polynomial if there

exists a unique continuous symmetric 𝑚-linear mapping
∨
𝑃 such that 𝑃 (𝑥) =

∨
𝑃 (𝑥,… , 𝑥). If 𝑈 ⊂ 𝑋 is an open set, a mapping

𝑓 ∶ 𝑈 → 𝑌 is said to be holomorphic if for every 𝑥0 ∈ 𝑈 there exists a sequence
(
𝑃𝑚𝑓

(
𝑥0
))

, with each 𝑃𝑚𝑓
(
𝑥0
)

a continuous

𝑚-homogeneous polynomial, such that the series

𝑓 (𝑥) =
∞∑
𝑚=0

𝑃𝑚𝑓
(
𝑥0
)(
𝑥 − 𝑥0

)
converges uniformly in some neighborhood of 𝑥0 contained in 𝑈 .

We say that an 𝑚-homogeneous polynomial 𝑃 ∶ 𝑋 → ℂ is of finite type if there are linear forms 𝑥∗1,… , 𝑥∗𝑛 in 𝑋∗ such that

𝑃 (𝑥) =
𝑛∑

𝑘=1

(
𝑥∗
𝑘
(𝑥)

)𝑚
.

The set

∞(
𝐵𝑋

)
=
{
𝑓 ∶ 𝐵𝑋 → ℂ ∶ 𝑓 is holomorphic and bounded

}
is a Banach algebra (endowed with the supremum norm). Analogously, the notation ∞(

𝐵𝑌 ,𝑋
∗∗) refers to the Banach space

of bounded holomorphic functions from 𝐵𝑌 to 𝑋∗∗ (endowed with the supremum norm).

A holomorphic function 𝑓 ∶ 𝑋 → ℂ is said to be of bounded type if it maps bounded subsets of 𝑋 into bounded subsets of

ℂ. The set

𝑏(𝑋) = {𝑓 ∶ 𝑋 → ℂ ∶ 𝑓 is a holomorphic function of bounded type}

is a Fréchet algebra if we endow it with the family of (semi)norms
{
sup‖𝑥‖<𝑅 |𝑓 (𝑥)|}

𝑅>0.

By [1, 15], there is a canonical extension
[
𝑓 → 𝑓

]
from ∞(

𝐵𝑋

)
to ∞(

𝐵𝑋∗∗
)

which is an isometry and a homomorphism

of Banach algebras. The extension is also defined from 𝑏(𝑋) to 𝑏(𝑋∗∗) and satisfies, for any 𝑓 ∈ 𝑏(𝑋) and 𝑅 > 0,

‖𝑓‖𝑅𝐵𝑋
= ‖‖𝑓 ‖‖𝑅𝐵𝑋∗∗ .

Recall that a Banach space 𝑋 is said to be symmetrically regular if every continuous linear mapping 𝑇 ∶ 𝑋 → 𝑋∗ which is

symmetric (i. e. 𝑇
(
𝑥1
)(
𝑥2
)
= 𝑇

(
𝑥2
)(
𝑥1
)

for all 𝑥1, 𝑥2 ∈ 𝑋) turns out to be weakly compact.
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The (scalar-valued) spectrum of a Banach or Fréchet algebra  is the set

() = {𝜑 ∶  → ℂ algebra homomorphisms} ⧵ {0}.

As in [2], we will denote the scalar-valued spectrum of 𝑏(𝑋) by 𝑏(𝑋). Analogously, ∞
(
𝐵𝑋

)
will denote


(
∞(

𝐵𝑋

))
.

Duality and compactness. We quote some observations about duality and compactness for future reference.

(1) As mentioned in [22], the algebra ∞(
𝐵𝑌

)
is a weak-star closed subalgebra of 𝓁∞

(
𝐵𝑌

)
and hence it is the dual of the

quotient Banach space 𝓁1
(
𝐵𝑌

)
∕∞(

𝐵𝑌

)⟂
. We chose to denote this predual space by ∞

(
𝐵𝑌

)
, as in [34], for simplicity

but we recall its description as a quotient of 𝓁1
(
𝐵𝑌

)
.

(2) The vector-valued spectrum ∞
(
𝐵𝑋,𝐵𝑌

)
is a subset of the unit sphere of


(
∞(

𝐵𝑋

)
,∞(

𝐵𝑌

))
=
(
∞(

𝐵𝑋

)
⊗̂𝜋

∞(
𝐵𝑌

))∗
.

As the closed unit ball of a dual Banach space is weak-star compact and ∞
(
𝐵𝑋,𝐵𝑌

)
is closed with respect to this

topology, it follows that ∞
(
𝐵𝑋,𝐵𝑌

)
is a weak-star compact set (i.e. a compact set with respect to the topology given by

∞(
𝐵𝑋

)
⊗̂𝜋

∞(
𝐵𝑌

)
). Note also that, by the definition of ∞

(
𝐵𝑌

)
, a bounded net

(
Φ𝛼

)
is weak-star convergent to Φ in(

∞(
𝐵𝑋

)
⊗̂𝜋

∞(
𝐵𝑌

))∗
if and only ifΦ𝛼(𝑓 )(𝑦) → Φ(𝑓 )(𝑦), for all 𝑓 ∈ ∞(

𝐵𝑋

)
and 𝑦 ∈ 𝐵𝑌 . The weak-star compactness

of ∞
(
𝐵𝑋,𝐵𝑌

)
is shown with a different argument in [17, Theorem 11].

(3) For each𝑅 > 0, the norm ‖𝑓‖𝑅 = sup
{|𝑓 (𝑥)| ∶ 𝑥 ∈ 𝑅𝐵𝑋

}
gives to𝑏(𝑋) the structure of a normed space (not complete).

In this way the set

𝑏,∞
(
𝑋,𝐵𝑌

)
𝑅
=
{
Φ ∈ 𝑏,∞

(
𝑋,𝐵𝑌

)
∶ Φ is continuous with respect to the norm ‖ ⋅ ‖𝑅}

is contained in the unit sphere of


((
𝑏(𝑋), ‖ ⋅ ‖𝑅),∞(

𝐵𝑌

))
=
((
𝑏(𝑋), ‖ ⋅ ‖𝑅)⊗𝜋 ∞

(
𝐵𝑌

))∗
.

Arguing as in the previous item, for a given 𝑅 > 0, the set 𝑏,∞
(
𝑋,𝐵𝑌

)
𝑅

is weak-star compact; or equivalently, it is

compact with respect to the topology given by

Φ𝛼 → Φ whenever Φ𝛼(𝑓 )(𝑦) → Φ(𝑓 )(𝑦), for all 𝑓 ∈ 𝑏(𝑋) and 𝑦 ∈ 𝐵𝑌 .

2 RIEMANN DOMAIN OVER ∞(𝑩𝒀 ,𝑿
∗∗)

For a symmetrically regular Banach space𝑋 it is shown in [17] that𝑏,∞
(
𝑋,𝐵𝑌

)
can be endowed with a structure of a Riemann

domain over (𝑋∗, 𝑌 ∗). Now, to achieve a fibered description of ∞
(
𝐵𝑋,𝐵𝑌

)
we find it more suitable to define a Riemann

domain structure over ∞(
𝐵𝑌 ,𝑋

∗∗) as opposed to (𝑋∗, 𝑌 ∗). In this way we are choosing a more complex underlying space

but we are dealing with a simpler projection and the behaviour of the fibers shows more akin to what happens in the scalar-

valued case.

As in [17, Equation (81)], for each 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) there is an associated composition homomorphism

𝐶𝑔 ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
given by

𝐶𝑔(𝑓 )(𝑦) = 𝑓 ◦𝑔(𝑦),

where 𝑓 denotes the canonical extension of 𝑓 . It is easily verified that 𝐶𝑔 is well defined and that gives an inclusion

𝑗 ∶ ∞(
𝐵𝑌 ,𝑋

∗∗) → 𝑏,∞
(
𝑋,𝐵𝑌

)
,

𝑔 → 𝐶𝑔.

Also, as in [17, Equation (83)], there is a projection

𝜉 ∶ 𝑏,∞
(
𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌 ,𝑋
∗∗),

Φ →
[
𝑦 → [𝑥∗ → Φ(𝑥∗)(𝑦)]

]
.
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The fact that this mapping is well-defined can be seen as follows: in order to prove that 𝜉(Φ) ∶ 𝐵𝑌 → 𝑋∗∗ is holomorphic, it is

enough to check that it is weak-star holomorphic [33, Exercise 8.D]. This is true since, for each 𝑥∗ ∈ 𝑋∗, we have that

𝑥∗(𝜉(Φ)) = Φ(𝑥∗) ∈ ∞(
𝐵𝑌

)
.

To see that it is bounded recall that as Φ belongs to 𝑏,∞
(
𝑋,𝐵𝑌

)
, there exists 𝑟 > 0 such that ‖Φ(ℎ)‖ ≤ ‖ℎ‖𝑟𝐵𝑋

, for all

ℎ ∈ 𝑏(𝑋). Therefore,

sup
𝑦∈𝐵𝑌

‖𝜉(Φ)(𝑦)‖ = sup
𝑦∈𝐵𝑌

sup‖𝑥∗‖≤1 |𝜉(Φ)(𝑦)(𝑥∗)|
= sup‖𝑥∗‖≤1 sup

𝑦∈𝐵𝑌

|Φ(𝑥∗)(𝑦)|
≤ sup‖𝑥∗‖≤1 ‖𝑥∗‖𝑟𝐵𝑋

≤ 𝑟.

Thus, we conclude that 𝜉(Φ) belongs to ∞(𝐵𝑌 ,𝑋
∗∗) (and Φ is well-defined). Note also that 𝜉(𝑗(𝑔)) = 𝑔, for all

𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗).

Now, the construction of the Riemann domain structure is analogous to what was done in the scalar-valued case [2, 6, 19] and

in the already mentioned vector-valued case [17]. Anyway, we present it adapted to our particular setting for future reference

throughout the article.

For 𝑥∗∗ ∈ 𝑋∗∗, 𝜏𝑥∗∗ is the translation mapping given by 𝜏𝑥∗∗ (𝑥) = 𝐽𝑋𝑥 + 𝑥∗∗. This induces, as usual, a mapping

𝜏∗
𝑥∗∗ ∶ 𝑏(𝑋) → 𝑏(𝑋) where 𝜏∗

𝑥∗∗ (𝑓 )(𝑥) = 𝑓
(
𝐽𝑋𝑥 + 𝑥∗∗

)
. By [19, Proposition 6.30] for any fixed 𝑓 ∈ 𝑏(𝑋), we have that

the mapping
[
𝑥∗∗ → 𝜏∗

𝑥∗∗ (𝑓 )
]

is a holomorphic function of bounded type from 𝑋∗∗ into 𝑏(𝑋). Then, we can define for each

𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) and Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
the homomorphism Φ𝑔 in 𝑏,∞

(
𝑋,𝐵𝑌

)
by

Φ𝑔(𝑓 )(𝑦) = Φ
(
𝜏∗
𝑔(𝑦)(𝑓 )

)
(𝑦)

= Φ
[
𝑥 → 𝑓

(
𝐽𝑋𝑥 + 𝑔(𝑦)

)]
(𝑦),

for all 𝑓 ∈ 𝑏(𝑋) and 𝑦 ∈ 𝐵𝑌 . In order to see that Φ𝑔 is well-defined we need to check that Φ𝑔(𝑓 ) belongs to ∞(
𝐵𝑌

)
, for

every 𝑓 ∈ 𝑏(𝑋). To derive that Φ𝑔(𝑓 ) is holomorphic, we consider the following function of two variables

𝐵𝑌 × 𝐵𝑌 → ℂ

(𝑦, 𝑧) → Φ
(
𝜏∗
𝑔(𝑧)(𝑓 )

)
(𝑦).

Clearly, the mapping is holomorphic in the first variable. The same is true for the second one, as it is the result of applying 𝛿𝑦◦Φ
to the composition of

[
𝑥∗∗ → 𝜏∗

𝑥∗∗ (𝑓 )
]

with [𝑦 → 𝑔(𝑦)]. By Hartogs’ theorem, this mapping is holomorphic when considering

both variables simultaneously and thus it remains so when restricted to the set
{
(𝑦, 𝑦) ∶ 𝑦 ∈ 𝐵𝑌

}
. This gives that the mapping

Φ𝑔(𝑓 ) is holomorphic. As before, recall that there exists 𝑟 > 0 such that ‖Φ(ℎ)‖ ≤ ‖ℎ‖𝑟𝐵𝑋
, for all ℎ ∈ 𝑏(𝑋), implying that

Φ𝑔(𝑓 ) is bounded:

sup
𝑦∈𝐵𝑌

|Φ𝑔(𝑓 )(𝑦)| = sup
𝑦∈𝐵𝑌

||Φ(
𝜏∗
𝑔(𝑦)(𝑓 )

)
(𝑦)|| ≤ sup

𝑦,𝑧∈𝐵𝑌

||Φ(
𝜏∗
𝑔(𝑧)(𝑓 )

)
(𝑦)||

= sup
𝑧∈𝐵𝑌

‖‖Φ(
𝜏∗
𝑔(𝑧)(𝑓 )

)‖‖𝐵𝑌
≤ sup

𝑧∈𝐵𝑌

‖‖𝜏∗𝑔(𝑧)(𝑓 )‖‖𝑟𝐵𝑋
(2.1)

= sup
𝑧∈𝐵𝑌
𝑥∈𝑟𝐵𝑋

||𝑓 (
𝑔(𝑧) + 𝐽𝑋𝑥

)|| ≤ ‖𝑓‖(‖𝑔‖+𝑟)𝐵𝑋
< ∞.

This shows that Φ𝑔 is well defined. An easy computation shows that Φ𝑔 is an algebra homomorphism from which we obtain

that Φ𝑔 ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
.

It is also worth noting that the projection 𝜉 satisfies

𝜉
(
Φ𝑔

)
= 𝜉(Φ) + 𝑔. (2.2)
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Indeed, this is clear since for all 𝑦 ∈ 𝐵𝑌 and all 𝑥∗ ∈ 𝑋∗, 𝜏∗
𝑔(𝑦)(𝑥

∗) = 𝑥∗ + 𝑔(𝑦)(𝑥∗).
We now arrive at the statement of the Riemann domain structure on 𝑏,∞

(
𝑋,𝐵𝑌

)
.

Proposition 2.1. If 𝑋 is a symmetrically regular Banach space and 𝑌 is any Banach space,
(
𝑏,∞

(
𝑋,𝐵𝑌

)
, 𝜉
)

is a Riemann
domain over ∞(

𝐵𝑌 ,𝑋
∗∗) with each connected component homeomorphic to ∞(

𝐵𝑌 ,𝑋
∗∗).

Proof. For Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
and 𝜀 > 0, consider the sets

𝑉Φ,𝜀 =
{
Φ𝑔 ∶ 𝑔 ∈ ∞(

𝐵𝑌 ,𝑋
∗∗), ‖𝑔‖ < 𝜀

}
.

These sets form a neighborhood basis for a Hausdorff topology in 𝑏,∞
(
𝑋,𝐵𝑌

)
. First of all, given Ψ ∈ 𝑉Φ,𝜀 we have that

Ψ = Φ𝑔 for a certain 𝑔 with ‖𝑔‖ < 𝜀. Since 𝑋 is symmetrically regular, by [19, Lemma 6.28], we have that 𝜏∗
𝑔(𝑦)◦𝜏

∗
ℎ(𝑦) = 𝜏∗(𝑔+ℎ)(𝑦)

for all 𝑦 ∈ 𝐵𝑌 , ℎ ∈ ∞(
𝐵𝑌 ,𝑋

∗∗). It follows that

Ψℎ(𝑓 )(𝑦) = (Φ𝑔)ℎ(𝑓 )(𝑦) = Φ𝑔
(
𝜏∗
ℎ(𝑦)(𝑓 )

)
(𝑦) = Φ

(
𝜏∗
𝑔(𝑦)◦𝜏

∗
ℎ(𝑦)(𝑓 )

)
(𝑦)

= Φ
(
𝜏∗(𝑔+ℎ)(𝑦)(𝑓 )

)
(𝑦) = Φ𝑔+ℎ(𝑓 )(𝑦).

Therefore, for 𝛿 = 𝜀 − ‖𝑔‖ we have that 𝑉Ψ,𝛿 ⊂ 𝑉Φ,𝜀. That this is in fact a Hausdorff topology follows as usual: given

Ψ ≠ Φ ∈ 𝑏,∞
(
𝐵𝑌 ,𝑋

∗∗) there are two possibilities, either 𝜉(Ψ) = 𝜉(Φ) or 𝜉(Ψ) ≠ 𝜉(Φ). In the former case, a simple argument

using (2.2) implies that 𝑉Φ,𝜀 ∩ 𝑉Ψ,𝜀′ = ∅ for every 𝜀, 𝜀′ > 0. If, otherwise, 𝜉(Φ) ≠ 𝜉(Ψ), the easily obtained conclusion is that

𝑉Φ,𝜀 ∩ 𝑉Ψ,𝜀 = ∅ for 𝜀 = ‖𝜉(Φ)−𝜉(Ψ)‖
2 . Additionally, note that if we consider, for Φ ∈ 𝑏,∞

(
𝑋,𝐵𝑌

)
, the set

𝑉Φ =
⋃
𝜀>0

𝑉Φ,𝜀 =
{
Φ𝑔 ∶ 𝑔 ∈ ∞(

𝐵𝑌 ,𝑋
∗∗)},

we obtain exactly the connected component of Φ, which is homeomorphic to ∞(
𝐵𝑌 ,𝑋

∗∗) as stated. □

As in [17, Proposition 10] each function 𝑓 ∈ 𝑏(𝑋) can be extended to a function on 𝑏,∞
(
𝑋,𝐵𝑌

)
by means of a sort of

Gelfand transform:

𝑓 ∶ 𝑏,∞
(
𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌

)
Φ → Φ(𝑓 ),

and this function, when restricted to each connected component is a holomorphic function of bounded type. Even though the

connected components here are not the same as those in [17], the proof developed in that paper works in our context with slight

modifications. However, we choose to present here another simpler argument.

Proposition 2.2. Let 𝑋 be a symmetrically regular Banach space and let 𝑌 be any Banach space. Given a function 𝑓 ∈ 𝑏(𝑋)
we have that the extension 𝑓 ∶ 𝑏,∞

(
𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌

)
is a holomorphic function of bounded type, when restricted to each

connected component of the spectrum. That is, 𝑓◦
(
𝜉|𝑉Φ)−1 ∈ 𝑏

(
∞(

𝐵𝑌 ,𝑋
∗∗),∞(

𝐵𝑌

))
for every Φ ∈ 𝑏,∞

(
𝑋,𝐵𝑌

)
.

The proof follows readily by using the following lemma, which is surely known. We include the proof as we could not find a

proper reference.

Lemma 2.3. Given Banach spaces 𝑋 and 𝑌 and an open set 𝑈 ⊂ 𝑋, let 𝐹 ∶ 𝑈 → ∞(
𝐵𝑌

)
be a locally bounded mapping.

Then, 𝐹 is holomorphic if and only if 𝛿𝑦◦𝐹 is holomorphic, for all 𝑦 ∈ 𝐵𝑌 .

Proof. Since ∞(
𝐵𝑌

)
is the dual of ∞

(
𝐵𝑌

)
, we have that 𝐹 is holomorphic if and only if it is so when applied to any element

of ∞
(
𝐵𝑌

)
. To derive the conclusion we have to prove that it is enough to consider just the evaluations 𝛿𝑦 ∈ ∞

(
𝐵𝑌

)
. Any

𝑣 ∈ ∞
(
𝐵𝑌

)
can be represented in the quotient 𝓁1

(
𝐵𝑌

)
∕∞(

𝐵𝑌

)⟂
by a sum

∑
𝑘 𝜆𝑘𝛿𝑦𝑘 , where

(
𝜆𝑘
)
∈ 𝓁1 and 𝑦𝑘 ∈ 𝐵𝑌 for all

𝑘. So we need to prove that the mapping
[
𝑥 → 𝐹 (𝑥)(𝑣) =

∑
𝑘 𝜆𝑘𝐹 (𝑥)

(
𝑦𝑘
)]

is holomorphic. Since, by hypothesis, the mappings[
𝑥 →

∑𝑛
𝑘=1 𝜆𝑘𝐹 (𝑥)

(
𝑦𝑘
)]

are holomorphic for all 𝑛, to derive the result by means of [11, Theorem 14.16], we only need to check

that these mappings are locally uniformly bounded. Given 𝑥0 ∈ 𝑈 take 𝑟 > 0 and 𝐶 > 0 such that 𝐵𝑋

(
𝑥0, 𝑟

)
⊂ 𝑈 and 𝐹 is

bounded by 𝐶 in 𝐵𝑋

(
𝑥0, 𝑟

)
. Then, for every 𝑥 ∈ 𝐵𝑋

(
𝑥0, 𝑟

)
,

|||||
𝑛∑

𝑘=1
𝜆𝑘𝐹 (𝑥)

(
𝑦𝑘
)||||| ≤

𝑛∑
𝑘=1

||𝜆𝑘|||||𝐹 (𝑥)
(
𝑦𝑘
)||| ≤ 𝐶

‖‖‖(𝜆𝑘)‖‖‖𝓁1 . □
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Now we proceed with the proof of the holomorphic property of the Gelfand transform.

Proof of Proposition 2.2. We want to prove that the function

∞(
𝐵𝑌 ,𝑋

∗∗) → ∞(
𝐵𝑌

)
𝑔 → Φ𝑔(𝑓 )

is holomorphic of bounded type. As in Equation (2.1) we obtain that there exists 𝑟 > 0 such that

‖Φ𝑔(𝑓 )‖ ≤ ‖𝑓‖(‖𝑔‖+𝑟)𝐵𝑋

and hence our target function is bounded on bounded sets. Hence, it is locally bounded. Now, appealing to the previous lemma,

it remains to prove that, for all 𝑦 ∈ 𝐵𝑌 , the mapping
[
𝑔 → Φ𝑔(𝑓 )(𝑦)

]
is holomorphic. This is true since it is the composition of

the following two holomorphic mappings:

∞(
𝐵𝑌 ,𝑋

∗∗) → 𝑋∗∗ 𝑋∗∗ → ℂ
𝑔 → 𝑔(𝑦) 𝑥∗∗ → Φ

(
𝜏∗
𝑥∗∗ (𝑓 )

)
(𝑦),

and the proof is finished. □

3 THE FIBERING OF 𝒃,∞
(
𝑿,𝑩𝒀

)
OVER ∞(𝑩𝒀 ,𝑿

∗∗)

We now focus on the set of elements in 𝑏,∞
(
𝑋,𝐵𝑌

)
that are projected to the same function 𝑔 of ∞(

𝐵𝑌 ,𝑋
∗∗). This is called

the fiber over 𝑔 and is defined by

ℱ(𝑔) =
{
Φ ∈ 𝑏,∞

(
𝑋,𝐵𝑌

)
∶ 𝜉(Φ) = 𝑔

}
.

Our aim in this section is to study the size of these sets.

In the scalar-valued spectrum the usual projection is 𝜋 ∶ 𝑏(𝑋) → 𝑋∗∗, given by 𝜋(𝜑)(𝑥∗) = 𝜑(𝑥∗), for all 𝑥∗ ∈ 𝑋∗. The

fiber over each 𝑧 ∈ 𝑋∗∗ is the set of all 𝜑 such that 𝜋(𝜑) = 𝑧. Clearly, the fiber over 𝑧 contains at least the evaluation homo-

morphism 𝛿𝑧. When finite type polynomials are dense in 𝑏(𝑋), the fiber over 𝑧 is just
{
𝛿𝑧
}

[2, Theorem 3.3].

Analogously, for every 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) we can define the corresponding composition homomorphism 𝐶𝑔 . Since 𝐶𝑔 veri-

fies that 𝜉
(
𝐶𝑔

)
= 𝑔 we have that the sets ℱ(𝑔) are non-empty. Moreover, as in the scalar-valued spectrum, the density of finite

type polynomials on 𝑋 implies that the homomorphisms 𝐶𝑔 should be all we find in each fiber. This similarity between scalar

and vector-valued spectra is made clear through the following remark.

Remark 3.1. For each Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
and each 𝑦 ∈ 𝐵𝑌 , we denote by 𝛿𝑦◦Φ ∈ 𝑏(𝑋) the mapping given by[

𝑓 ∈ 𝑏(𝑋) → Φ(𝑓 )(𝑦)
]
. Then, it is clear that Φ is the composition homomorphism 𝐶𝑔 if and only if for every 𝑦 ∈ 𝐵𝑌 , 𝛿𝑦◦Φ

is the evaluation homomorphism 𝛿𝑔(𝑦). Also, Φ ∈ ℱ(𝑔) if and only if for every 𝑦 ∈ 𝐵𝑌 , 𝛿𝑦◦Φ is in the fiber (relative to the

spectrum 𝑏(𝑋)) over 𝑔(𝑦) ∈ 𝑋∗∗.

Now, we easily obtain the following which was previously observed in [17, page 10].

Proposition 3.2. Let 𝑋 and 𝑌 be Banach spaces. If finite type polynomials are dense in 𝑏(𝑋) then for each 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗)
we have that ℱ(𝑔) consists solely of the corresponding 𝐶𝑔 .

Whenever finite type polynomials are not dense in 𝑏(𝑋) we might find more elements in the fibers over elements in

∞(
𝐵𝑌 ,𝑋

∗∗). For instance, the following theorem shows that if there is a polynomial in 𝑋 which is not weakly continuous on

bounded sets there is a disk of homomorphisms in each fiber. The proof is inspired by an analogous result for the scalar-valued

spectrum [5, Theorem 3.1].

Theorem 3.3. If 𝑋 is a Banach space such that there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets,
then for each 𝑔 ∈ ∞(

𝐵𝑌 ,𝑋
∗∗) we can inject the complex disk 𝔻 analytically into the fiber ℱ(𝑔).

Proof. If there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets, then (for a certain 𝑚) there is

an 𝑚-homogeneous polynomial 𝑃 such that its canonical extension 𝑃 is not weak-star continuous at any 𝑥∗∗ ∈ 𝑋∗∗ (see

[9, Corollary 2] or [3, Proposition 1]). Given 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗), denoting 𝑥∗∗0 = 𝑔(0) we can find an 𝜀 > 0 and a bounded
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net
(
𝑥∗∗𝛼

)
, weak-star convergent to 𝑥∗∗0 , such that ||𝑃 (𝑥∗∗𝛼 )

− 𝑃
(
𝑥∗∗0

)|| > 𝜀 for every 𝛼. We now fix an ultrafilter 𝒰 containing

the sets
{
𝛼 ∶ 𝛼 ≥ 𝛼0

}
and define for 𝑡 ∈ 𝔻 the mapping Φ𝑡 ∶ 𝑏(𝑋) → ∞(

𝐵𝑌

)
by

Φ𝑡(𝑓 )(𝑦) = lim
𝒰

𝑓
(
𝑔(𝑦) + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))
.

Note that the limit along the ultrafilter exists because for each 𝑡 and each 𝑓 , if 𝑀 is a bound for the sequence
(
𝑥∗∗𝛼

)
we have

‖‖‖𝑓 (
𝑔(𝑦) + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))‖‖‖ ≤ ‖𝑓‖(‖𝑔‖+𝑀+‖‖‖𝑥∗∗0 ‖‖‖)𝐵𝑋
,

and so the set
(
𝑏,∞

(
𝑋,𝐵𝑌

))‖𝑔‖+𝑀+‖𝑥∗∗0 ‖ is weak-star compact (see item 3 of the comment about duality and compactness in

the Introduction). The previous inequality also shows that, for all 𝛼, the mappings
[
𝑦 → 𝑓

(
𝑔(𝑦) + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))]
are in a ball

of ∞(
𝐵𝑌

)
=
(
∞

(
𝐵𝑌

))∗
and by weak-star compactness we obtain Φ𝑡(𝑓 ) ∈ ∞(

𝐵𝑌

)
. Also, it is easy to see that, for each

𝑡 ∈ ℂ, Φ𝑡 is a homomorphism in 𝑏,∞
(
𝑋,𝐵𝑌

)
and 𝜉

(
Φ𝑡

)
= 𝑔. To assert that the mapping

[
𝑡 → Φ𝑡

]
is analytic, we need to

check that for every 𝑓 ∈ ∞(
𝐵𝑋

)
the following mapping is analytic:

Φ(𝑓 ) ∶ 𝔻 → ∞(
𝐵𝑌

)
𝑡 → [𝑦 → Φ𝑡(𝑓 )(𝑦)].

Fix 𝑓 ∈ ∞(
𝐵𝑋

)
and define 𝑓𝛼 ∶ 𝔻 → ∞(

𝐵𝑌

)
by

𝑓𝛼(𝑡)(𝑦) = 𝑓
(
𝑔(𝑦) + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))
.

The set
{
𝑓𝛼

}
𝛼

is contained in ‖𝑓‖𝐾𝐵𝑋
𝐵
∞

(
𝔻,∞(𝐵𝑌 )

), where 𝐾 = ‖𝑔‖ + (||𝑡0|| + 𝑠
)(
𝑀 + ‖‖𝑥∗∗0 ‖‖). Since, by [34, Theo-

rem 2.1],

∞(
𝔻,∞(

𝐵𝑌

))
= 

(
∞

(
𝔻
)
,∞(

𝐵𝑌

))
=
(
∞(𝔻)⊗̂𝜋

∞(
𝐵𝑌

))∗
,

the set ‖𝑓‖𝐾𝐵𝑋
𝐵∞(𝔻,∞(𝐵𝑌 )) is a weak-star compact set, which tells us that the limit of the 𝑓𝛼’s can be taken analytically on

𝑡. This proves the analyticity of the mapping

𝑡 → [𝑦 → Φ𝑡(𝑓 )(𝑦)].

Moreover, since 𝑃 is an 𝑚-homogeneous polynomial, we can write

𝑃
(
𝑔(𝑦) + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))
= 𝑃

(
𝑔(𝑦)

)
+

𝑚∑
𝑗=1

𝑡𝑗
(
𝑚

𝑗

) ∨
𝑃
(
𝑔(𝑦)𝑚−𝑗 ,

(
𝑥∗∗𝛼 − 𝑥∗∗0

)𝑗)
.

In particular, taking 𝑦 = 0 we obtain

Φ𝑡(𝑃 )(0) =
𝑚∑
𝑗=0

𝑎𝑗𝑡
𝑗 .

Now, since

||Φ1(𝑃 )(0) − Φ0(𝑃 )(0)|| = lim
𝒰

||𝑃 (𝑥∗∗𝛼 )
− 𝑃

(
𝑥∗∗0

)|| ≥ 𝜀,

we have a non-constant polynomial of degree ≤ 𝑚, so we can find 𝑡0 ∈ 𝔻 and 𝑠 > 0 such that Φ𝑡(𝑃 )(0) is injective in 𝔻
(
𝑡0, 𝑠

)
.

Finally, through the composition with the mapping 𝛾 ∶ 𝔻 → 𝔻
(
𝑡0, 𝑠

)
given by

[
𝑡 → 𝑡0 + 𝑠𝑡

]
we obtain that Φ◦𝛾 ∶ 𝔻 → ℱ(𝑔)

is the desired analytic injection. □

Remark 3.4. Fibers over constant functions. The scalar-valued spectrum 𝑏(𝑋) is naturally seen inside 𝑏,∞
(
𝑋,𝐵𝑌

)
through the inclusion mapping

[
𝜑 → 𝜑 ⋅ 1𝑌

]
where each element of 𝑏(𝑋) lies in a fiber over a constant function. Then,

for a constant function 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) it is natural to wonder whether there are homomorphisms in ℱ(𝑔) not belonging to
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𝑏(𝑋). It is worth noting that the previous theorem does not provide examples of that kind. Indeed, if we take 𝑔(𝑦) = 𝑥∗∗0 for

all 𝑦, we have

Φ𝑡(𝑓 )(𝑦) = lim
𝒰

𝑓
(
𝑥∗∗0 + 𝑡

(
𝑥∗∗𝛼 − 𝑥∗∗0

))
,

which is a constant function of 𝑦 and hence identified with an element of 𝑏(𝑋). However, building on the previous result we

obtain in the next theorem an analytic injection of the ball 𝐵∞(𝐵𝑌 ) in each fiber over a constant function, providing examples

of non scalar-valued homomorphisms in those fibers.

Theorem 3.5. If 𝑋 is a Banach space such that there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets,
then for each constant function 𝑔 ∈ ∞(

𝐵𝑌 ,𝑋
∗∗) we can inject the ball 𝐵∞(𝐵𝑌 ) analytically in the fiber ℱ(𝑔). Moreover,

through this inclusion each non-constant function in 𝐵∞(𝐵𝑌 ) is mapped into a non scalar-valued homomorphism of ℱ(𝑔).

Proof. Given 𝑔(𝑦) = 𝑥∗∗0 for all 𝑦, from the proof of Theorem 3.3 we have an analytic injection Φ◦𝛾 ∶ 𝔻 → ℱ(𝑔). Now consider

Ψ ∶ 𝐵∞(𝐵𝑌 ) → ℱ(𝑔) given by

Ψ(ℎ)(𝑓 )(𝑦) = Φ◦𝛾(ℎ(𝑦))(𝑓 ), for all ℎ ∈ 𝐵∞(𝐵𝑌 ), 𝑓 ∈ 𝑏(𝑋), 𝑦 ∈ 𝐵𝑌 .

Note that this definition makes sense because, by the previous remark, for each ℎ and 𝑦, the homomorphism Φ◦𝛾(ℎ(𝑦)) is scalar-

valued.

Let us check that Ψ is well defined, analytic and injective. First, note that, for all 𝑓 ∈ 𝑏(𝑋) and ℎ ∈ 𝐵∞(𝐵𝑌 ), the mapping

Ψ(ℎ)(𝑓 ) is analytic since it is the composition of two holomorphic mappings: [𝑦 → ℎ(𝑦)] and [𝑡 → Φ◦𝛾(𝑡)(𝑓 )]. As before, it is

bounded:

sup
𝑦∈𝐵𝑌

|Ψ(ℎ)(𝑓 )(𝑦)| ≤ ‖𝑓‖(‖𝑔‖+𝑀+‖𝑥∗∗0 ‖)𝐵𝑋
.

Now, it is readily seen that Ψ(ℎ) belongs to 𝑏,∞
(
𝑋,𝐵𝑌

)
and that in fact it is in the fiber over 𝑔, so Ψ is well defined.

Secondly, for each 𝑓 ∈ 𝑏(𝑋), the mapping from 𝐵∞(𝐵𝑌 ) to ∞(
𝐵𝑌

)
given by [ℎ → Ψ(ℎ)(𝑓 )] is analytic. Indeed, by

Lemma 2.3, it is enough to see that the mapping [ℎ → Ψ(ℎ)(𝑓 )(𝑦)] is analytic, which again can be done by writing it as the

composition of a linear and a holomorphic mapping: [ℎ → ℎ(𝑦)] and [𝑡 → Φ◦𝛾(𝑡)(𝑓 )].
Thirdly, Ψ is injective because Φ◦𝛾 has the same property.

Finally, note that Ψ maps each non-constant function in 𝐵∞(𝐵𝑌 ) into a non scalar-valued homomorphism. If ℎ ∈ 𝐵∞(𝐵𝑌 )
is non-constant then there exist 𝑦1 and 𝑦2 in 𝐵𝑌 such that ℎ(𝑦1) ≠ ℎ(𝑦2) and thus Φ◦𝛾

(
ℎ
(
𝑦1
))

≠ Φ◦𝛾
(
ℎ
(
𝑦2
))

. So Ψ(ℎ) cannot

be of the form 𝜑 ⋅ 1𝑌 for a scalar valued 𝜑. □

4 THE RADIUS FUNCTION

Aron, Cole and Gamelin [2] introduced a radius function on 𝑏(𝑋) and proved several properties. Then, they extended this

definition to homomorphisms in ∞
(
𝐵𝑋

)
establishing a relationship between both spectra. We now follow the same plan in

the vector-valued case.

Given a homomorphism Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
we define its radius as

𝑅(Φ) = inf
{
𝑟 > 0 ∶ ‖Φ(𝑓 )‖𝐵𝑌

≤ ‖𝑓‖𝑟𝐵𝑋
, 𝑓 ∈ 𝑏(𝑋)

}
.

It is worth noting that since the homomorphisms in 𝑏,∞
(
𝑋,𝐵𝑌

)
are continuous we have 0 ≤ 𝑅(Φ) < ∞. Furthermore, the

following result regarding the continuity of Φ in 𝑅(Φ)𝐵𝑋 holds. Note that this is a vector-valued version of [2, Lemma 2.1]. We

omit the proof, as it is identical.

Lemma 4.1. For every Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
and 𝑓 ∈ 𝑏(𝑋) we have

‖Φ(𝑓 )‖𝐵𝑌
≤ ‖𝑓‖𝑅(Φ)𝐵𝑋

.

For Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
we denote by Φ𝑚 its restriction to (𝑚𝑋), that is Φ𝑚 is a linear operator from (𝑚𝑋) into ∞(

𝐵𝑌

)
.

As in the scalar-valued case we have
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Proposition 4.2. The radius function 𝑅 on 𝑏,∞
(
𝑋,𝐵𝑌

)
is given by

𝑅(Φ) = lim sup
𝑚→∞

‖Φ𝑚‖1∕𝑚 = sup
𝑚≥1

‖Φ𝑚‖1∕𝑚.
Proof. The first equality follows the lines of the proof of [2, Theorem 2.3]. For the second one we need a slight change in the

argument. It is observed in [2, page 55] that

‖𝜑𝑚‖2 ≤ ‖𝜑2𝑚‖ for all 𝜑 ∈ 𝑏(𝑋) and 𝑚 ∈ ℕ.

Thus the same is true for vector-valued homomorphisms. Hence,

‖Φ𝑚‖1∕𝑚 ≤ ‖Φ2𝑚‖1∕2𝑚 for all Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
and 𝑚 ∈ ℕ,

which implies that the limit superior should coincide with the supremum. □

Note that the limit superior above is not necessarily a limit. In [16] Deghoul exhibits an example of an homomorphism 𝜑 in

𝑏

(
𝓁2
)

with 𝑅(𝜑) ≠ 0 and ‖𝜑𝑚‖ = 0 for every odd 𝑚.

Remark 4.3. As we have already observed, the role played by the evaluation homomorphisms 𝛿𝑧 in the scalar-valued spectrum

is performed here by the composition homomorphisms 𝐶𝑔 . It is easy to see that vector-valued versions of [2, Lemma 3.1 and

Lemma 3.2] are valid:

‖𝜉(Φ)‖ ≤ 𝑅(Φ), Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
,

and also

𝑅(𝐶𝑔) = ‖𝑔‖, 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗).
Let us now translate the radius function to the spectrum ∞

(
𝐵𝑋,𝐵𝑌

)
. For that, first we consider the natural projection

𝜚 ∶ ∞
(
𝐵𝑋,𝐵𝑌

)
→ 𝑏,∞

(
𝑋,𝐵𝑌

)
,

defined so that 𝜚(Ψ) is the restriction of Ψ ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
to 𝑏(𝑋).

We then extend the radius function 𝑅 to Ψ ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
by declaring 𝑅(Ψ) to be the smallest value of 𝑟, 0 ≤ 𝑟 ≤ 1

such that Ψ is continuous with respect to the norm of uniform convergence on the ball 𝑟𝐵𝑋 . Applying the previous results of

this section and the fact that ∞
(
𝐵𝑋,𝐵𝑌

)
is weak-star compact (as noted in item 2 of the observation regarding duality and

compactness in the Introduction), the proof of [2, Theorem 10.1] can be easily adapted to our setting, arriving at the following

result.

Theorem 4.4. The image 𝜚
(
∞

(
𝐵𝑋,𝐵𝑌

))
of the projection 𝜚 consists of precisely the set of Φ ∈ 𝑏,∞

(
𝑋,𝐵𝑌

)
such that

𝑅(Φ) ≤ 1. Moreover, the projection 𝜚 establishes a one-to-one correspondence between the set of Ψ ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
satisfying

𝑅(Ψ) < 1 and the set of Φ ∈ 𝑏,∞
(
𝑋,𝐵𝑌

)
satisfying 𝑅(Φ) < 1.

5 THE FIBERING OF ∞
(
𝑩𝑿,𝑩𝒀

)
over 𝑩∞(𝑩𝒀 ,𝑿

∗∗)

As in the case of 𝑏,∞
(
𝑋,𝐵𝑌

)
, we can define a natural projection from the vector-valued spectrum ∞

(
𝐵𝑋,𝐵𝑌

)
into

∞(
𝐵𝑌 ,𝑋

∗∗), by composing 𝜉 ∶ 𝑏,∞
(
𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌 ,𝑋
∗∗)with 𝜚 ∶ ∞

(
𝐵𝑋,𝐵𝑌

)
→ 𝑏,∞

(
𝑋,𝐵𝑌

)
. In order to sim-

plify the notation we choose to denote this projection again by 𝜉 (instead of 𝜉◦𝜚). In this setting, 𝜉 is defined by:

𝜉 ∶ ∞
(
𝐵𝑋,𝐵𝑌

)
→ ∞(

𝐵𝑌 ,𝑋
∗∗),

Φ →
[
𝑦 → (𝑥∗ → Φ(𝑥∗)(𝑦))

]
.
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The image of 𝜉 is clearly contained in the closed unit ball of ∞(
𝐵𝑌 ,𝑋

∗∗). Also, for each 𝑔 ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) such that

𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ we can consider the composition homomorphism 𝐶𝑔 ∈ ∞

(
𝐵𝑋,𝐵𝑌

)
given by 𝐶𝑔(𝑓 ) = 𝑓 ◦𝑔, for all

𝑓 ∈ ∞(
𝐵𝑋

)
. Since 𝜉(𝐶𝑔) = 𝑔 the following inclusions hold:

𝐵∞(𝐵𝑌 ,𝑋
∗∗) ⊂

{
𝑔 ∈ ∞(

𝐵𝑌 ,𝑋
∗∗) ∶ 𝑔

(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗

}
⊂ 𝐼𝑚(𝜉).

Note that, as we have already mentioned, by [34, Theorem 2.1] the space ∞(
𝐵𝑌 ,𝑋

∗∗) is isometric to 
(
∞

(
𝐵𝑌

)
, 𝑋∗∗) and

so it is the dual of ∞
(
𝐵𝑌

)
⊗̂𝜋𝑋

∗. Now, as ∞
(
𝐵𝑋,𝐵𝑌

)
is weak-star compact and 𝜉 is weak-star to weak-star continuous, the

image of 𝜉 should be weak-star compact in ∞(
𝐵𝑌 ,𝑋

∗∗). Hence

𝐼𝑚(𝜉) = 𝐵∞(𝐵𝑌 ,𝑋
∗∗).

Now, we turn our attention to the fibers defined by this projection. For 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗), the fiber over 𝑔 is the set

ℱ(𝑔) =
{
Φ ∈ ∞

(
𝐵𝑋,𝐵𝑌

)
∶ 𝜉(Φ) = 𝑔

}
.

For the scalar-valued spectrum ∞
(
𝐵𝑋

)
, to study the fibers over 𝐵𝑋∗∗ , the distinction between points 𝑧 in the interior of

the ball (for which the evaluation 𝛿𝑧 is in the fiber) and points 𝑧 in the boundary (where 𝛿𝑧 cannot be defined) is relevant. In

the vector-valued case recall that for a holomorphic function 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) if ‖‖𝑔(𝑦0)‖‖ = 1 for a certain 𝑦0 ∈ 𝐵𝑌 then 𝑔(𝑦)

belongs to 𝑆𝑋∗∗ (the unit sphere of 𝑋∗∗) for all 𝑦 ∈ 𝐵𝑌 . Thus, to distinguish the fibers over 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) in terms of whether

𝐶𝑔 is or is not defined, we get the following two possibilities for 𝑔:

(i) 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ (where 𝐶𝑔 ∈ ℱ(𝑔)).

(ii) 𝑔
(
𝐵𝑌

)
⊂ 𝑆𝑋∗∗ (where 𝐶𝑔 cannot be defined).

Note that whenever 𝑋∗∗ is strictly convex, the only functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) with 𝑔

(
𝐵𝑌

)
⊂ 𝑆𝑋∗∗ are the constant functions.

Then, in this case the condition (ii) changes to:

(ii’) There exists 𝑥∗∗0 ∈ 𝑆𝑋∗∗ such that 𝑔(𝑦) = 𝑥∗∗0 , for all 𝑦 ∈ 𝐵𝑌 (where 𝐶𝑔 cannot be defined).

Also, as we commented for the spectrum 𝑏,∞
(
𝑋,𝐵𝑌

)
in Remark 3.4, there are other special fibers in ∞

(
𝐵𝑋,𝐵𝑌

)
which

are those over constant functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗). Each of these fibers includes the scalar-valued fiber of ∞

(
𝐵𝑋

)
over the

same constant.

Recall that it is said that an element 𝑥∗∗0 ∈ 𝑆𝑋∗∗ is norm attaining if there exists 𝑥∗0 ∈ 𝑆𝑋∗ such that 𝑥∗∗0
(
𝑥∗𝑜
)
= 1.

Now we show that, if 𝑥∗∗0 ∈ 𝑆𝑋∗∗ is norm attaining, the fiber over the constant function 𝑔(𝑦) = 𝑥∗∗0 contains a lot of elements

that do not arise from the scalar-valued spectrum. The proof is build on the following proposition from [5].

Proposition 5.1. [5, Proposition 2.1] Given a Banach space 𝑋 and a norm attaining element 𝑥∗∗0 ∈ 𝑆𝑋∗∗ , there is an analytic
injection

𝐹 ∶ 𝔻 → 𝑥∗∗0

(
∞(

𝐵𝑋

))
.

Note that this clearly holds for every 𝑥0 ∈ 𝑆𝑋 . Now, to transfer this construction to the vector-valued spectrum recall that in

Theorem 3.5 we have proved a similar result regarding the fibers over constant functions in the spectrum 𝑏,∞
(
𝑋,𝐵𝑌

)
with the

additional hypothesis of the existence of a polynomial that is not weakly continuous on bounded sets. The proof of the following

result follows the lines of the proof of Theorem 3.5, and so we omit it.

Proposition 5.2. Given Banach spaces 𝑋 and 𝑌 and a norm attaining element 𝑥∗∗0 ∈ 𝑆𝑋∗∗ , let 𝑔(𝑦) = 𝑥∗∗0 , for all 𝑦 ∈ 𝐵𝑌 . Then
there is an analytic injection

Ψ ∶ 𝐵∞(𝐵𝑌 ) → ℱ(𝑔) ⊂ ∞
(
𝐵𝑋,𝐵𝑌

)
Ψ(ℎ)(𝑓 )(𝑦) = 𝐹 (ℎ(𝑦))(𝑓 ),

where 𝐹 is the mapping of the previous proposition. Moreover, each non-constant function in 𝐵∞(𝐵𝑌 ) is mapped into a non
scalar-valued homomorphism of ℱ(𝑔).
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For a finite dimensional 𝑋 we quote a conjecture from [2, page 88]: “one expects that the fiber over 𝑥0 consists of only the
evaluation homomorphism 𝛿𝑥0 for 𝑥0 ∈ 𝐵𝑋”. We do not know whether this is true but this is certainly the case for 𝐵𝑋 = 𝔻
and for each finite dimensional ball 𝐵𝑋 such that the Gleason problem is solved for ∞(

𝐵𝑋

)
(see [35, 6.6] or [10, 28] and

references therein), for instance, 𝑋 = 𝓁𝑛
𝑝 , with 1 < 𝑝 < ∞. In the context of a strictly convex finite dimensional Banach space 𝑋

where the Gleason problem is solved for ∞(
𝐵𝑋

)
we have an almost complete depiction of the fibers of ∞

(
𝐵𝑋,𝐵𝑌

)
which

resembles the description of the fibers of ∞
(
𝐵𝑋

)
. The result, stated in the next theorem, is obtained just summing up the

above comments and Proposition 5.2. We point out that item (𝑖) was previously proved for the ball of 𝓁𝑛
2 in [35, Theorem 6.6.5]

and for the disk 𝔻 in [23, Proposition 15].

Theorem 5.3. If 𝑋 is a strictly convex finite dimensional Banach space such that the Gleason problem is solved for ∞(
𝐵𝑋

)
then for any given 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋) there are two alternatives for the fiber ℱ(𝑔):

(i) If 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋 , then ℱ(𝑔) =

{
𝐶𝑔

}
.

(ii) If 𝑔 ≡ 𝑥0 with 𝑥0 ∈ 𝑆𝑋 , then 𝐵∞(𝐵𝑌 ) can be analytically injected in ℱ(𝑔).

Proof. First, recall that 𝑋 being strictly convex implies the only two possibilities for a given 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋) are those in the

previous items. Now, if 𝑔 satisfies (𝑖), for every Φ ∈ ℱ(𝑔) and each 𝑦 ∈ 𝐵𝑌 , we have that 𝛿𝑦◦Φ ∈ ∞
(
𝐵𝑋

)
is in the fiber

over 𝑔(𝑦) ∈ 𝐵𝑋 . Since this fiber is a singleton
{
𝛿𝑔(𝑦)

}
, we easily infer that ℱ(𝑔) =

{
𝐶𝑔

}
. If, whereas, 𝑔 ≡ 𝑥0 with 𝑥0 ∈ 𝑆𝑋 ,

the result follows from Proposition 5.2. □

A lot of research is available in the literature about the basic simplest case 𝑋 = 𝑌 = ℂ (that is, homomorphisms from ∞(𝔻)
into ∞(𝔻)). Anyway, through our construction we can give a slightly different description of the spectrum ∞(𝔻,𝔻) resem-

bling the classical scalar-valued situation. Indeed, this vector-valued spectrum is projected onto 𝐵∞(𝔻), being one-to-one over

the set
{
𝑔 ∈ 𝐵∞(𝔻) ∶ 𝑔(𝔻) ⊂ 𝔻

}
. The remaining fibers (i.e. those over constant functions 𝑔 of modulus 1) are large, they have

plenty of non scalar-valued homomorphisms and each one contains an analytic copy of 𝐵∞(𝔻).

For any infinite dimensional Banach space 𝑋 we know from [2, Theorem 11.1] that each fiber of the spectrum ∞
(
𝐵𝑋

)
contains a homeomorphic copy of 𝛽(ℕ). This canonically translates to fibers over constant functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗) in the

spectrum ∞
(
𝐵𝑋,𝐵𝑌

)
. We can extend this result to fibers over (non-constant) functions 𝑔 of constant norm 1. Recall that

𝛽(ℕ) ⧵ ℕ contains a homeomorphic copy of 𝛽(ℕ) so it is enough to obtain a homeomorphic copy of 𝛽(ℕ) ⧵ ℕ inside the fiber.

Proposition 5.4. If 𝑋 is an infinite dimensional Banach space and 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) is a function of constant norm 1, then the

fiber in ∞
(
𝐵𝑋,𝐵𝑌

)
over 𝑔 contains a homeomorphic copy of 𝛽(ℕ).

Proof. Let 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) be a function of constant norm 1 and fix 𝑦0 ∈ 𝐵𝑌 . Since ‖‖𝑔(𝑦0)‖‖ = 1, by [2, Theorem 10.5],

for each
(
𝑟𝑛
)
𝑛
∈ 𝔻 with 𝑟𝑛 → 1 the sequence

(
𝑟𝑛𝑔

(
𝑦0
))

has an interpolating subsequence for ∞(
𝐵𝑋

) (
which we still call(

𝑟𝑛𝑔
(
𝑦0
)))

. We now write 𝑔𝑛 = 𝑟𝑛𝑔 and consider the mapping

𝐼 ∶ ℕ →
{
𝐶𝑔𝑛

}𝑤∗

⊆ ∞
(
𝐵𝑋,𝐵𝑌

)
𝑚 → 𝐶𝑔𝑚

.

By the universal property of 𝛽ℕ, there is a continuous extension 𝛽𝐼 ∶ 𝛽ℕ →
{
𝐶𝑔𝑛

}𝑤∗

such that 𝛽𝐼|ℕ = 𝐼 . Since
(
𝑟𝑛𝑔

(
𝑦0
))

is

an interpolating sequence, the composition 𝛿𝑦0◦𝛽𝐼 is injective and so must be 𝛽𝐼 .

Finally, a straightforward computation shows that for every 𝜂 ∈ 𝛽(ℕ) ⧵ ℕ, the image 𝛽𝐼(𝜂) lies in the fiber over 𝑔. □

From the above, we know that, when 𝑋 is infinite dimensional, fibers of ∞
(
𝐵𝑋,𝐵𝑌

)
over constant functions or over

functions of constant norm 1 are large. It is thus natural to ask whether the same is true for the remaining fibers, that is, fibers

over non-constant functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) with 𝑔

(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ . We have no general answer to this question. We can only

say something under the hypothesis of existence of a polynomial that is not weakly continuous on bounded sets, and even in this

case we can just reach the fibers over functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗), as we present below. We do not know whether this result can

be extended to fibers over functions 𝑔 of norm 1 such that 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ or not.

Theorem 5.5. If 𝑋 is a Banach space such that there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets,
then for each 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗) we can inject the complex disk 𝔻 analytically in the fiber ℱ(𝑔).



12 DIMANT AND SINGER

The proof is quite similar to that of Theorem 3.3, so we omit it. A slight change arises while choosing the net
(
𝑥∗∗𝛼

)
which

should be taken in the ball 𝐵
(
𝑥∗∗0 , 1 − ‖𝑔‖).

Also, mimicking the arguments of Theorem 3.5 we have an analogous result for the fibers over constant functions of norm

smaller than 1.

Theorem 5.6. If 𝑋 is a Banach space such that there exists a polynomial on 𝑋 which is not weakly continuous on bounded
sets, then for each constant function 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗) we can inject the ball 𝐵∞(𝐵𝑌 ) analytically in the fiber ℱ(𝑔). Moreover,
through this inclusion each non-constant function in 𝐵∞(𝐵𝑌 ) is mapped into a non scalar-valued homomorphism of ℱ(𝑔).

A typical example of a space where all the polynomials are weakly continuous on bounded sets is the sequence space 𝑐0. The

study of the algebra ∞(
𝐵𝑐0

)
is interesting also because 𝐵𝑐0

is the natural infinite dimensional extension of the polydisk 𝔻𝑛.

Even though the previous results do not apply to 𝑋 = 𝑐0, it is anyway possible in this case to insert analytic copies of balls into

the fibers of the vector-valued spectrum. This result and a thorough study about ∞
(
𝐵𝑐0

, 𝐵𝑐0

)
will appear in a forthcoming

article [18].

6 GLEASON PARTS FOR ∞
(
𝑩𝑿,𝑩𝒀

)

The study of Gleason parts in the spectrum of uniform algebras was motivated by the search for analytic structure. This is

justified by the fact that the image of an analytic mapping from an open convex set into the spectrum should be contained in a

single Gleason part. A thorough description of Gleason parts for the spectrum ∞(𝔻) was made by K. Hoffman in [29] and

later on deeply studied by several authors (see, for instance, [25, 32, 36]). For an infinite dimensional Banach space 𝑋 the study

of Gleason parts for ∞
(
𝐵𝑋

)
(with special emphasis on the case 𝑋 = 𝑐0) was initiated in [4]. Let us recall this notion.

For a uniform algebra  with spectrum (), the pseudo-hyperbolic distance in the spectrum is given by

𝜌(𝜑,𝜓) = sup
{|𝜑(𝑓 )| ∶ 𝑓 ∈ , ‖𝑓‖ ≤ 1, 𝜓(𝑓 ) = 0

}
. Note that 𝜌(𝜑,𝜓) ≤ 1 and that this notion is related to the usual met-

ric in the spectrum by the following known equality [8, Theorem 2.8]:

‖𝜑 − 𝜓‖ =
2 − 2

√
1 − 𝜌(𝜑,𝜓)2

𝜌(𝜑,𝜓)
. (6.1)

This means that ‖𝜑 − 𝜓‖ = 2 if and only if 𝜌(𝜑,𝜓) = 1, motivating for each 𝜑 ∈ (), the definition of the Gleason part
of 𝜑 as the set

(𝜑) = {𝜓 ∶ 𝜌(𝜑,𝜓) < 1} = {𝜓 ∶ ‖𝜑 − 𝜓‖ < 2}.

An interesting aspect here is that these sets form a partition of () into equivalence classes.

We can extend the notion of Gleason part to the vector-valued spectrum. Indeed, for Φ ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
we set

(Φ) = {Ψ ∶ ‖Φ − Ψ‖ < 2} =

{
Ψ ∶ 𝜎(Φ,Ψ) = sup

𝑦∈𝐵𝑌

𝜌
(
𝛿𝑦◦Φ, 𝛿𝑦◦Ψ

)
< 1

}
.

The equality between the above sets is clear from its analogous statement in the scalar-valued spectrum (recall that 𝛿𝑦◦Φ belongs

to ∞
(
𝐵𝑋

)
for each Φ ∈ ∞

(
𝐵𝑋,𝐵𝑌

)
and 𝑦 ∈ 𝐵𝑌 ). It is also readily seen, appealing again to the scalar-valued result, that

Gleason parts lead to a partition of ∞
(
𝐵𝑋,𝐵𝑌

)
into equivalence classes. This notion, without the specific name of Gleason

parts, was previously considered in several articles (see, for instance, [7, 13 21, 27 30, 31]).

In [4] the relationship between fibers and Gleason parts for ∞
(
𝐵𝑋

)
was addressed. Some of the results of that article have

a vector-valued counterpart that we now present. We begin by proving a version of [4, Proposition 1.1] that shows which fibers

might share Gleason parts.

Here the notation 𝐶𝟎 refers to the composition homomorphism by the constant function 𝑔 ≡ 0.

Proposition 6.1. Let 𝑋 and 𝑌 be Banach spaces.

(a) For every 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗), the composition homomorphism 𝐶𝑔 is contained in the Gleason part 

(
𝐶𝟎

)
. In fact,

𝜎
(
𝐶𝑔, 𝐶𝟎

)
= ‖𝑔‖.

(b) Let 𝑔 ∈ 𝑆∞(𝐵𝑌 ,𝑋
∗∗) and ℎ ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗). For any Φ ∈ ℱ(𝑔) and Ψ ∈ ℱ(ℎ) we have that Φ and Ψ lie in different Gleason
parts.
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(c) Let 𝑔, ℎ ∈ ∞(
𝐵𝑌 ,𝑋

∗∗) with 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ and ℎ

(
𝐵𝑌

)
⊂ 𝑆𝑋∗∗ . For any Φ ∈ ℱ(𝑔) and Ψ ∈ ℱ(ℎ) we have that Φ and

Ψ lie in different Gleason parts.

Proof. (a) By the Schwarz lemma and the fact that 𝑆𝑋∗ is a norming set for 𝑋∗∗ we obtain

𝜌
(
𝛿𝑦◦𝐶𝑔, 𝛿𝑦◦𝐶𝟎

)
= sup

{||𝛿𝑦◦𝐶𝑔(𝑓 )|| ∶ 𝑓 ∈ ∞(
𝐵𝑋

)
, ‖𝑓‖ ≤ 1, 𝛿𝑦◦𝐶𝟎(𝑓 ) = 0

}
= sup

{|𝑓 (𝑔(𝑦))| ∶ 𝑓 ∈ ∞(
𝐵𝑋

)
, ‖𝑓‖ ≤ 1, 𝑓 (0) = 0

}
= ‖𝑔(𝑦)‖.

Hence, 𝜎
(
𝐶𝑔, 𝐶𝟎

)
= ‖𝑔‖.

(b) Since 𝑔 ∈ 𝑆∞(𝐵𝑌 ,𝑋
∗∗) there exist sequences

(
𝑦𝑛
)
⊂ 𝐵𝑌 and

(
𝑥∗𝑛
)
⊂ 𝑆𝑋∗ such that 𝑔

(
𝑦𝑛
)(
𝑥∗𝑛
)
→ 1. Let us take

𝜆𝑛 = ℎ
(
𝑦𝑛
)(
𝑥∗𝑛
)

and note that ||𝜆𝑛|| ≤ ‖ℎ‖ < 1, for every 𝑛. We consider, for each 𝑛 and 𝑚, the following function defined

on 𝐵𝑋 :

𝑓𝑛,𝑚(⋅) =
(
𝑥∗𝑛(⋅)

)𝑚 − 𝜆𝑚𝑛‖‖(𝑥∗𝑛)𝑚 − 𝜆𝑚𝑛
‖‖ .

It is clear that 𝑓𝑛,𝑚 belongs to ∞(
𝐵𝑋

)
, Ψ

(
𝑓𝑛,𝑚

)(
𝑦𝑛
)
= 0 and ‖‖𝑓𝑛,𝑚‖‖ = 1. Thus,

𝜎(Φ,Ψ) = sup
𝑦∈𝐵𝑌

sup
{|Φ(𝑓 )(𝑦)| ∶ 𝑓 ∈ ∞(

𝐵𝑋

)
, ‖𝑓‖ ≤ 1, Ψ(𝑓 )(𝑦) = 0

}
≥ sup

𝑛,𝑚

||Φ(
𝑓𝑛,𝑚

)(
𝑦𝑛
)|| = sup

𝑛,𝑚

||𝑔(𝑦𝑛)(𝑥∗𝑛)𝑚 − 𝜆𝑚𝑛
||‖‖(𝑥∗𝑛)𝑚 − 𝜆𝑚𝑛

‖‖
≥ sup

𝑛,𝑚

||𝑔(𝑦𝑛)(𝑥∗𝑛)||𝑚 − ‖ℎ‖𝑚
1 + ‖ℎ‖𝑚 = 1.

Consequently, Φ and Ψ lie in different Gleason parts.

(c) For any 𝑦 ∈ 𝐵𝑌 we know that 𝛿𝑦◦Φ and 𝛿𝑦◦Ψ are in the fibers (with respect to the scalar-valued spectrum ∞
(
𝐵𝑋

)
)

over 𝑔(𝑦) ∈ 𝐵𝑋∗∗ and ℎ(𝑦) ∈ 𝑆𝑋∗∗ , respectively. By [4, Proposition 1.1], 𝜌
(
𝛿𝑦◦Φ, 𝛿𝑦◦Ψ

)
= 1 and hence 𝜎(Φ,Ψ) = 1. □

The statement of item (a) of the previous proposition, for functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋), was proved in [7, Proposition 3]. Also,

item (b), in the particular case where Φ and Ψ are composition homomorphisms, appeared in [7, Proposition 5].

Recall that in the previous section we separated the fibers over functions 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) into two cases:

(i) 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ .

(ii) 𝑔
(
𝐵𝑌

)
⊂ 𝑆𝑋∗∗ .

Now, in light of the above proposition, to study Gleason parts it is relevant to split the first condition to distinguish whether

the norm of 𝑔 is either 1 or smaller. Hence, the possible fibers to consider (with no intersection of Gleason parts) are:

(i) Fibers over functions 𝑔 with ‖𝑔‖ < 1. Referred to as interior fibers.

(ii) Fibers over functions 𝑔 with 𝑔
(
𝐵𝑌

)
⊂ 𝐵𝑋∗∗ and ‖𝑔‖ = 1. Referred to as middle fibers.

(iii) Fibers over functions 𝑔 with 𝑔
(
𝐵𝑌

)
⊂ 𝑆𝑋∗∗ . Referred to as edge fibers.

Note also that, from (a), we have
{
𝐶𝑔 ∶ 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗)
}
⊂ 

(
𝐶𝟎

)
. This inclusion could be strict, for instance, when there

is a polynomial on 𝑋 which is not weakly continuous on bounded sets, as the following result shows. This is a vector-valued

version of [4, Proposition 1.2 and Corollary 1.3].
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Proposition 6.2. Let 𝑋 and 𝑌 be Banach spaces.

(a) Let
(
𝑔𝛼
)

be a net in 𝐵∞(𝐵𝑌 ,𝑋
∗∗) with ‖‖𝑔𝛼‖‖ ≤ 𝑟 < 1, for all 𝛼. If the net of composition homomorphisms

(
𝐶𝑔𝛼

)
is weak-star

convergent to an element Φ in ∞
(
𝐵𝑋,𝐵𝑌

)
then Φ is contained in the Gleason part 

(
𝐶𝟎

)
.

(b) If there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets, then
{
𝐶𝑔 ∶ 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗)
}

is a proper
subset of 

(
𝐶𝟎

)
.

Proof.

(a) Take any 𝑓 ∈ ∞(
𝐵𝑋

)
such that ‖𝑓‖ = 1 and 𝑓 (0) = 0, and an element 𝑦 ∈ 𝐵𝑌 . By the weak-star convergence, for any

fixed 𝜀 > 0 such that 𝑟 + 𝜀 < 1 we can find 𝛼 such that ||𝐶𝑔𝛼
(𝑓 )(𝑦) − Φ(𝑓 )(𝑦)|| < 𝜀. Then,

||Φ(𝑓 )(𝑦) − 𝐶𝟎(𝑓 )(𝑦)|| ≤ 𝜀 + ||𝐶𝟎(𝑓 )(𝑦) − Φ𝑔𝛼
(𝑓 )(𝑦)|| ≤ 𝜀 + 𝜎

(
Φ𝑔𝛼

, 𝐶𝟎
)
= 𝜀 + ‖𝑔𝛼‖ < 𝜀 + 𝑟.

Thus, 𝜎
(
Φ, 𝐶𝟎

)
< 1, which concludes the proof.

(b) Working as in Theorem 5.5 (which, in turn, refers to Theorem 3.3) we can construct a net
(
𝐶𝑔𝛼

)
, as in item (a), that is

weak-star convergent to a homomorphism Φ which is in the Gleason part of 𝐶𝟎 but it is not of composition type.

□

Observe that the vector-valued spectrum∞
(
𝐵𝑋,𝐵𝑌

)
is a metric space when viewed as a subset of

(
∞(

𝐵𝑋

)
,∞(

𝐵𝑌

))
.

Since its metric is given by ‖Φ − Ψ‖ we refer to it as the Gleason metric. The following proposition, which is a version of [4,

Proposition 1.6], gives conditions under which there is an isometry in the spectrum that maps each fiber onto another fiber.

Proposition 6.3. Let 𝑋, 𝑌 be Banach spaces and 𝜃 ∶ 𝐵𝑋 → 𝐵𝑋 be an automorphism. Then the mapping

Λ𝜃 ∶ ∞
(
𝐵𝑋,𝐵𝑌

)
→ ∞

(
𝐵𝑋,𝐵𝑌

)
Φ → (𝑓 → Φ(𝑓◦𝜃))

is an isometry with respect to the Gleason metric. Moreover, if 𝑋 is symmetrically regular and for every 𝑥∗ ∈ 𝑋∗ both 𝑥∗◦𝜃
and 𝑥∗◦𝜃−1 are uniform limits of finite type polynomials, then for every 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋

∗∗) we have that Λ𝜃(ℱ(𝑔)) = ℱ
(
𝜃◦𝑔

)
.

Proof. For Φ and Ψ in ∞
(
𝐵𝑋,𝐵𝑌

)
we have that

‖Λ𝜃(Φ) − Λ𝜃(Ψ)‖ = sup
𝑓∈∞(𝐵𝑋 )‖𝑓‖≤1

‖Φ(𝑓◦𝜃) − Ψ(𝑓◦𝜃)‖ ≤ ‖Φ − Ψ‖.
Applying the same inequality to Λ𝜃−1 and noting that Λ𝜃−1◦Λ𝜃 = 𝐼𝑑, we obtain the desired isometry.

Assume now that 𝑋 is symmetrically regular and for every 𝑥∗ ∈ 𝑋∗ we have that both 𝑥∗◦𝜃 and 𝑥∗◦𝜃−1 lie in the closure of

finite type polynomials. Fix 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗). For any Φ ∈ ℱ(𝑔), 𝑦 ∈ 𝐵𝑌 , 𝑥∗ ∈ 𝑋∗ we have

Λ𝜃(Φ)(𝑥∗)(𝑦) = Φ(𝑥∗◦𝜃)(𝑦).

Since 𝑥∗◦𝜃 is a uniform limit of finite type polynomials the same happens to 𝑥∗◦𝜃, which implies that there is a unique extension

of 𝜃 to 𝐵𝑋∗∗ through weak-star continuity. Thus, we can compute

Φ(𝑥∗◦𝜃)(𝑦) = 𝑥∗◦𝜃(𝑔(𝑦)) = 𝜃(𝑔(𝑦))(𝑥∗).

This means that Λ𝜃(ℱ(𝑔)) is contained in ℱ
(
𝜃◦𝑔

)
. Also, since 𝑋 is symmetrically regular, arguing as in the proof of [12,

Corollary 2.2] we can see that 𝜃−1◦𝜃 = 𝐼𝑑, and so repeating the same argument as above for 𝜃−1 instead of 𝜃 we obtain that

ℱ(𝜃◦𝑔) = Λ𝜃

[
Λ𝜃−1

(
ℱ
(
𝜃◦𝑔

))]
⊂ Λ𝜃

(
ℱ
(
𝜃−1◦𝜃◦𝑔

))
= Λ𝜃(ℱ(𝑔)).

Hence, the desired equality between the fibers is proved. □
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Examples of automorphisms of the ball satisfying the conditions of the previous proposition are shown in [4, Examples 1.7

and 1.8] for 𝑋 = 𝑐0 and 𝑋 = 𝓁2. The conclusion about the fibers of the vector-valued spectrum then holds in these cases for

any Banach space 𝑌 .

For the scalar-valued spectrum of a uniform algebra it is known that the image of an open convex set through an analytic

injection is contained in a single Gleason part (see, for instance, [29, Lemma 2.1] or [4, Proposition 3.4]). By Lemma 2.3 the

same result is valid for the vector-valued spectrum.

Proposition 6.4. Given Banach spaces 𝑋, 𝑌 and 𝑍 and an open convex set 𝑈 ⊂ 𝑍, let 𝐹 ∶ 𝑈 → ∞
(
𝐵𝑋,𝐵𝑌

)
be an analytic

injection. Then, 𝐹 (𝑈 ) is contained in a single Gleason part.

This proposition combined with some of the results of Section 5 provides examples of situations where a ball is contained in

the intersection of a fiber and a Gleason part. More precisely we have:

• If 𝑥∗∗0 ∈ 𝑆𝑋∗∗ is a norm attaining element and 𝑔(𝑦) = 𝑥∗∗0 , for all 𝑦 ∈ 𝐵𝑌 , consider the analytic injection Ψ of Proposition 5.2.

Then, Ψ
(
𝐵∞(𝐵𝑌 )

)
is contained in the intersection of a Gleason part and ℱ(𝑔).

• If there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets, by Theorem 5.5, for each 𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗)

there is a copy of the complex disk 𝔻 in the intersection of a Gleason part and ℱ(𝑔).
• If there exists a polynomial on 𝑋 which is not weakly continuous on bounded sets, by Theorem 5.6, for each constant function

𝑔 ∈ 𝐵∞(𝐵𝑌 ,𝑋
∗∗) there is a copy of the unit ball 𝐵∞(𝐵𝑌 ) in the intersection of a Gleason part and ℱ(𝑔).

The above examples and Proposition 6.1 (a) show situations in which Gleason parts contain balls; so we can say that they

are large Gleason parts. Yet, in this spectrum, there also exist singleton Gleason parts. On the one hand, it is easily seen that

any singleton Gleason part of the scalar-valued spectrum ∞
(
𝐵𝑋

)
is also a singleton Gleason part of ∞

(
𝐵𝑋,𝐵𝑌

)
. On the

other hand, singleton Gleason parts which are not in fibers over constant functions surely exist in ∞
(
𝐵𝑋,𝐵𝑋

)
. For instance,

the identity mapping is a singleton Gleason part. This was addressed in [13] showing that no composition operator might be

in the same Gleason part, answering a conjecture stated in [7], where a particular case was studied. A complete proof of the

statement can be found in [21]. Also, if 𝑔 ∶ 𝐵𝑌 → 𝐵𝑋 is biholomorphic then the Gleason part containing 𝐶𝑔 ∈ ∞
(
𝐵𝑋,𝐵𝑌

)
is a singleton. Indeed, it is readily seen that the mapping from ∞

(
𝐵𝑌

)
→ ∞

(
𝐵𝑋

)
given by

[
𝜑 → 𝜑◦𝐶𝑔

]
maps strong

boundary points to strong boundary points. The result then follows from [21, Theorem 6.2].

Example 6.5. Relationship between fibers and Gleason parts.
The case 𝐵𝑋 = 𝔻 allows us to show how the relationship between fibers and Gleason parts is different whether we consider inte-

rior, middle or edge fibers. We take into account the description of the fibers of the spectrum ∞
(
𝔻, 𝐵𝑌

)
made in Theorem 5.3

along with what we know from Proposition 6.1 about Gleason parts.

• Interior fibers of ∞
(
𝔻, 𝐵𝑌

)
only contain the corresponding composition homomorphism. Then, 

(
𝐶𝟎

)
={

𝐶𝑔 ∶ 𝑔 ∈ 𝐵∞(𝐵𝑌 )
}

, so there is only one Gleason part through all the interior fibers.

• For edge fibers, take 𝜆 ≠ 𝜇 with |𝜆| = |𝜇| = 1 and Φ ∈ ℱ(𝑔), Ψ ∈ ℱ(ℎ), where 𝑔(𝑦) = 𝜆 and ℎ(𝑦) = 𝜇, for all 𝑦 ∈ 𝐵𝑌 . Then,

for any 𝑦, we have that 𝛿𝑦◦Φ and 𝛿𝑦◦Ψ are homomorphisms in the scalar-valued spectrum ∞(𝔻) belonging to the fibers over

𝜆 and 𝜇, respectively. Thus, it is known that they belong to different Gleason parts. Hence, 1 = 𝜌
(
𝛿𝑦◦Φ, 𝛿𝑦◦Ψ

)
≤ 𝜎(Φ,Ψ)

and so (Φ) ≠ (Ψ). Therefore, no Gleason part could have elements from different edge fibers.

The transition between one Gleason part containing all the fibers (interior case) and Gleason parts inside the fibers (edge

case) is made by the middle fibers:

• Any middle fiber only contains the corresponding composition homomorphism, yet several (but not all) middle fibers might

belong to the same Gleason part.

We show this last situation with the following example, which is partially adapted from [31, Example 2]. For 𝑦∗ ∈ 𝑆𝑋∗ ,

consider the functions 𝑔(𝑦) = 𝑦∗(𝑦), ℎ(𝑦) = 𝑦∗(𝑦)+1
2 and 𝑖(𝑦) = 𝑦∗(𝑦)+1

2 + 𝑘(𝑦∗(𝑦) − 1)2, for every 𝑦 ∈ 𝐵𝑌 , where 0 < 𝑘 < 1
8 . They

are all middle functions in ∞(
𝐵𝑌

)
and the composition homomorphisms associated to them satisfy 

(
𝐶𝑔

)
≠ 

(
𝐶ℎ

)
=


(
𝐶𝑖

)
. Indeed, take a sequence

(
𝑦𝑛
)

in 𝐵𝑌 such that 𝑦∗
(
𝑦𝑛
)
→ −1. Then

𝜌
(
𝛿𝑦𝑛◦𝐶𝑔, 𝛿𝑦𝑛◦𝐶ℎ

)
= 𝜌

(
𝛿𝑔(𝑦𝑛), 𝛿ℎ(𝑦𝑛)

)
=
|||||
𝑔(𝑦𝑛) − ℎ(𝑦𝑛)

1 − 𝑔(𝑦𝑛)ℎ(𝑦𝑛)

||||| → 1.
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This implies that (𝐶𝑔) ≠ (𝐶ℎ). On the other hand we have

𝜎(𝐶ℎ, 𝐶𝑖) = sup
𝑦∈𝐵𝑌

𝜌
(
𝛿𝑦◦𝐶ℎ, 𝛿𝑦◦𝐶𝑖

)
= sup

𝑦∈𝐵𝑌

𝜌
(
𝛿ℎ(𝑦), 𝛿𝑖(𝑦)

)

= sup
𝑦∈𝐵𝑌

||||| ℎ(𝑦) − 𝑖(𝑦)
1 − ℎ(𝑦)𝑖(𝑦)

||||| = sup
𝑦∈𝐵𝑌

||||||||
𝑘(𝑦∗(𝑦) − 1)2

1 − 𝑦∗(𝑦)+1
2

(
𝑦∗(𝑦)+1

2 + 𝑘(𝑦∗(𝑦) − 1)2
)
||||||||

= sup
𝑧∈𝔻

|||||||
𝑘(𝑧 − 1)2

1 − 𝑧+1
2

(
𝑧+1
2 + 𝑘(𝑧 − 1)2

)||||||| < 1,

where the last inequality is proved in [31, Example 2]. Therefore, 
(
𝐶ℎ

)
= 

(
𝐶𝑖

)
.
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