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Abstract

The equation ut = �u + up with homogeneous Dirichlet boundary conditions has solutions with blow-
up if p > 1. An adaptive time-step procedure is given to reproduce the asymptotic behavior of the
solutions in the numerical approximations. We prove that the numerical methods reproduce the blow-up
cases, the blow-up rate and the blow-up time. We also localize the numerical blow-up set.
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1. Introduction

We study the behavior of an adaptive time step procedure for the following parabolic
problem






ut = �u + up in � × [0, T ),

u = 0 on ∂� × [0, T ),

u(x, 0) = u0(x) > 0 on �.

(1.1)

Here p is superlinear (p > 1) in order to have solutions with blow-up. We assume

u0 is regular and � ⊂ R
d is a bounded smooth domain in order to guarantee that

u ∈ C2,1. A remarkable fact in this problem is that solutions may develop singu-
larities in finite time, no matter how smooth u0 is. For many differential equations
or systems the solutions can become unbounded in finite time (a phenomena that
is known as blow-up). Typical examples where this happens are problems involv-
ing reaction terms in the equation like (1.1) where a reaction term of power type is
present and so the blow-up phenomenon occurs in the sense that there exists a finite
time T such that lim

t→T
‖u(·, t)‖∞ = +∞ if the initial data is large enough (see [23]

and references therein). The blow-up set, which is defined as the set composed of
points x ∈ � such that u(x, t) → +∞ as t → T , is localized in thin regions of �, in
[26] is proved that the (d − 1) dimensional Hausdorff measure of the blow-up set is

finite. The blow-up rate at these points is given by u(x, t) ∼ (T − t)
− 1

p−1 , moreover
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lim
t→T

(T − t)
1

p−1 ‖u(·, t)‖L∞(�) = Cp, Cp =
(

1
p − 1

) 1
p−1

(see [15, 16]).

Hereafter we use the notation f (t) ∼ g(t) to mean that there exist constants c, C > 0
independent of t such that

cg(t) ≤ f (t) ≤ Cg(t).

We remark that these results hold if p is subcritical (p < d+2
d−2 if d ≥ 3). For super-

critical p the solutions may present different behaviors. For that reason we assume

1 < p < d+2
d−2 throughout the rest of the paper. However the asymptotic properties

of the numerical schemes described above hold for every p > 1, this is a difference
between the continuous solutions and their approximations.

Since the solution u may develop a singularity in finite time, it is relevant to study
the asymptotic behavior (close to the blow-up time) of numerical approximations
for this kind of problems.

The first works that address this topic are [21], [22], where the authors analyze finite
differences schemes for problem (1.1) with � = (0, 1) and p = 2. They study totally
discrete schemes with a uniform spatial mesh and they adapt the time step with an
explicit Euler method. They prove that in case that both the numerical approxima-
tions and the continuous solution blow up, the numerical blow-up times converge
to the continuous one as the parameter of the method goes to zero.

A similar result is proved in [11] for the more general case p > 1 and also a prop-
agation result is shown: if the initial datum is symmetric and increasing in [0, 1/2]
then x = 1/2 is the only blow-up point. It is proved that if x = 1/2 is a point of
the mesh then this is the only numerical blow-up point if p > 2, but if p = 2 the
blow-up propagates to the adjacent nodes (the adjacent nodes also blow up).

An adaptive in space algorithm is developed in [7]. This method refines the mesh
as time goes forward using the scale invariance of solutions to this equation. The
authors use this scheme to conjecture a second term in the asymptotic expansion of
the solution.

In [9], [8], [10], [19] the so called moving mesh methods are developed. They also
make use of the scaling invariance. They use a spatial mesh that is modified as time
goes forward. The nodes are moved according to a moving mesh partial differential
equation in such a way that the mass is uniformly distributed at any time.

Semidiscrete schemes are considered in [1], [2] for � = (0, 1). The spatial variable
is discretized while time remains continuous. The authors prove convergence of
the method in regions where the solution is regular as well as conditions that ensure
the presence of blow-up in the numerical scheme (p > 1 and some hypotheses on the
initial data). They also prove convergence of the numerical blow-up times in some
situations.
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The same scheme is considered in [17], where the authors find the blow-up rate and
the blow-up set of the numerical solutions and prove that they reproduce the theo-
retical ones. They also prove that the numerical solution blow up if the theoretical
one does and if the parameter of the method is small enough. Convergence of the
blow-up times is also proved without any further assumptions.

In [4], [14], the authors consider the heat equation in an interval with a nonlinear
Neumann condition at the boundary. They find conditions that guarantee the pres-
ence of blow-up in the numerical approximations (that differs with the ones for the
continuous problem) and convergence of the method and the numerical blow-up
times. They consider semidiscrete schemes ([14]) and totally discrete schemes using
Euler and Runge-Kutta methods ([4]).

Other works that deserve being mentioned are [5], [20], [25]. The survey [6] summa-
rizes the results contained in most of these articles.

The development and analysis of numerical methods for this kind of problems in
several space dimensions are much less developed than the one-dimensional case. In
fact, numerical methods for this problem in dimension d ≥ 2 with rigorous proofs
of the their asymptotic properties are rare in the literature.

In this paper we introduce and analyze totally discrete explicit and semi-implicit
methods for this problem in several space dimensions. For these methods we prove
that

– they reproduce the blow-up cases: if the continuous solution blows up in finite
time, the same occurs with the numerical solution for small choices of the param-
eters of the method;

– they have the correct blow-up rate;
– the numerical blow-up times converge to the theoretical one (we can only prove

an iterated limit and just for the explicit scheme);
– the localization of the numerical blow-up set.

As a first step to introduce the method we propose a method of lines: we discretize
the space variable but the time variable t remains continuous. In this stage, we con-
sider a general method with adequate assumptions. More precisely, we assume that
for every h > 0 small (h is the parameter of the method), there exists a set of nodes
{x1, . . . , xN } ⊂ � (N = N(h)), such that the numerical approximation of u at the
nodes xk, is given by

U(t) = (u1(t), . . . , uN(t)).

That is, uk(t) stands for an approximation of u(xk, t). We assume that U is the
solution of the following ODE

MU ′(t) = −AU(t) + MUp, (1.2)

with initial data given by uk(0) = u0(xk). In (1.2) and hereafter, all operations
between vectors are understood coordinate by coordinate.
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The precise assumptions on the matrices involved in the method are:

(P1) M is a diagonal matrix with positive entries mk.
(P2) A is a nonnegative symmetric matrix, with non-positive coefficients off the

diagonal, i.e., aki ≤ 0 if k 
= i) and akk > 0.

(P3)
∑N

i=1 aki ≥ 0.

Taking into account (P1), the ODE (1.2) can be written as

mku
′
k(t) = −

N∑

i=1

akiui(t) + mku
p
k (t), 1 ≤ k ≤ N,

with initial data uk(0) = u0(xk).

As an example, we can consider a linear finite element approximation of prob-
lem (1.1) on a regular acute triangulation of � (see [12]). Let Vh be the subspace

of H 1
0 (�) consisting of piecewise linear functions on the triangulation. The finite

element approximation uh : [0, Th) → Vh verifies for each t ∈ [0, Th)

∫

�

((uh)tv)I = −
∫

�

∇uh∇v +
∫

�

((uh)
pv)I ,

for every v ∈ Vh. Here (·)I stands for the linear Lagrange interpolate at the nodes
of the mesh. The vector U(t), the values of uh(·, t) at the nodes xk, verifies a system
like (1.2). In this case M is the lumped mass matrix and A is the stiffness matrix. The
assumptions on the matrices M and A hold as we are considering an acute regular

mesh. We observe that in this case uh = UI .

As another example, if � is a cube, � = (0, 1)d , we can use a semidiscrete finite
differences method to approximate the solution u(x, t) obtaining an ODE system
of the form (1.2).

We also need some kind of convergence result for the scheme. We will state the precise
hypotheses concerning convergence in the statement of each theorem. Finally, in the
Appendix we prove an L∞ convergence theorem under the consistency assumption.
The possible convergence assumptions are

(H1) For every τ > 0 ‖u − uh‖L∞(�×[0,T −τ ]) → 0 as h → 0.
(H2) ‖u − uh‖H 1

0 (�)(t) → 0 as h → 0 for a.e. t .

Once the ODE system is obtained, the next step is to discretize the time variable
t . In [4], the authors suggest an adaptive in time step procedure to deal with the
heat equation with a nonlinear boundary condition. They analyze explicit Euler
and Runge-Kutta methods, however all these methods have to deal with restrictions
in the time-step. In this work we first analyze an explicit Euler method and next we
introduce a semi-implicit scheme in order to avoid the time-step restrictions. We use
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Uj = (u
j

1, . . . , u
j
N) for the values of the numerical approximation at time tj , and

τj = tj+1 − tj . When we consider the explicit scheme, Uj is the solution of

MUj+1 = MUj + τj

(
−AUj + M(Uj )p

)

U(0) = uI
0, (1.3)

or equivalently, if we denote ∂u
j+1
k = 1

τj
(u

j+1
k − u

j
k)

mk∂u
j+1
k = −

N∑

i=1

akiu
j
k + mk(u

j
k)

p, 1 ≤ i ≤ N

u0
k = u0(xk), 1 ≤ k ≤ N + 1. (1.4)

While for the implicit scheme Uj is the solution of

MUj+1 = MUj + τj

(
−AUj+1 + M(Uj )p

)

U(0) = uI
0. (1.5)

Observe that (P1)–(P3) ensure that (M + τjA)−1 is well defined.

Also note that the scheme is not totally implicit since the nonlinear source up is eval-

uated at time tj while the stiffness matrix A is evaluated a time tj+1. This mixture

makes the scheme free of time-step restrictions while the explicit evaluation of (Uj )p

avoids to solve a nonlinear system in each step that could lead to nonuniqunes or
even to nonexistence (see [24]).

Now we choose the time steps τj = tj+1 − tj in order to reproduce the asymptotic
behavior. For different time-stepping strategies see [3, 5, 11, 21, 22, 24]. We fix λ

small and take

τj = λ

(wj )p
,

where

wj =
N∑

k=1

mku
j
k .

This choice for the time step is inspired by [4]. In that work the authors develop an
adaptive procedure that adapts the time step in a similar way but using the maximum
(L∞-norm) instead of wj (L1-norm). In their problem the maximum is fixed at the
right boundary node (i.e.) ‖Uj‖∞ = u

j

N+1). In this problem, the maximum (the

node k such that u
j
k = ‖Uj‖∞) can move from one node to another as j increases.

So the techniques used in [4] to study the behavior of ‖Uj‖∞ do not apply here.
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The motivation for this time-step is that, as will be shown, the behavior of wj is
given by

∂wj+1 ∼ (wj )p.

Hence, with our selection of τj we can obtain

wj+1 ∼ wj + τj (w
j )p = wj + λ ∼ w0 + (j + 1)λ,

and we obtain the asymptotic behavior of wj , which is, as we will see, similar to the
one for the continuous solution.

Then we study the asymptotic properties of the numerical schemes. We say that a
solution of (1.3) (or (1.5)) blows up if

lim
j→∞

‖Uj‖∞ = ∞, and Th,λ :=
∞∑

j=1

τj < ∞,

we call Th,λ the numerical blow-up time. Here ‖ · ‖∞ stands for the usual infinity

norm in R
N .

To describe when the blow-up phenomena occurs in the discrete problem we intro-
duce the following functional �h: R

N → R.

�h(U) ≡ 〈AU, U〉 −
〈

1
p + 1

MUp+1, 1
〉

,

where 1 = (1, 1, . . . , 1)T. This functional is a discrete version of

�(u)(t) ≡
∫

�

|∇u(s, t)|2
2

ds −
∫

�

(u(s, t))p+1

p + 1
ds,

which characterizes solutions with blow-up in the continuous problem: in [13, 15] is
proved that u blows up at time T if and only if �(u)(t) → −∞ as t → T . Here we
prove a similar result for the discrete functional �h and use this fact to prove that if
the continuous solution has finite time blow-up, its numerical approximation also
does when the parameters of the method are small enough.

Next we study the asymptotic behavior of the numerical approximations: if Uj is a
numerical solution with blow-up at time Th,λ its behavior is given by

‖Uj‖∞ ∼ (Th,λ − tj )−1/(p−1).

Moreover, the numerical schemes reproduce the constant Cp in the sense that

lim
j→∞

max
1≤k≤N

u
j
k(Th,λ − tj )1/(p−1) = Cp =

( 1
p − 1

) 1
p−1

.

The functional �h is also useful to deal with the convergence of the numerical blow-
up times. Unfortunately we can only prove the convergence of an iterated limit,

lim
h→0

lim
λ→0

Th,λ = T .
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By means of the numerical blow-up rate we observe a propagation property for
blow-up points. We prove that the nodes adjacent to those that blow-up as fast as
the maximum may also blow-up (opposite to the continuous problem), but they did
it with a slower rate. The number of adjacent nodes that also blow up is determined
only by p and is independent of h and λ.

In other words, if we call B∗(U) the set of nodes k such that

lim
j→∞

u
j
k(Th,λ − tj )1/(p−1) = Cp,

then the number of blow-up points that do not lie in B∗(U) depends (explicitly) only
on the power p.

We split the paper in two parts, the first one deals with the explicit scheme, in the
second one the analysis for the implicit method is developed.

2. The Explicit Scheme

The main tool in our proofs is a comparison argument, so we first prove a lemma
which states that this comparison argument holds. Since we need restrictions in the
time-step to prove this lemma, they are essential for every result in this section. That
is not the case for the implicit scheme.

Hence, throughout this section we assume the hypotheses of Lemma 2.1 below.

Definition 2.1: We say that (Zj ) is a supersolution (resp.: subsolution) for (1.3) if
verifies the equation with an inequality ≥ (≤) instead of an equality.

Lemma 2.1: Assume the time step verifies

τj < min
1≤i≤N

mi

aii

.

Let (U
j
), (Uj ) a super and a subsolution respectively for (1.3) such that U0 < U

0
,

then Uj < U
j

for every j .

Proof: Let Zj = U
j − Uj , by an approximation argument we can assume that we

have strict inequalities in (1.3), then (Zj ) verifies

M∂Zj+1 > −AZj + M((U
j
)p − (Uj )p

Z0 > 0.

If the statement of the Lemma is false, then there exists a first time tj+1 and a node

xk such that z
j+1
k ≤ 0. At that time we have

z
j+1
k >

(

1 − τj

akk

mk

)

z
j
k + τj



−
∑

i 
=k

aki

mk

z
j
i + (u

j
k)

p − (u
j
k)

p



 ≥ 0,

a contradiction. ��
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Remark 2.1: Observe that assumption (P1) is essential in the proof of the above
lemma. In fact the discrete maximum principle does not hold for a general mass matrix
M, i.e., a symmetric positive definite matrix.

Remark 2.2: Since U(0) ≥ 0 we have, as a consequence of the above lemma, that
Uj ≥ 0 for every j ≥ 1.

2.1. Blow-up in the Numerical Scheme

In this section, we find conditions to guarantee blow-up in (1.4). We begin with some
lemmas.

Since the matrix A is symmetric (property (P2)), there exists a basis of eigenvectors
for the following eigenvalue problem

Aφi = λiMφi.

We call η = η(h) the greatest eigenvalue of this problem, that is

0 ≤ λi ≤ η(h), 1 ≤ i ≤ N.

Lemma 2.2: For every y ∈ R
N there holds

〈Ay, y〉 ≤ η(h)〈My, y〉.

Proof: As the matrix M defines a scalar product in R
N , we can assume that the

eigenvectors φi are normalized such that

〈Mφi, φj 〉 = δij .

Let y ∈ R
N, y = ∑N

i=1 αiφi , then

〈Ay, y〉 =
〈

N∑

i=1

αiλiMφi,

N∑

j=1

αjφj

〉

=
N∑

i=1

α2
i λi〈Mφi, φi〉

≤ η(h)〈My, y〉.
��

Lemma 2.3: There exists a positive constant κ that depends only on h such that Uj0 ≥
κ for some j0 implies that (Uj )j≥1 blows up in finite time.

Remark 2.3: The constant κ can be computed, in fact

κ = (2
∑N

i,k=1 aki)
1

p−1 (mink mk)
p−2
p−1

(
∑N

k=1 mk)p−1
.
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Proof: Recall the definition of wj = ∑N
k=1 mku

j
k and that u

j
k ≥ 0 for every k, j

(Remark 2.2). Hence wj verifies

wj+1 = wj − τj

N∑

k=1

N∑

i=1

akiu
j
i + τj

N∑

k=1

mk(u
j
k)

p

≥ wj − τj

N∑

i=1

u
j
i

N∑

k=1

aki + τj

(
N∑

k=1

mk

)1−p

(wj )p

≥ wj − τj‖Uj‖∞
N∑

i,k=1

aki + τj

(
N∑

k=1

mk

)1−p

(wj )p

= wj + τj

(
−c1w

j + c2(w
j )p
)

,

where c1 =
∑N

i,k=1 aki

min mk
.

So if wj0 ≥
(

2c1
c2

)1/(p−1)

we have

wj0+1 ≥ wj0 + c2

2
τj (w

j0)p

= wj0 + c2

2
λ.

Applying this inequality inductively we obtain for j ≥ j0

wj ≥ wj0 + cλ(j − j0).

Hereafter c, ci, C, Ci , etc. are constants that may depend on h but do not depend
on λ or the time variables. They may change from one line to another in the course
of the proofs.

We have proved wj → ∞ as j → ∞. It remains to check that
∑

τj < ∞. To do so,
we observe that

τj = λ

(wj )p
≤ λ

(wj0 + cλ(j − j0))
p
,

and

∞∑

j=j0

λ

(wj0 + cλ(j − j0))
p

≤
∫ ∞

0

λ

(wj0 + cλs)p
ds < ∞.

This completes the proof. ��

Remark 2.4: In the course of the proof of the above lemma we also proved wj ≥ cj

for j large enough.
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Now we are going to prove the reverse inequality to obtain the asymptotic behavior
of ‖Uj‖∞.

Lemma 2.4: If (Uj ) is unbounded then

‖Uj‖∞ ∼ wj ∼ j.

Proof: The relation ‖Uj‖∞ ∼ wj holds since they define equivalent norms in R
N .

So we just have to prove wj ≤ Cj . Observe that

wj+1 = wj − τj

N∑

i=1

N∑

k=1

akiu
j
i + τj

N∑

i=1

mk(u
j
k)

p

≤ wj + τj

N∑

k=1

mk(u
j
k)

p

≤ wj + Cτj (w
j )p

= wj + Cλ.

Proceeding as before we get wj ≤ w0 + Cλj ≤ Cj, as we wanted to prove. ��

Theorem 2.1: Assume the time step τj verifies the restriction

τj <
2

p(wj+1)p−1 + η(h)
. (2.1)

Then positive solutions of (1.3) blow up if there exists j0 such that �h(U
j0) < 0.

Remark 2.5: We remark that the condition �h(U
j0) < 0 is similar to the one for the

blow-up phenomena in the continuous problem, in fact for the continuous problem u

blows up if and only if �(u)(t0) < 0 for some t0 ≥ 0.

Proof: First we observe that �h(U
j ) is decreasing in j , in order to do that we take

inner product of (1.3) with Uj+1 − Uj to obtain

0 =
〈

1
τj

M(Uj+1 − Uj) + AUj − M(Uj )p, Uj+1 − Uj

〉

= τj 〈M∂Uj+1, ∂Uj+1〉 + �h(U
j+1) − �h(U

j ) − 1
2 〈AUj+1, Uj+1〉

+〈AUj , Uj+1〉 − 1
2 〈AUj , Uj 〉 − 1

2 〈Mp(ξj )p−1, (Uj+1 − Uj)2〉.
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Hence we get,

�h(U
j+1) − �h(U

j )

≤ τj

(

τj

p(wj+1)p−1

2
− 1

)

〈M∂Uj+1, ∂Uj+1〉 +
τ 2
j

2
〈A∂Uj+1, ∂Uj+1〉

≤ τj

(

τj

p(wj+1)p−1

2
+ η(h)τj

2
− 1

)

〈M∂Uj+1, ∂Uj+1〉 ≤ 0,

due to Lemma 2.2 and the restriction in the time step τj (2.1). Actually �h(U
j+1) <

�h(U
j ) unless (Uj ) is independent of j . So, �h is a Lyapunov functional for (1.3).

Next we observe that the steady states of (1.3) have positive energy. Let (Wj ) = W

be a stationary solution of (1.3), then

0 = −AW + MWp.

Multiplying by W/2 we obtain,

0 = −1
2
〈AW, W 〉 + p + 1

2
1

p + 1
〈MWp, W 〉

≥ −�h(W).

Assume (Uj )j≥1 is a bounded solution of (1.3), then there exists a subsequence that
we still denote (Uj ) that converges to a steady state W with positive energy.

As �h(U
j ) decreases and there exists j0 such that �h(U

j0) < 0, then �h(W) < 0,
a contradiction. We conclude that (Uj ) is unbounded and (Lemma 2.3) has finite
time blow-up. ��

Corollary 2.1: Assume the time-step restriction of the above theorem and the con-
vergence hypotheses (H1), (H2). Let u0 an initial data for (1.1) such that u blows up
in finite time T . Then (Uj ) blows up in finite time Th,λ for every h, λ = λ(h) small
enough. Moreover

lim
h→0

lim
λ→0

Th,λ = T .

Remark 2.6: If the fully-discrete method converges in H 1
0 (�) a.e. t then λ can be

chosen independent of h.

Proof: If u blows up in finite time T then (see [13], [15])

�(u)(t) ≡
∫

�

|∇u(s, t)|2
2

ds −
∫

�

(u(s, t))p+1

p + 1
ds → −∞ (t ↗ T ).

Hence we have �(u)(t0) < 0 for some t0 < T . Let j0 = j0(h, λ) be the first j such
that tj0 ≥ t0. Note that the existence of j0 is guaranteed by the convergence theorem
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for small h, λ (see the Appendix). Now we use the convergence of (Uj ) to uh in [0, t0]
and (H1) to see that

lim
h→0

lim
λ→0

�h(U
j0) = �(u)(t0).

So for h, λ = λ(h) small enough we get �h(U
j0) < 0 and so, by the above theorem

(Uj ) blows up.

Now we turn our attention to the blow-up times. In [17] it is proved that the blow-up
time of the semi-discrete solutions (solutions of (1.2)), that we denote Th, converges
to T as h → 0. That work deals just with � = (0, 1) and a finite element method but
the arguments used there can be extended with no difficulty to our case. We sketch
the proof for the sake of completeness.

Using similar arguments to the ones above, it can be seen that if the continuous
solution blows up then for every h small enough the semidiscrete solution U(t) also
does. Hence we can assume that the semidiscrete solution U(t) is large enough in
order to verify

d

dt
〈MU(t), U(t)〉 = 2〈MU ′(t), U(t)〉
= 2〈−AU(t), U(t)〉 + 2〈MUp(t), U(t)〉
= −4�h(U(t)) + 2(p − 1)

p + 1
〈MUp(t), U(t)〉

≥ 4|�h(U(t))| + 2(p − 1)

p + 1
(〈MU(t), U(t)〉) p+1

2 .

Integrating between t0 and Th we obtain

(Th − t0) ≤ C

(−�h(U(t0)))
p−1
p+1

.

Here C depends only on p.

Given ε > 0, we can choose L large enough to ensure that
(

C

L
p−1
p+1

)

≤ ε

2
.

As u blows up at time T we can choose τ < ε
2 such that

−�(u(·, T − τ) ≥ 2L.

If h is small enough,

−�h(U(T − τ)) ≥ L,
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and hence

Th − (T − τ) ≤
(

C

(−�h(U(T − τ)))
p−1
p+1

)

≤
(

C

L
p−1
p+1

)

≤ ε

2
.

Therefore,

|Th − T | ≤ |Th − (T − τ)| + |τ | < ε.

We have proved limh→0 Th = T , so we just have to prove that for fixed h

lim
λ→0

Th,λ = Th.

To do that we observe that from Lemma 2.3 there exists j0, that does not depend on
λ such that for j ≥ j0

wj ≥ wj0 + cλ(j − j0),

hence

Th,λ − tj =
∞∑

l=j+1

τl =
∞∑

l=j+1

λ

(wl)p

≤
∞∑

l=j+1

λ

(wj0 + cλ(l − j0))
p

≤
∫ ∞

j

λ

(wj0 + cλ(s − j0))
p

ds

= 1
c

∫ ∞

wj0+cλ(j−j0)

1
sp

ds ≤ 1
c

∫ ∞

wj0

1
sp

ds.

This holds for any j0 large enough and for every j ≥ j0. In particular we get

Th,λ − tj ≤ 1
c

∫ ∞

wj

1
sp

ds.

This inequality is very useful since gives a bound (independent of λ) for the distance

to the numerical blow-up time in terms of wj . Hence, given ε > 0 we can choose K

large enough in order to have

1
c

∫ ∞

K

1
sp

ds ≤ ε

3
, K−p <

ε

3
.

Next we choose τ < ε
3 such that

∑
mkuk(Th − 2τ) ≥ 2K (recall that the vector

(u1(t), . . . , uN(t)) is the solution of the semidiscrete scheme). For λ = λ(h, τ ) small

enough we get, from (H2), that wj ≥ K for every j such that Th −2τ ≤ tj ≤ Th − τ .
We choose one of those j and compute

|Th,λ − Th| ≤ |Th,λ − tj | + |tj − Th|
≤ 1

c

∫ ∞

K

1
sp

ds + 2τ

≤ ε

This completes the proof. ��
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2.2. Blow-up Rate

In this section, we study the asymptotic behavior of numerical solutions with blow-
up.

Theorem 2.2: Let uh,λ a discrete solution with numerical blow-up at time Th,λ, then

‖Uj‖∞ ∼ (Th,λ − tj )−1/(p−1).

Furthermore

lim
j→∞

‖Uj‖∞(Th,λ − tj )1/(p−1) = Cp =
(

1
p − 1

)1/(p−1)

.

We want to remark that this is the behavior of the continuous solutions with blow-up.

Proof: We know from Lemma 2.3 that wj = ∑
mku

j
k verifies

wj+1 ≥ wj + cλ,

so we have

(Th,λ − tj ) =
∞∑

k=j+1

τj =
∞∑

k=j+1

λ

(wj )p

≤
∫ ∞

j

λ

(w(s))p
ds.

Here w(s) is the linear interpolant of wj (w(j) = wj), hence for j < s < j + 1 we

have w′(s) = wj+1 − wj ≥ cλ, and so

∫ ∞

j

λ

(w(s))p
ds ≤

∫ ∞

wj

λ

cvpλ
dv ≤ 1

c(p − 1)

(
1

wj

)p−1

,

or equivalently

‖Uj‖∞ ≤ Cwj ≤ C(Th,λ − tj )−1/(p−1).

The reverse inequalities can be handled in a similar way to obtain

‖Uj‖∞ ∼ wj ∼ (Th,λ − tj )−1/(p−1).

Next we look for the constant Cp in the asymptotic behavior of the numerical solu-

tion, to do that we change variables. Let (Y j ) be defined by

y
j
k = u

j
k(Th,λ − tj )1/(p−1) 1 ≤ k ≤ N.
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In the sequel of the proof we will use �y
j+1
k to denote

y
j+1
k − y

j
k

τj /(Th,λ − tj )
,

This can be thought as τj /(Th,λ − tj ) to be the time step in the new variables. With
this notation the new variables verify

mk�y
j+1
k = − (Th,λ − tj+1)

1
p−1

(Th,λ − tj )
1

p−1

(Th,λ − tj )

N∑

i=1

akiy
j
i

+mk

(Th,λ − tj+1)
1

p−1

(Th,λ − tj )
1

p−1

(y
j
k )p

+ (Th,λ − tj )mku
j
k

τj

(
(Th,λ − tj+1)

1
p−1 − (Th,λ − tj )

1
p−1

)
,

y0
k = (Th,λ)

1/(p−1)u0(xk), 1 ≤ k ≤ N + 1.

We want to prove that ‖Y j‖∞ → Cp. To do that, we first observe that

lim
j→∞

Th,λ − tj

Th,λ − tj+1
= 1,

since

1 ≤ Th,λ − tj

Th,λ − tj+1
=
∑∞

k=j+1 τk
∑∞

k=j+2 τk

= 1 + τj+1
∑∞

k=j+2 τk

≤ 1 + λ/(wj+1)p

C/(wj+1)p−1
→ 1.

Now assume there exists ε > 0 and a subsequence that we still denote (y
j
k ) such that

y
j
k > Cp + ε for some k = k(j). Then for those y

j
k we have

(y
j
k )p − 1

p − 1
y

j
k >

3δ

mk

.

We also know from the blow-up rate that the new variables y
j
i are bounded and so,

we obtain for j large enough

mk�y
j+1
k ≥ −δ + mk

(

(y
j
k )p − 1

p − 1
y

j
k

)

+ mk(y
j
k )p




(Th,λ − tj+1)

1
p−1

(Th,λ − tj )
1

p−1

− 1





≥ δ. (2.2)

This means that actually y
j
k > Cp + ε for every j large and consequently (2.2) is

verified for all those j . So y
j
k is unbounded, a contradiction.
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If we assume y
j
k < Cp − ε arguing along the same lines we obtain that y

j
k verifies

mk�y
j+1
k ≤ δ + mk

(Th,λ − tj+1)
1

p−1

(Th,λ − tj )
1

p−1

(

(y
j
k )p

1
p − 1

y
j
k

)

+ mk

p − 1
y

j
k




(Th,λ − tj+1)

1
p−1

(Th,λ − tj )
1

p−1

− (Th,λ − ξj )
1

p−1 −1

(Th,λ − tj )
1

p−1 −1





≤ 2δ + C

(

(y
j
k )p − 1

p − 1
y

j
k

)

.

This shows that either y
j
k → 0 as j → ∞ or mk�y

j+1
k < −δ, which means that y

j
k

is not bounded from below (this is not possible).

We conclude that if y
j
k does not converge to zero, then converges to Cp. As the

blow-up rate implies that for every j

‖Y j‖∞ ≥ c,

we have

lim
j→∞

‖Y j‖∞ = lim
j→∞

‖Uj‖∞(Th,λ − tj )1/(p−1) = Cp,

as we wanted to prove. ��
2.3. Blow-up Set

Now we turn our attention to the blow-up set. We consider the set B∗(U) composed
of those nodes that blow-up like ‖Uj‖∞, that is

B∗(U) =
{
k : lim

j→∞
u

j
k(Th,λ − tj )1/(p−1) = Cp

}
.

We study the behavior of the nodes adjacent to this set, then we repeat the procedure
with these last nodes.

Definition 2.2: We define G to be the graph with vertices in the nodes and we say that
two different nodes are connected if and only if aij 
= 0. We consider the usual distance
between nodes measured as a graph, see [18]. Finally, we denote by d(k) the distance
of the node xk to B∗(U).

We prove that u
j
k blows up if and only if d(k) ≤ K, where K depends only on p.

Theorem 2.3: Assume the time step verifies τj <
mi

aii
, (1 ≤ i ≤ N). Then the blow-up

propagates outside B∗(U) in the following way: let K =
[

1
p−1

]
, the solution of (1.3)

blows up exactly at K nodes near B∗(U). More precisely,

u
j
k → +∞ ⇐⇒ d(k) ≤ K.
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Moreover, if d(k) ≤ K, the asymptotic behavior of u
j
k is given by

u
j
k ∼ (Th,λ − tj )

− 1
p−1 +d(k)

,

if d(k) 
= 1
p−1 and if d(k) = 1

p−1

u
j
k ∼ ln(Th,λ − tj ).

Proof of Theorem 1.4: We want to show that the blow-up propagates K nodes
around B∗(U), we begin with a node xk such that d(k) = 1. We claim that the
behavior of u

j
k is given by

u
j
k ∼






j−p+2 if p < 2
ln j if p = 2,

C if p > 2,

to prove that we will show that

w
j
A = A

j∑

s=1

sτs−1,

which has the behavior described above, can be used as super and subsolution for
an equation verified by u

j
k choosing A appropriately.

We observe that u
j
k satisfies

mk∂u
j+1
k = −

N∑

i=1

akiu
j
i + mk(u

j
k)

p

∼ �1‖Uj‖∞ − akk

mk

u
j
k + �2(u

j
k)

p,

for some constants �i . In other words, there exists constants ci, Ci > 0, i = 1, 2
such that for j large enough

∂u
j+1
k ≤ C1j − akk

mk

u
j
k + C2(u

j
k)

p (2.3)

and

∂u
j+1
k ≥ c1j − akk

mk

u
j
k + c2(u

j
k)

p. (2.4)

Now we observe that if A and j are large enough, w
j
A verifies

∂w
j
A = A(j + 1)

≥ C1j − akk

mk

w
j
A + C2(w

j
A)p,
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since (w
j
A)p/j → 0 as j goes to infinity. Hence w

j
A is a supersolution for (2.3) and

so

u
j
k ≤ w

j
A

(a comparison principle like Lemma 2.2 holds for this equation and can be proved
in the same way) On the other hand if we choose A small we get

∂w
j
A = A(j + 1)

≤ c1j − akk

mk

w
j
A + c2(w

j
A)p,

Hence now we can use w
j
A as a subsolution for (2.4) to handle the other inequality.

Therefore

u
j
k ∼ w

j
A.

We observe that if p < 2 the node xk is a blow-up node and we also have the blow-up

rate for this node (uj
k ∼ j−p+2). If p > 2 this node is bounded. Next we assume

p < 2 (if p > 2 it is easy to prove that every node k with d(k) ≥ 1 is bounded)
and we are going to find the behavior of a node, that we still denote k, such that
d(k) = 2. That is, it is not adjacent to B∗(U) and it is adjacent to a node which has

the behavior j−p+2.

Now let

w
j
A = A

j∑

s=1

τss
−p+2,

and observe that u
j
k verifies

mk∂u
j+1
k = −

N∑

i=1

akiu
j
i + mk(u

j
k)

p ∼ �1j
−p+2 − akk

mk

u
j
k + �2(u

j
k)

p.

That is, for j large we have

∂u
j+1
k ≤ C1j

−p+2 − akk

mk

u
j
k + C2(u

j
k)

p (2.5)

and

∂u
j+1
k ≥ c1j

−p+2 − akk

mk

u
j
k + c2(u

j
k)

p

Now for A and j large, w
j
A verifies

∂w
j
A = A(j + 1)−p+2

≥ C1j
−p+2 − C2w

j
A + C3(w

j
A)p.



Adaptive numerical method 343

Hence w
j
A is a supersolution for (2.5) and so

u
j
k ≤ w

j
A.

On the other hand if we choose A small we get

∂w
j
A = A(j + 1)−p+2

≤ c1j
−p+2 − c2w

j
A + c3(w

j
A)p,

Now we can use w
j
A as a subsolution for (2.4) to handle the other inequality. So

u
j
k ∼ w

j
A.

If p < 3/2 the node xk is a blow-up node and we also have the blow-up rate for this

node (uj
k ∼ j−2p+3). If p > 3/2 this node is bounded. In the case p < 3/2 we repeat

this procedure inductively to obtain the theorem. ��

3. The Implicit Scheme

In order to avoid the time step restrictions we now consider the semi-implicit scheme
(1.5) and prove that similar properties can be observed in this procedure.

Lemma 3.1: Let (U
j
), (Uj ) a super and a subsolution respectively for (1.5) such that

U0 < U
0
, then Uj < U

j
for every j .

Proof: Let Zj = U
j −Uj , we assume that we have strict inequalities in (1.5), then

(Zj ) verifies

M∂Zj+1 > −AZj+1 + M((U
j
)p − (Uj )p),

Z0 > 0.
(3.1)

If the statement of the Lemma is false, then there exists a first time tj+1 and a node

xk with z
j+1
k = min1≤i≤N z

j+1
i ≤ 0 that verifies

z
j+1
k > z

j
k − τj

N∑

i=1

aki

mk

z
j+1
i + τj

(
(u

j
k)

p − (u
j
k)

p
) ≥ z

j
k − τj z

j+1
k

mk

N∑

i=1

aki ≥ 0,

a contradiction.

Remark 3.1: As in the explicit scheme, this lemma does not hold for a general mass
matrix M. Assumption (P1) can not be relaxed.



344 P. Groisman

3.1. Blow-up in the Numerical Scheme

Lemma 3.2: There exists a constant κ such that Uj0 ≥ κ implies that Uj blows up in
finite time. Furthermore

‖Uj‖∞ ∼ wj ∼ j

Remark 3.2: Unfortunately in this case we are not able to prove that the constant κ

does not depend on λ and hence we can not prove the convergence of the numerical
blow-up times.

Proof:

wj+1 = wj − τj

N∑

k=1

N∑

i=1

akiu
j+1
i + τj

N∑

k=1

mk(u
j
k)

p

≤ wj + τj

N∑

k=1

mk(u
j
k)

p

≤ wj + Cτj (w
j )p

= wj + Cλ.

Hence wj ≤ Cj . To prove the reverse inequality we observe that

wj+1 = wj − τj

N∑

k=1

N∑

i=1

akiu
j+1
i + τj

N∑

k=1

mk(u
j
k)

p

≥ wj − τjC1w
j+1 + τjC2(w

j )p,

where

C1 = max
1≤i≤N

∑
k aki

mi

, C2 =
(

N∑

k=1

mk

)1−p

.

Hence

(1 + C1τj )w
j+1 ≥ wj + C2τj (w

j )p. (3.2)

Now we look for a subsolution of (3.2) of the form zj = �j . This sequence verifies

(1 + C1τj )z
j+1 = zj + �C1τj j + �(1 + C1τj ) ≤ zj + C2τj (z

j )p

if � ≥ (
λC1+C1+1

λC2 )1/(p−1). As the discrete maximum principle holds for this equation

we obtain that if wj0 > � then for every j ≥ j0

wj ≥ zj = �j.

This completes the proof. ��
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Theorem 3.1: If �h(U
j0) < 0 for some j0, then (Uj )j≥1 blows up.

Proof: We first observe that also for this scheme �h(U
j ) is decreasing in j . We

take inner product of (1.5) with Uj+1 − Uj

0 =
〈

1
τj

M(Uj+1 − Uj) + AUj+1 − M(Uj )p, Uj+1 − Uj

〉

= τj 〈M∂Uj+1, ∂Uj+1〉 + �h(U
j+1) − �h(U

j ) + 1
2 〈AUj+1, Uj+1〉

−〈AUj , Uj+1〉 + 1
2 〈AUj , Uj 〉 + p

2
〈M(ξj )p−1, (Uj+1 − Uj)2〉.

Hence we obtain,

�h(U
j+1) − �h(U

j ) = −τj 〈M∂Uj+1, ∂Uj+1〉 −
τ 2
j

2
〈A∂Uj+1, ∂Uj+1〉

−p

2
〈M(ξj )p−1, (Uj+1 − Uj)2〉

≤ 0.

The steady states of (1.5) are the same of the ones for (1.3), so they have positive

energy. Now, assume (Uj ) is a bounded solution of (1.5), then it has a convergent
subsequece. Its limit W is a steady state with positive energy.

As �h(U
j ) decreases and there exists j0 with �h(U

j0) < 0 then �h(W) < 0, a
contradiction. We conclude that (Uj ) is unbounded and by Lemma 3.2 has finite
time blow-up. ��

Corollary 3.1: Assume the convergence hypotheses (H1), (H2). Let u0 an initial data
for (1.1) such that u blows up in finite time T . Then uh,λ blows up in finite time Th,λ

for every h, λ = λ(h) small enough.

Proof: If u blows up in finite time T then

�(u)(t) ≡
∫

�

|∇u(s, t)|2
2

ds −
∫

�

(u(s, t))p+1

p + 1
ds → −∞ (t ↗ T ).

Hence there exists a time t0 < T with �(u)(t0) < 0. Let j0 = inf{j : tj ≥ t0}. We
use the convergence hypothesis (H1) and the convergence of (Uj ) to uh in [0, t0] to
see that

lim
h→0

lim
λ→0

�h(U
j0) = �(u)(t0).

So for h, λ(h) small enough we get �h(U
j0) < 0 and so (Uj ) blows up. ��

Next we turn our attention to the blow-up rate of the discrete solutions.
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3.2. Blow-up Rate

Theorem 3.2: Let uh,λ be a solution with blow-up at time Th,λ, then

max
1≤k≤N

u
j
k ∼ (Th,λ − tj )−1/(p−1).

Moreover

lim
j→∞

max
1≤k≤N

u
j
k(Th,λ − tj )1/(p−1) = Cp =

(
1

p − 1

)1/(p−1)

.

Proof: The first part of the proof is the same as the one for the explicit scheme so
we assume we have proved

‖Uj‖∞ ∼ (Th,λ − tj )
− 1

p−1 ,

and we are going to prove the convergence of the self-similar variables (Y j ) to Cp.

Let (Y j ), �y
j+1
k be defined as in the previous section. In the semi-implicit scheme,

these variables verify

mk�y
j+1
k = −(Th,λ − tj )

N∑

i=1

akiy
j+1
i + mk

(Th,λ − tj+1)1/(p−1)

(Th,λ − tj )1/(p−1)
(y

j
k )p

−mku
j
k((Th,λ − tj )1/(p−1) − (Th,λ − tj+1)1/(p−1)),

y0
k = T

1/(p−1)
h,λ u0(xk).

If we assume the existence of ε > 0 and a subsequence such that y
j
k > Cp + ε for

some k = k(j). Then for those y
j
k , as they are bounded, we have for j large

�y
j+1
k ≥ −δ + mk

(Th,λ − tj+1)1/(p−1)

(Th,λ − tj )1/(p−1)

(

(y
j
k )p − 1

p − 1
y

j
k

)

+ 1
p − 1

y
j
k



1 − (Th,λ − tj+1)
1

p−1 −1

(Th,λ − tj )
1

p−1 −1





≥ δ. (3.3)

Hence y
j
k > Cp + ε for every j large enough and consequently (3.3) is verified for

all those j . So y
j
k is unbounded, a contradiction.

The case where there exists an infinite number of (j, k) with y
j
k < Cp − ε can be

handled in the same way to conclude that as j → ∞ either y
j
k → 0 or y

j
k → Cp.

Now we use the blow-up rate to obtain

lim
j→∞

max
1≤k≤N

y
j
k = lim

j→∞
max

1≤k≤N
(Th,λ − tj )1/(p−1)u

j
k = Cp,

as we wanted to prove. ��
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3.3. Blow-up Set

The propagation property for the blow-up nodes holds for the implicit scheme and
its proof is very similar. We do not include it.

4. Numerical Experiments

In this section, we include some numerical experiments to illustrate the theoretical
results proved in the previous sections. We show solutions to (1.3) for p = 4 (Fig. 1)
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Fig. 1. Single point blow-up (p = 4). Numerical solution at time t = 0 (above), t = 2.562955143779549×
10−4 (middle) and t = 2.562955143780117 × 10−4 (below)
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and p = 1.5 (Fig. 2). The matrices M and A were obtained by the Finite Element
Method with mass lumping (see the Introduction). For the initial datum we have
used the (numerical) solution to

{
�u = µ in �,

u = 0 on ∂�.

The constant µ was chosen large enough in order to get a solution with blow-up.

In Fig. 1 single point blow-up can be observed (i.e., there is just one node that blows
up and the rest of the nodes seems to be be bounded) as proved in Theorem 2.3.
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Fig. 2. Propagation of blow-up (p = 1.5). Numerical solution at time t = 0 (up), t = 0.03078 (middle)
and t = 0.03228 (down)
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Fig. 3. Blow-up rates

We compare these results with the case p = 1.5 in Fig. 2, where more than one node
blow up, although they do with different rates.

Finally, Fig. 3 shows the blow-up rates in both cases, it can be appreciated that the
slopes of the curves are approximately 1/3 for p = 4 and 2 for p = 1.5, showing
that

‖Uj‖∞ ∼ (Th,λ − tj )−1/(p−1),

as proved in Theorem 2.2. This blow-up rate coincides with the one of the continuous
solution.

5. Conclusion

Nonlinear parabolic equations like (1.1) may develop singularities in finite time. In
the analysis of numerical solutions to these problems standard techniques do not
apply, mostly due to the fact that convergence theorems do not include cases with
singularities as the one studied here.

We have introduced totally discrete schemes to deal with the solutions with blow-up
of (1.1) and we have proved that these schemes reproduce the blow-up cases, the
blow-up rate and the blow-up set. In addition, we proved that the numerical blow-up
times converge to the theoretical one (just an iterated limit).

Appendix

In this appendix, we prove that if the general method considered for the space dis-
cretization is consistent (see below) then the totally discrete method converges in
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the L∞ norm. We perform the proofs for the explicit scheme, they can be extended
to the implicit one.

Definition 6.1: Let w be a regular solution of

wt = �w + f (x, t) in � × (0, T ),

w = 0 on ∂� × (0, T ).

We say that the scheme (1.2) is consistent if for any t ∈ (0, T − τ) it holds

mkwt(xk, t) = −
N∑

i=1

akiw(xk, t) + mkf (xk, t) + ρk,h(t), (6.1)

and there exists a function ρ : R+ → R+ such that

max
k

|ρk,h(t)|
mk

≤ ρ(h), for every t ∈ (0, T − τ),

with ρ(h) → 0 if h → 0. The function ρ is called the modulus of consistency of the
method.

If we consider for example a finite differences scheme in a cube � = (0, 1)d ⊂ R
d .

Then the modulus of consistency can be taken as ρ(h) = Ch2.

Theorem 6.1: Let u be a regular solution of (1.1) (u ∈ C2,1(� × [0, T − τ ]) and

(Uj )j≥1 the numerical approximation given by (1.4). If the scheme (1.2) is consistent

with modulus of consistency ρ, then there exists positive constants C, h0, λ0 depending

on ‖u‖ in C2,1(� × [0, T − τ ]) such that for every h < h0, λ < λ0 holds

max
j

max
1≤k≤N

|uj
k − u(xk, tj )| ≤ C(ρ(h) + λ).

Proof: We define the error functions

e
j
k = u(xk, tj ) − u

j
k .

By (6.1) and (1.4), these functions verify

mk∂e
j+1
k ≤ −

N∑

i=1

akie
j
i + mk(u

p(xk, tj ) − (u
j
k)

p) + ρk(h) + Cmkλ,

where C is a bound for ‖utt‖L∞(�×[0,T −τ ]). Let

t0 = max
{

t : t < T − τ, max
i

max
tj <t

|ej
i | ≤ 1

}

.
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We will see by the end of the proof that t0 = T − τ for h, λ small enough. In [0, t0]
we have

mk∂e
j+1
k = −

N∑

i=1

akie
j
i + mkp(ξ

j
k )p−1e

j
k + ρk(h) + Cmkλ,

hence, in [0, t0], Ej = (e
j

1 , . . . , e
j
N ) satisfies

M∂Ej+1 ≤ −AEj + KMEj + (ρ(h) + Cλ)M1t ,

E(0) = 0.
(6.2)

Here K is the Lipchitz constant for f (u) = up in [0, ‖u(·, T − τ)‖L∞ ]. Let us now

define Wj = (w
j

1 , . . . , wN(t)), which will be used as a supersolution.

w
j
i = e(2K+1)tj (ρ(h) + Cλ).

It is easy to check that Wj verifies

M∂Wj+1 > −AWj + KMWj + (ρ(h) + Cλ)M1t ,

Hence Wj is a supersolution for (6.2), and by Lemma 2.1 we get

e
j
k ≤ e(2K+1)tj (ρ(h) + Cλ), tj ∈ [0, t0].

Arguing along the same lines with −Ej , we obtain

|ej
k | ≤ e(2K+1)T (ρ(h) + Cλ) ≤ C(ρ(h) + λ), tj ∈ [0, t0].

Using this fact, since ρ(h) goes to zero, we get that |ej
k | ≤ 1 for every tj ∈ [0, T − τ ]

for every h, λ small enough. Therefore t0 = T − τ for h, λ small enough. This proves
the convergence of the scheme. In fact we have that for every h < h0, λ < λ0

max
j

max
1≤k≤N

|uj
k − u(xk, tj )| ≤ C(ρ(h) + λ). ��
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[13] Cortázar, C., del Pino, M., Elgueta, M.: The problem of uniqueness of the limit in a semilinear heat
equation. Comm. Partial Differ. Eq. 24(11–12), 2147–2172 (1999).

[14] Duran, R. G., Etcheverry, J. I., Rossi, J. D.: Numerical approximation of a parabolic problem with
a nonlinear boundary condition. Discrete Contin. Dyn. Sys. 4(3), 497–506 (1998).

[15] Giga, Y., Kohn, R. V.: Characterizing blow-up using similarity variables. Indiana Univ. Math. J.
36(1), 1–40 (1987).

[16] Giga, Y., Kohn, R. V.: Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl.
Math. 42(6), 845–884 (1989).

[17] Groisman, P., Rossi, J. D.: Asymptotic behaviour for a numerical approximation of a parabolic
problem with blowing up solutions. J. Comput. Appl. Math. 135(1), 135–155 (2001).

[18] Harary, F.: Graph theory. Reading, MA/Menlo Park, CA/London: Addison-Wesley 1969.
[19] Huang, W., Ren, Y., Russell, R. D.: Moving mesh partial differential equations (MMPDES) based

on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994).
[20] Le Roux, M.-N.: Semidiscretization in time of nonlinear parabolic equations with blow-up of the

solution. SIAM J. Numer. Anal. 31(1), 170–195 (1994).
[21] Nakagawa, T.: Blowing up of a finite difference solution to ut = uxx + u2. Appl. Math. Optim.

2(4), 337–350 (1975/76).
[22] Nakagawa, T., Ushijima, T.: Finite element analysis of the semi-linear heat equation of blow-up

type. In J. J. H. Miller (ed.), Topics in numerical analysis, III. Published for the Royal Irish Academy
by: London New York: Academic Press, pp. 275–291 (1977).

[23] Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P.: Blow-up in quasilin-
ear parabolic equations. Gruyter Expositions in Mathematics, vol. 19. Berlin: de Gruyter 1995.
Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors.

[24] Stuart, A. M., Floater, M. S.: On the computation of blow-up. Europ. vol. 19. Eur. J. Appl. Math.
1(1), 47–71 (1990).

[25] Ushijima, T. K.: On the approximation of blow-up time for solutions of nonlinear parabolic equa-
tions. Publ. Res. Inst. Math. Sci. 36(5), 613–640 (2000).

[26] Velázquez, J. J. L.: Classification of singularities for blowing up solutions in higher dimensions.
Trans. Amer. Math. Soc. 338(1), 441–464 (1993).

Pablo Groisman
Instituto de Cálculo
Fac. Ciencias Exactas y Naturales
Universidad de Buenos Aires
Pabellón II Ciudad Universitaria (1428)
Buenos Aires, Argentina
e-mail: pgroisma@dm.uba.ar


