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Abstract. In this article, we develop a general method for constructing wa-
velets {| detAj |1/2ψ(Ajx − xj,k) : j ∈ J, k ∈ K} on irregular lattices of the

form X = {xj,k ∈ Rd : j ∈ J, k ∈ K}, and with an arbitrary countable

family of invertible d × d matrices {Aj ∈ GLd(R) : j ∈ J} that do not nec-

essarily have a group structure. This wavelet construction is a particular case
of general atomic frame decompositions of L2(Rd) developed in this article,

that allow other time frequency decompositions such as non-harmonic Gabor

frames with non-uniform covering of the Euclidean space Rd. Possible applica-
tions include image and video compression, speech coding, image and digital

data transmission, image analysis, estimations and detection, and seismology.

1. Introduction

Recently there has been a considerable interest in trying to obtain atomic decom-
positions of the space L2(Rd). These decompositions are usually obtained in terms
of frames generated by a family of functions translated on a regular grid, and di-
lated by powers of a dilation matrix. The uniformity of the grid and the structure
of the dilations can be exploited to obtain very sharp results. For irregular grids
and unstructured dilations or if dilations are replaced by other transformations
the situation is more complex and requires different techniques. One method is to
use the regular case and try to obtain perturbations of the grid that preserve the
frame structure. Another possibility is to obtain irregular samples of the continuous
transform, that have the required properties.

In this article we study frame decompositions of the space L2(Rd) using translations
of a family of functions on irregular grids, and arbitrary dilations, and we even
replace dilations by other transformations.

Our approach is different and very general, allowing quite general constructions. We
prove the existence of smooth time-frequency frame atoms in several variables. The
setting includes as particular cases, wavelet frames on irregular lattices and with
a set of dilations or transformations that do not have a group structure. Another
particular case are non-harmonic Gabor frames with non-uniform covering of the
Euclidean space. It also leads to new constructions of wavelet and Gabor frames
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with regular lattice translates. One of the nice features of the proposed method is
that it unifies different atomic decompositions.

For the case of regular lattices Guido Weiss and his group [HDW02, HDW03, Lab02]
developed a very fundamental program to characterize a large class of decomposi-
tions of L2(Rd) through certain equations that the generators must satisfy. This is
an important attempt to unify Gabor and wavelets decompositions. Other funda-
mental construction of MRA wavelet frames on regular lattices can also be found
in [CHS], [CHSS03], [CS00]. Our methods can be used to produce a substantial
part of these systems.

A set Q ⊂ Rd is a wavelet set if the inverse Fourier transform of the characteristic
function of the set is a wavelet. Wavelet sets, frame wavelet sets and methods
for constructing such sets have been studied recently [BMM99], [BL99], [BL01],
[BS03], [DLS97], [DLS98], [HL00] [Ola03], [OS03]. Our methods give constructions
of wavelet sets with translations on irregular grids.

Let J and K be countable index sets. We consider families of functions {gj}j∈J ⊂
L2(Rd) and discrete sets X = {xj,k : j ∈ J, k ∈ K} ⊆ Rd such that the collection
{gj(x− xj,k) : j ∈ J, k ∈ K} form a frame for L2(Rd). The wavelet case is obtained
when gj = |det(A)|j/2g ◦ Aj with A an expansive matrix and g a fixed atom. We
want to stress here that our constructions are much more general, allowing for
example a different invertible (not necessarily expansive) matrix Aj for each j ∈ J.
For the case of orthogonal wavelets, Yang Wang [Wan02] has recently considered
wavelet sets associated with arbitrary families of invertible matrices and irregular
sets of translates. He gave conditions for the existence of such wavelet sets and
related them to spectral pairs.

Irregular wavelet and Gabor frames also have been studied as perturbations of uni-
form (lattice translate) frames and also as sampling of the continuous wavelet/ Ga-
bor transform. See [Bal97], [BCHL03], [Chr96], [Chr97], [CFZ01], [CH97], [CDH99],
[FZ95], [FG89], [Grö91], [Grö93],[HK03], [OS92], [RS95], [SZ00], [SZ01], [SZ02],
[SZ03], [SZ03].

The approach in this article can be considered in the spirit of the classic construction
in 1 dimension of smooth regular tight frames done by Daubechies, Grossmann
and Meyer in [DGM86]. They found, for the case of uniform lattices, general
conditions on a compactly supported smooth function h, in order that it generates
a tight Gabor frame of L2(R). In the affine case they found necessary and sufficient
conditions for a band limited function in order that it generates a smooth wavelet
frame. See also [HW89].

There were other related attempts to obtain atomic decompositions of functional
spaces using very general systems. See for example [FG85], [Fei87] in the context
of locally compact groups.

This paper is organized as follows: Section 2 introduces the notation and some
preliminaries. Section 3 presents a Theorem on wavelet construction on arbitrary,
sufficiently dense, but otherwise irregular grids and with arbitrary dilation or even
invertible transformation matrices. Specific constructions of such wavelets are ob-
tained in Section 4, first in the 1-D case and then in the multidimensional case. A
general theory of frame atomic decomposition of L2(Rd) is obtained in Section 5.



WAVELET FRAMES 3

Using the concept of outer frame, reconstruction formulas for these atomic decom-
positions are obtained in Section 6.

2. Notation

Throughout the paper J and K will denote countable index sets, and ex will stand
for the function ex(ξ) = e−i2πx·ξ. We will use µ(E) to denote the Lebesgue measure
of a measurable set E.

A set H := {hj}j∈J of measurable functions on Rd is called a Riesz partition of
unity (RPU), if there exist constants 0 < p ≤ P < +∞ such that

(2.1) p ≤
∑
j∈J
|hj(x)|2 ≤ P a.e. x ∈ Rd.

Let S = {Sj}j∈J be a family of measurable subsets of Rd. A Riesz partition of
unity associated to S, is a set H := {hj}j∈J of measurable functions, such that

(1) Supphj ⊆ Sj
(2) There exist constants 0 < p ≤ P < +∞ such that

(2.2) p ≤
∑
j∈J
|hj(x)|2 ≤ P a.e. x ∈ ∪jSj .

Remarks.

• If H = {hj} is a RPU, then H = {hj} is also a RPU.
• If p = P = 1, we will say that H = {hj} is a regular partition of unity.
• If the sets in S are essentially disjoint (i.e. µ(Si ∩ Sj) = 0,∀i 6= j), the

family {hj = χSj} will yield a regular partition of unity associated to S.
• Every RPU H = {hj} can be normalized to obtain a regular partition of

unity by considering

h̃j =
hj

(
∑
j |hj |2)1/2

.

• Given a family S = {Sj}j∈J of measurable sets on Rd, define

(2.3) ρS(x) = #({j ∈ J : x ∈ Sj}) =
∑
j∈J

χSj (x),

where #(B) is the cardinal of the set B. The value ρS = ‖ρS‖∞ is called
the covering index of S.

We now recall the definition of frame for a given close subspace F of L2(Rd).

Definition 2.1. A set of functions {gj}j∈J is a frame for F if gj ∈ F and there
exist constants 0 < m,M < +∞, such that

(2.4) m‖f‖2 ≤
∑
j∈J
| < f, gj > |2 ≤M‖f‖2, ∀ f ∈ F.
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For a measurable set Q ⊆ Rd we will denote by KQ the functions that have support
in Q, and by BQ the functions whose Fourier transform has support in Q , i.e.

KQ := {f ∈ L2(Rd) : Supp(f) ⊂ Q}(2.5)

BQ := {f ∈ L2(Rd) : Supp(f̂) ⊂ Q}.(2.6)

We will need also the following definition.

Definition 2.2. Let H be a Hilbert space. A collection of vectors {gj ∈ H}j∈J
is an outer frame for a closed subspace F of H, if {PF (gj)}j∈J is a frame for F ,
where PF is the orthogonal projection onto F , or equivalently, there exist constants
0 < m,M < +∞, such that

(2.7) m‖f‖2 ≤
∑
j∈J
| < f, gj > |2 ≤M‖f‖2, ∀ f ∈ F.

Related definitions to the concept of outer frames appear in [LO98], [FW01].

Remark. Throughout the paper, we will use the following immediate and very useful
fact about frames:
If {gj}j∈J is a frame for KQ, and V ⊂ Q, then {gj}j∈J is an outer frame for KV .

3. Wavelets on arbitrary irregular grids and with arbitrary
dilation matrices and other transformations

Our first results concerns the construction of wavelets {|detAj |1/2ψ(Ajx − xj,k) :
j ∈ J, k ∈ K} with translates on the arbitrary irregular grid X = {xj,k ∈ Rd :
k ∈ K, j ∈ J} and with an arbitrary countable family of invertible d × d matrices
{Aj ∈ GLd(R) : j ∈ J}.

Theorem 3.1 (Wavelets). Let Q ⊂ Rd be a set of finite measure, h a function in
L2(Rd) and A = {Aj ∈ GLd(R) : j ∈ J} a family of invertible matrices.

For each j ∈ J set Bj = (ATj )−1, Sj = B−1
j Q = ATj Q, hj = h(Bj ·) and let

S = {Sj , j ∈ J}.

Assume that S is a covering of Rd, H is a RPU with bounds p and P and that
Supp(h) ⊂ Q.

Consider X = {xj,k ∈ Rd : j ∈ J, k ∈ K} such that for each j ∈ J , the set
{exj,kχQ : k ∈ K} forms a frame for KQ with lower and upper frame bounds mj

and Mj respectively. If m := infjmj > 0 and M := supjMj < +∞, then the
collection

{| detAj |1/2ψ(Ajx− xj,k) : j ∈ J, k ∈ K}
is a wavelet frame of L2(Rd) with bounds mp and MP , generated by a single func-
tion ψ, where ψ is the inverse Fourier transform of h.

Proof. Since for each j ∈ J we have that {exj,kχQ : k ∈ K} forms a frame for
KQ with lower and upper frame bounds mj and Mj respectively, an application of
Part 2 of Corollary 5.2 for the matrix B−1

j ∗ shows that {|Bj |1/2exj,k(Bjω)χQ(Bjω) :
k ∈ K} forms a frame of KSj with the same bounds. From the definition of Sj ,
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{(µ(Sj))−(1/2)e(A−1
j xj,k)(ω)χSj (ω) : k ∈ K} is then a frame for KSj with frame

bounds mjµ(Q)−1 and Mjµ(Q)−1.

On the other side, if Supp(h) ⊂ Q then H is associated to S. So, we can apply
Proposition 5.7 to S,H and {µ(Sj)−(1/2)e(A−1

j xj,k)χSj : k ∈ K}, j ∈ J , to conclude

that, {µ(Sj)−1/2hje(A−1
j xj,k) : k ∈ K, j ∈ J} forms a frame of L2(Rd) with lower

frame bound mpµ(Q)−1 and upper frame bound MPµ(Q)−1. This gives that,

{|Bj |1/2h(Bjω)exj,k(Bjω) : k ∈ K, j ∈ J}

forms a frame of L2(Rd) with frame bounds mp (or mc) and MP . The theorem
now follows from an application of the inverse Fourier transform.

�

Remarks.

(1) The set of matrices {Aj ∈ GLd(R) : j ∈ J} can be arbitrary and need not
have a group structure.

(2) The set {Aj ∈ GLd(R) : j ∈ J} can also be chosen to have a simple
structure. For example, J = Z2, A(i,j) = RiDj where R is a rotation and
D a dilation matrix, will be used to construct directional wavelets. An even
simpler example is J = Z, Aj = Aj , where A is an invertible matrix which
gives a construction of wavelet frames on Rd.

(3) Note that h does not need to be compactly supported.

We will use the theorem above to construct specific examples of wavelets, e.g.,
directional wavelets, isotropic wavelets, etc.

Interesting particular cases of Theorem 3.1.

(1) xj,k = xk ∀ j ∈ J .
Let X = {xk ∈ Rd : k ∈ K} be such that {exkχQ, k ∈ K} is a frame for
KQ with frame bounds m and M . Then

{|detAj |1/2ψ(Ajx− xk) : j ∈ J, k ∈ K}

forms a wavelet frame of L2(Rd) with bounds mp and MP .
(2) Aj = Aj ∀ j ∈ J , with A ∈ GLd(R).

Each of the following sets are wavelet frames of L2(Rd) with bounds mp
and MP :

{|detA|j/2ψ(Ajx− xj,k) : j ∈ J, k ∈ K}, and

{|detA|j/2ψ(Ajx− xk) : j ∈ J, k ∈ K}.

Remarks.

(1) If the set S is a tiling of Rd then the wavelets constructed above are
Shannon-like wavelets, thus not well localized in space. To obtain well
localized space-frequency wavelets, H must be constructed to be a smooth
partition of unity, e.g., at least C1(Rd) as demonstrated in the examples in
Section 4, below.
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(2) Reconstruction formulas for such wavelet frames are developed in Section
6.

4. Examples of wavelet frames on irregular lattices and with
arbitrary set of dilation matrices and other transformations

4.1. Density and Separation. To be able to use Theorem 3.1 to construct con-
crete examples of wavelet frames on irregular grids, we first need to construct ex-
ponential frames {exkχD} (also called Fourier frames) for KD. Exponential frames
play a central role in sampling theory for Paley-Wiener spaces (also known as spaces
of band-limited functions).

The density of a set X = {xk ⊂ Rd : k ∈ K} and separateness of the points in X
play a fundamental role for finding exponential frames {exkχD} for KD.

Definition 4.1. A sequence X = {xk : k ∈ K} is separated if

inf
k 6=l
‖xk − xl‖ > 0.

There are many notions for the density of a set X. We start with three definitions
that are due to Beurling.

Definition 4.2.

(1) A lower uniform density D−(X) of a separated sequence X ⊂ Rd is defined
as

D−(X) = lim
r→∞

ν−(r)
(2r)d

where ν−(r) := min
y∈Rd

#
(
X ∩ (y + [−r, r]d

)
, where #(Z) denotes the cardi-

nal of the set Z.
(2) An upper uniform density D+(X) of a separated sequence X is defined as

D+(X) = lim
r→∞

ν+(r)
(2r)d

where ν+(r) := max
y∈R

#
(
X ∩ (y + [−r, r]d

)
.

(3) If D−(X) = D+(X) = D(X), then X is said to have uniform Beurling
density D(X).

Remark. The limits in the definitions of D−(X) and D+(X) exist (see [BW99]).

As an example, let X ⊂ R be separated and assume that there exists L > 0 such
that |xk − k

d | ≤ L, for all k ∈ Z. Then D−(X) = D+(X) = d. For the one
dimensional case, Beurling proved the following Theorem.

Theorem 4.3. (Beurling) Let X ⊂ R be separated, a > 0 and Ω = [−a2 ,
a
2 ]. If

a < D−(X) then {exkχΩ} is a frame for KΩ.

This previous result however is only valid in one dimension. For higher dimensions,
Beurling introduced the following notion:



WAVELET FRAMES 7

Definition 4.4. The gap ρ of the set X = {xk : k ∈ K} is defined as

ρ = ρ(X) = inf

{
r > 0 :

⋃
k∈K

Br(xk) = Rd
}

Equivalently, the gap ρ can be defined as

ρ = ρ(X) = sup
x∈Rd

inf
xk∈X

|x− xk|.

It is not difficult to show that if X has gap ρ, then D−(X) ≥ 1
2ρ . For a separated

set X, and for the case where Ω is the ball Br(0) of radius r centered at the origin,
Beurling [Beu66] proved the following result:

Theorem 4.5 (Beurling). Let X ⊂ Rd be separated, and Ω = Br(0). If rρ < 1/4,
then {exkχΩ} is a frame for KΩ.

For a very clear exposition of some of the Beurling density results see [BW99].

4.2. Wavelet frames in 1-D. The construction in the following theorem (which
is a particular case of Theorem 3.1), generalizes a similar result of [DGM86] to the
irregular case. See also [Grö93].

Theorem 4.6. Let Q = [−1,−1/2] ∪ [1/2, 1], 0 ≤ ε < 1/2, and let ĥ+ be a real
valued function such that Q1

ε := Supp ĥ+ ⊂ [ 1
2−ε, 1+ε], |ĥ+| ≤ 1, and 0 < c ≤ |ĥ+|

on [1/2, 1]. Assume that for each j ∈ Z, the sequence Xj = {xj,k}k∈Z is separated
and that D−(Xj) > 2j+1(1 + ε). Then for each j, the set {e2jxj,kχQε : xj,k ∈
Xj : k ∈ Z} is a frame of KQε , where Qε := Q1

ε ∪ (−Q1
ε). If furthermore the sets

Xj = {xj,k}k∈Z are chosen such that the frame bounds mj and Mj satisfy infjmj =
m > 0 and supjMj = M < +∞, then the set {2j/2ψ(2j(· − xj,k)) : j ∈ Z, k ∈ Z}
where ψ(x) = 2Re(h+(x)) is a wavelet frame for L2(R).

Remark. The wavelet frame constructed in the theorem above is of the form
{2j/2ψ(2j(· − xj,k)) : j ∈ Z, k ∈ Z} which is slightly different form than the one
constructed in Theorem 3.1. This discrepancy is due to a convenient choice of the
irregular set Xj∗ = {xj,k} that we have adopted in the statement of the theorem
above.

Note that the wavelets constructed in the theorem above are real and symmetric.
Actually, if one wants ψ with good decay, ĥ+ can be easily constructed to be Cr,
r ≥ 1, even C∞.

As a corollary, if we choose the sampling sets Xj to be nested, i.e., Xj ⊂ Xj+1, we
get

Corollary 4.7. Let Q, ε, and ĥ+ be as in Theorem 4.6. Assume that the sequences
Xj = {xj,k}k∈Z are separated and such that xj,k = xj+1,2k. If D−(X0) > 2(1 + ε),
then for each j, the set {e2jxj,kχQε : xj,k ∈ Xj} is a frame for KQε . If furthermore
the frame bounds mj and Mj satisfy infjmj = m > 0 and supjMj = M <∞, then
the set {2j/2ψ(2j(· − xj,k)) : j ∈ Z, k ∈ Z} where ψ(x) = 2Re(h+(x)) is a wavelet
frame for L2(R).
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Proof. Since xj,k = xj+1,2k we have that #(Xj+1 ∩ [−r, r]) ≥ 2#(Xj ∩ [−r, r]− 1).
ThusD−(Xj+1) ≥ 2D−(Xj). ButD−(X0) > 2(1+ε), thereforeD−(Xj) > 2j+1(1+
ε). The corollary then follows directly from Theorem 4.6. �

From Theorems 4.6 and 3.1, we immediately get the following Corollary.

Corollary 4.8. Let Q, ε, and h+ be as in Theorem 4.6. Assume that the set X =
{xk}k∈Z is separated and that D−(X) > 2(1+ε). Then, the set {exkχQε : xk ∈ X}
is a frame of KQε , and the set of functions {2j/2ψ(2j · −xk) : j ∈ Z, k ∈ Z} where
ψ(x) = 2Re(h+(x)) is a wavelet frame for L2(R).

4.2.1. Examples.

(1) Shannon-type wavelet frames : We use Corollary 4.7, with ε = 0 and ĥ+ =
χ[1/2,1] to get wavelet frames of the form

ψxj,k,j = {2−j/2 cos(2−j−13π(x− xj,k)) sinc(2−j−1π(x− xj,k))}.
These wavelets are not well localized since the decay at ∞ is O(|x|−1).

(2) Shannon-type wavelet bases : If we choose Xj such that |xj,k−2jk| ≤ Lj <
2j

4 , ∀ k ∈ Z, then by Kadec’s 1/4-Theorem, we immediately get that
ψxj,k,j = {2−j/2 cos(2−j−13π(x− xj,k)) sinc(2−j−1π(x− xj,k)) : j ∈ Z, k ∈
Z} constructed above form a wavelet Riesz basis for L2(R).

(3) Well localized wavelet frames: For faster decay of the wavelet frames, we
choose ĥ+ to be a smoother function. Let βn = χ[0,1] ∗ · · · ∗ χ[0,1] be the
B-spline of degree n (note that Suppβn = [0, n + 1]). Let ε = 1/4, and
ĥ+(ξ) = nβn−1 ((ξ − 1/4)n)). Then we get a wavelet frame of the form

ψxj,k,j = {2−j/2 cos(2−j−13π(x− xj,k)) sincn(2−j
π

n
(x− xj,k))}.

For this case the wavelets decay as O(|x|−n).

4.3. Examples of wavelet frames in Rd.

(1) For R2, let X = {xk : k ∈ Z}, and let Y = {yl : l ∈ Z}. If D−(X) > 2 and
D−(Y ) > 2, then using Proposition 5.6 below for product frames, the set
{e(xk,yl) : (k, l) ∈ Z2} form a frame for K[−1,1]2 . Let Q := {(x, y) ∈ R2 :
1/2 ≤ x2 + y2 ≤ 1}, and A = 2I, then R2 = ∪jAjQ. We can then use
Theorem 3.1 to construct wavelet frames for L2(R2):
• Shannon-type radial wavelets: Let h = χQ, then h is radial. Thus

the function ψ defined as ψ̂ = h satisfies ψ(x, y) = g(r), where r =
(x2 + y2)1/2. We then construct the Shannon-like wavelet frame for
L2(R2), as in Theorem 3.1. A related construction of non-separable
radial Shannon-type frame wavelets and multiwavelets can be found
in [PGKKH1], and [PGKKH2].

• Well localized radial wavelets: To construct wavelet frames with poly-
nomial decay in space, we let h(ξ1, ξ2) = nβn−1

(
(ξ2

1 + ξ2
2 − 1/4)n

)
,

and construct the wavelet frames using Theorem 3.1 (see Figure 1).
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Q

Figure 1. Radial wavelet frames that are well localized in space.

(2) The points {(xk, yl) : k, l ∈ Z2} lie on an irregular grid of the form X × Y .
However, we may be interested in points Z = {(xk, yl) ⊂ R2 : (k, l) ∈ Z2}
that do not lie on irregular grids of the form X × Y . For this case, the
same constructions above can be used to form wavelets frame for L2(R2),
as long as the gap ρ(X) < 1

4(1+ε) .
(3) As in the 1-D examples above, we can also use Corollary 4.7 to construct

wavelets on irregular grids satisfying Xj ⊂ Xj+1.
(4) Directional wavelet frames: We can easily construct directional wavelet

frames as follows: Let Q1 be a region defined by Q1 = {(x, y) ∈ R2 : x =
r cos(θ), y = r sin(θ), 1/2 ≤ r ≤ 1, |θ| ≤ π

8 }, and define Q = (−Q1) ∪ Q1.
Let A = 2I, and R be the matrix of a rotation by an angle π/4. Let ψ be
such that ψ̂ = χQ, then we obtain the wavelet frame for L2(R2) of the form
{ψj,k = 4−j1/2ψj(2−j1Rj2 · −xj,k) : j = (j1, j2) ∈ Z × {0, 1, 2, 3}, k ∈ Z}.
The index j1 codes for the resolution of the wavelet, while the index j2 codes
for four possible directions. Thus the wavelet frame coefficients encode time
scale as well as directional information. Clearly one can choose any number
of directions and adapt the previous construction. An obvious modification
as shown in Figure 2, yields wavelet frames with polynomial decay. Very
nice constructions of smooth directional wavelet frames on regular grids
were obtained before in [AHNV01, ADH+03].

(5) Spiral In this example we will define a dilation covering by spiral annulus
sectors.

Let a, b > 1, and Γ the spiral curve defined by

Γ(t) = (at cos(bt), at sin(bt)) t ∈ R.

For α ∈ R define Rα to be the rotation of angle α : Rα =
[

cosα − sinα
sinα cosα

]
.

The curve Γ satisfies:

Γ(t+ α) = aαRbαΓ(t).

Note that for positive α the matrix A = aαRbα is expansive.
Now we are ready to define the covering elements. Set b = 2π and α = 1

m ,
for some integer m ≥ 2 so that Am = aId. Define the spiral annulus sector
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Q1

Figure 2. Well-localized directional wavelet: The regions Q =
Q1 ∪ (−Q1) and Qε = Q1

ε ∪ (−Q1
ε) that can be used to construct

well localized directional wavelets.

Q

AQ

A−1Q

αb= π
4

Γ(0) Γ(0)

Figure 3. Spiral wavelet frames.

Q = {x ∈ R2 : x = λΓ(β), 1 ≤ λ ≤ a, 0 ≤ β ≤ α} (see Figure 3). So Q is
compact and {AjQ : j ∈ Z} is a disjoint covering of Rd \ {0}.

Choose ε > 0 sufficiently small and h a smooth function that does not
vanish in Q and with support in Qε. Define ψ̂ = h. Select a separated set
X = {xk}k∈Z ⊂ R2 such that ρ(X) < 1

2diam(Qε)
.

The set {aj/mψ(aj/mR−2πj/m(x − xk), k ∈ Z, j ∈ Z} form a wavelet
frame of L2(R2) generated by a single wavelet ψ that is band-limited, with
good decay and directional in frequency.

(6) Obviously, all the constructions above can be generalized to Rd for any
dimension d > 2.

Remark. Some of the wavelet frames may be associated with MRAs. For exam-
ple, the so called Shannon wavelet frame constructed above is associated with the
Shannon MRA Vj = {f ∈ L2(R) : Supp f̂ ⊂ [−2−j−1, 2−j−1]}, j ∈ Z. In general
however, the precise relation needs further investigation.
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5. General results on the construction of time-frequency atoms

In this section we will develop a general method for constructing time-frequency
frame atoms in several variables. This construction allows us to construct the
previously introduced wavelet frames on irregular grids and with arbitrary dilation
matrices or other types of transformations. It also allows us to construct non-
harmonic Gabor frames on non-uniform coverings of Rd as described in Section 5.1
below.

Let U and V be non-empty open subsets of Rd, T : U → V is an invertible C1

map, with C1 inverse S : V → U , i.e., T is a C1 homeomorphism with C1 inverse
S : V → U . Define α := infy∈U |detT ′(y)|−1 and β := supy∈U |detT ′(y)|−1, where

T ′(y) denotes the derivative of T at y, T ′(y) =
[
∂Ti
∂yj

(y)
]
. We have the following

Proposition :

Proposition 5.1. With the above notation, assume that α is positive and β is finite,
then if {gj}j∈J is a frame for KV with frame bounds m and M , then {gj ◦ T}j∈J
is a frame for KU with frame bounds αm and βM .

Proof. Assume that f ∈ KU . Then for j ∈ J , by an application of the change of
variables formula

(5.1) < f, gj◦T > =
∫
U

f gj ◦ T =
∫
V

(f ◦S) |detS′| gj = < (f ◦S)|detS′|, gj > .

Since |detS′| is finite and bounded away from zero, (f ◦ S)|detS′| is in KV .

Using that {gj}j∈J is a frame of KV with bounds m,M we have

(5.2)
∑
j∈J
| < (f ◦ S)|detS′|, gj > |2 ≤M‖(f ◦ S) |detS′| ‖2.

Now, applying again the change of variables theorem, we obtain

‖(f ◦ S)|detS′| ‖2 =
∫
V

|f ◦ S|2|detS′|2 =
∫
U

|f |2|det(S′ ◦ T )|2|detT ′|.

Since S = T−1 we have that det[(S′ ◦ T )(y)] = (det[T ′(y)])−1 for all y ∈ U . Thus

(5.3) ‖(f ◦ S)|detS′| ‖2 =
∫
U

|f |2|detT ′|−1 ≤M‖f‖2.

That is, from (5.1), (5.2) and (5.3) we have∑
j∈J
| < f, gj ◦ T > |2 ≤ βM‖f‖2.

This proves the upper inequality for {gj ◦ T}j∈J . The lower inequality is obtained
in the same way, with the obvious modifications. �

Proposition 5.1 establishes that T defines an isomorphism ΠT : KU → KV defined
by ΠT (g) = g ◦ T , thereby transforming frames into frames. By taking T to be a
translation or a dilation, we get the well known result:

Corollary 5.2 (Translation and dilation of frames). Let Q ⊆ Rd be an open subset
of Rd. Let y ∈ Rd be any point, and A ∈ GLd(R) an invertible matrix. We have,
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(1) Translation {gj}j∈J is a frame for KQ with bounds m and M , if and only
if {gj(· − y)}j∈J is a frame for KQ+y with the same bounds.

(2) Dilation {gj}j∈J is a frame for KQ with bounds m and M , if and only if
{| detA|−1/2gj(A−1·)}j∈J is a frame for KAQ with the same bounds.

Remark. In fact the corollary remains true if we only assume that Q is measurable.

Proof. Part 1 is a direct application of the Proposition, for the case that T (x) =
x− y.

For Part 2, and the transformation T (x) = A−1x, the Proposition tells us that
{gj(A−1·)}j∈J is a frame with frame bounds |detA|m and |detA|M , therefore
dividing each function by |detA|−1/2 we obtain the result. �

For the next theorem, we need to introduce some definitions. Let H = {hj : j ∈ J}
be a RPU with bounds p and P . For each j ∈ J set

(5.4) Wj = ClosureL2{hjf : f ∈ L2(Rd)}.

Let 0 < c ≤ p, and define

(5.5) Qj = Qj(c) = {x ∈ Rd : |hj(x)|2 > c}, for each j ∈ J.

For a given c, we discard all those j such that Qj has measure zero. Note that if
J0 = {j ∈ J : µ(Qj) > 0}, then we can only claim that H0 = {hjχQj , j ∈ J0} is a
RPU associated to {Qj}j∈J0 with constants c and P .

Theorem 5.3. Let 0 < c ≤ p.

(1) Assume that {gj,k}k∈K is a frame for Wj with lower and upper frame bounds
mj and Mj respectively. If m := infjmj > 0 and M := supjMj < +∞,
then

{
hjgj,k : j ∈ J, k ∈ K

}
is a frame for L2(Rd), with frame bounds pm

and PM .
(2) Assume that for each j ∈ J0, {gj,k}k∈K is a frame for KQj with lower and

upper frame bounds mj and Mj respectively. If m := infj∈J0 mj > 0 and
M := supj∈J0

Mj < +∞, then
{
hjgj,k : j ∈ J0, k ∈ K

}
is a frame for

K∪Qj , with frame bounds cm and PM .

Proof.

(1) Given f ∈ L2(Rd) and denoting by fj = hjf ∈Wj we will first show that

(5.6) p‖f‖2 ≤
∑
j

‖fj‖2 ≤ P‖f‖2,

for

p‖f‖2 =
∫
p|f |2 ≤

∫ ∑
j

|hj |2|f |2 =
∑
j

∫
|hjf |2 =

∑
j

‖fj‖2,

where we used dominated convergence for the interchange of the integral
with the sum. The other inequality is analogous.
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For each j ∈ J and f ∈ L2(Rd), we use the fact that {gj,k}k is a frame
for Wj , and that < f, hjgj,k >=< hjf, gj,k >, to obtain

m‖hjf‖2 ≤ mj‖hjf‖2 ≤
∑
k

| < f, hjgj,k > |2

≤ Mj‖hjf‖2 ≤ M‖hjf‖2.

So summing over j

pm‖f‖2 ≤ m
∑
j

‖fj‖2 ≤
∑
j

∑
k

| < f, hjgj,k > |2

≤ M
∑
j

‖fj‖2 ≤ PM‖f‖2.

(2) For the second case we observe that the set λ = {λj = hjχQj , j ∈ J0} forms
a RPU associated to {Qj , j ∈ J0} with bounds c and P , for if x ∈ ∪Qj ,

c ≤ c#({j ∈ J0 : x ∈ Qj}) ≤
∑

j∈J0:x∈Qj

|hj(x)|2

=
∑
j∈J0

|hj(x)|2χQj (x) ≤
∑
j∈J0

|hj(x)|2 ≤ P.

Furthermore, by hypothesis,

KQj = {λjf : f ∈ L2(Rd)}, j ∈ J0.

These subspaces KQj correspond to the subspaces Wj defined in (5.4)
for the RPU λ, and therefore we can use the previous result (applied to
L2(∪Qj) instead of L2(Rd)) to conclude that {λjgj,k : j ∈ J, k ∈ K}
is a frame for K∪Qj = L2(∪Qj). The proof is complete by noting that
λjgj,k = hjgj,k, j ∈ J0.

�

Remarks.

• Note that in the previous theorem, instead of choosing a frame for the
subspaces Wj , we could have chosen any collection of functions of L2(Rd)
that form an outer frame for Wj .
• If h is a bounded function and Q = Supph, then it is easy to see that

closureL2{hf : f ∈ L2(Rd)} = KQ if and only if µ(Q) = µ({x : |h(x)| > 0}).
So the spaces Wj defined in (5.4) will coincide in most of the cases with
KSupp(hj).

As a very important particular case of the previous theorem, we have the following
Corollaries.

Corollary 5.4. Let S = {Sj ⊂ Rd : j ∈ J} be a family of subsets of Rd, not
necessarily disjoint, and let H = {hj} be a RPU with constants p, and P not
necessarily associated to S. Assume that {gj,k}k∈K is a frame for KSj with lower
and upper frame bounds mj and Mj respectively. If m := infjmj > 0 and M :=
supjMj < +∞, then
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(1) If H is associated to S (i.e. Supphj ⊆ Sj , j ∈ J), then
{
hjgj,k : j ∈ J, k ∈

K
}

is a frame for K∪Sj , with frame bounds pm and PM .
(2) If instead |hj(x)|2 > c ∀x ∈ Sj , j ∈ J , then also

{
hjgj,k : j ∈ J, k ∈ K

}
is

a frame for K∪Sj , with frame bounds cm and PM .

Proof. Denote by PWj
the orthogonal projection on the subspace Wj defined in

(5.4). Since {gj,k : k ∈ K} forms a frame for KSj with bounds mj and Mj , then
{PWjgj,k : k ∈ K} forms a frame for Wj with the same bounds. So, by Theorem 5.3,
{hjPWj

gj,k : j ∈ J, k ∈ K} forms a frame of K∪Sj with frame bounds mp and MP .
We obtain part (1) of the Corollary observing that:

< f, hjPWj
(gj,k) >=< hjf, PWj

(gj,k) >=< hjf, gj,k >=< f, hjgj,k > .

The second part is a consequence of the fact that {hjχSj : j ∈ J} is a RPU
associated to S with bounds c and P and that Qj(c) = Sj . Therefore we can apply
the second part of Theorem 5.3. �

Remarks.

• For the first case, the set
{
hjgj,k : k ∈ K

}
is not necessarily a frame for

KSj or even for Wj ⊂ KSj , even though
{
hjgj,k : j ∈ J, k ∈ K

}
is a frame

for K∪Sj ).
• In the second case, the subspace Wj is contained in KSj .
• Note that if H is a regular partition of unity, then the frame bounds for

the frame constructed in the Corollary, are m and M .

Corollary 5.5. Let H = {hj : j ∈ J} be a RPU with constants p, and P and
{Sj ⊂ Rd : j ∈ J} and {Qj ⊂ Rd : j ∈ J}be coverings of Rd such that Qj ⊂ Sj
and |hj(x)|2 ≥ c a.e. x ∈ Qj for all j ∈ J and some constant c > 0. Assume
that {gj,k}k∈K is a frame for KSj with lower and upper frame bounds mj and Mj

respectively. If m := infjmj > 0 and M := supjMj < +∞, then
{
hjgj,k : j ∈

J, k ∈ K
}

is a frame for L2(Rd), with frame bounds cm and PM .

Proof. As in the proof of the Theorem, we have the inequalities

(5.7) p‖f‖2 ≤
∑
j

‖hjf‖2 ≤ P‖f‖2,

On the other side,

< f, hjgj,k >=< hjf, gj,kχSj >=< hjfχSj , gj,k >,

and then∑
j

∑
k

| < f, hjgj,k > |2 ≤M
∑
j

‖hjfχSj‖22 ≤M
∑
j

‖hjf‖22 ≤MP‖f‖22,

and ∑
j

∑
k

| < f, hjgj,k > |2 ≥ m
∑
j

‖hjfχSj‖22 ≥ mc
∑
j

‖fχQj‖22 ≥ mc‖f‖22.

�
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The following proposition is a direct application of Fubini’s theorem, and allows
us to construct frames in a product space. By induction the Theorem can be
generalized to hold for any finite number of factors.

Proposition 5.6 (Product of Frames). Let E1 and E2 be measurable subsets of
Rd1 and Rd2 respectively, and let {hj}j∈J and {gk}k∈K be frames for KE1 and KE2

with frame bounds m1,M1 and m2,M2. Then {hjgk}j,k∈J×K is a frame of KE1×E2

with frame bounds m = m1m2,M = M1M2.

Proof. For any function f in KE1×E2 ,∑
j∈J

∑
k∈K

∣∣∣∣∫
E1×E2

f(x1, x2)hj(x1)gk(x2)dx1dx2

∣∣∣∣2 =

∑
j∈J

(∑
k∈K

∣∣∣∣∫
E2

(∫
E1

f(x1, x2)hj(x1)dx1

)
gk(x2)dx2

∣∣∣∣2
)

≥ m2

∫
E2

∑
j∈J

∣∣∣∣∫
E1

f(x1, x2)hj(x1)dx1

∣∣∣∣2 dx2

≥ m1m2

∫
E2

∫
E1

|f(x1, x2)|2dx1dx2,

which yields the lower frame bound m = m1m2. The upper frame bound M =
M1M2 can be obtained in a similar fashion. �

5.1. Construction of time-frequency atoms on arbitrary irregular grids
and with arbitrary dilation matrices and other transformations. We now
particularize our previous results to frames of the form {hexj,k , j ∈ J, k ∈ K}, where
h is a fixed function. Using the Fourier transform, these types of frames allow us
to construct wavelets {|detAj |1/2ψ(Ajx− xj,k) : j ∈ J, k ∈ K} with translates on
the arbitrary irregular grid X and with an arbitrary countable family of invertible
d × d matrices {Aj ∈ GLd(R) : j ∈ J} (cf. Theorem 3.1). First as a particular
case of Corollary 5.4, we obtain the following Proposition.

Proposition 5.7. Assume that S = {Sj : j ∈ J} forms a covering of Rd, and let
H = {hj : j ∈ J} be a RPU with bounds p and P associated to S. Assume also
that {µ(Sj)−1/2exj,kχSj : k ∈ K} is a frame for KSj with lower and upper frame
bounds mj and Mj respectively. If m := infjmj > 0 and M := supjMj < +∞,
then {

µ(Sj)−1/2hjexj,k : j ∈ J, k ∈ K
}

is a frame for L2(Rd) with frame bounds mp and MP .

Remark. If xj,k, Sj , and hj are chosen such that xj,k = αk, k ∈ Zd, α ∈ R,
Sj = S + j, j ∈ Γ and hj = h(· + j), j ∈ Γ, where Γ is a lattice in Rd, then
we obtain the standard Gabor or Weyl-Heisenberg frames. Thus in general, the
construction above can be viewed as non-harmonic Gabor frames with variable
windows hj .

The following wavelet frame construction is a direct application of the previous
proposition. Taking ψ̂j = hj , the set {ψj,xj,k = ψj(· − xj,k) : j ∈ J, k ∈ K} is a
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wavelet frame for L2(Rd) with frame bounds mp and MP . Therefore, there exists
a dual frame ψ̃j,xj,k such that

f =
∑
j∈J

∑
xj,k

< f, ψ̃j,xj,k > ψj,xj,k ∀ f ∈ L2(Rd).

We can also use Proposition 5.7 and Beurling Theorem 4.3, to obtain a non-
harmonic Gabor frame as the following example shows:

Example. [Non-harmonic Gabor frames] Let Q = [1, 3] and Let β3 = χ[0,1] ∗
χ[0,1] ∗ χ[0,1] ∗ χ[0,1] be the B-spline of degree 3. Clearly, R = ∪j∈ZQ + j. Let
Xj = {xj,k}k∈Z be sets in R chosen such that for each j, D−(Xj) > 2 and such that
the frame bounds mj and Mj satisfy infjmj = m > 0 and supjMj = M < +∞.
Then using Proposition 5.7 and Beurling Theorem 4.3, we obtain a non-harmonic
Gabor frame of the form {β3(t−j)e−i2πxj,kω : j ∈ Z, k ∈ Z}. Obviously, we can also
use a non-uniform partition of R and get generalized non-harmonic Gabor frames
as discussed earlier.

Remark. If Q ⊂ Rd be a measurable subset of Rd, and if the family of sets S is
defined by means of expanding or contracting Q, then we obtain the theorems of
Section 3 as particular cases of Proposition 5.7.

5.2. Construction of exponential frames. By Corollaries 5.2 and 5.4, we can
construct a frame for KQ ⊂ Rd starting from a frame for KD where D is any subset
of Rd with nonempty interior. Hence to build a frame for KQ it is enough to start
with a frame for KU , where U is an open disk. Specifically, since any bounded
measurable set can be covered by a finite number of translates of U , we can use
Corollary 5.2(1) to find a frame for KQ. We can also expand U until it covers Q
and use Corollary 5.2(2). This shows that there are many ways to construct frames
for KQ starting from a frame for KU . Obviously, the particular construction will
depend on the application.

We will describe now two particular constructions.

(1) Given a frame for KD where D is a measurable subset of Rd, we will
construct a frame for KQ. Let Γ be a regular lattice in Rd (i.e. Γ = RZd,
where R is an invertible d × d matrix with real entries), and let D be a
measurable subset of Rd such that Rd =

⋃
γ∈Γ

(D + γ) with a finite covering

index. Let Q be a measurable subset of Rd and define Qγ := Q ∩ (D + γ)
for γ ∈ Γ. Let ∆ := {γ ∈ Γ : µ(Qγ) > 0}. By Corollary 5.2, if {exkχD :
k ∈ K} is a frame for KD, then {exkχD+γ : k ∈ K} is a frame for KD+γ .
Hence, {exkχQγ : k ∈ K} is also a frame for KQγ . Therefore, by Corollary
5.4,

{
exkχQγ : γ ∈ ∆, k ∈ K

}
is a frame for KQ. As an example, when

Q is a measurable subset of Rd, D = [0, 1]d, and Γ = Zd, we have that if
{exkχ[0,1]d : k ∈ K} is a frame for L2([0, 1]d), then

{
exkχQγ : γ ∈ ∆, k ∈

K
}

is a frame for KQ (recall that Qγ = Q ∩ ([0, 1]d + γ)).
It is easy to see that the covering requirement Rd =

⋃
γ∈Γ

(D + γ) in

the previous construction is not restrictive. Specifically, we only need
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Rd =
⋃
γ∈Γ

(αD + γ), where α is any positive real number. Furthermore,

the construction remains valid if for each Qγ we choose a different set
{xγ,k} such that Eγ := {exγ,kχD : γ ∈ ∆, k ∈ K} is a frame for KD, and
m := infγmγ > 0 and M := supγMγ < +∞, where mγ and Mγ are the
lower and upper frame bounds of Eγ . Finally, note that if Q = Rd we
obtain a frame for L2(Rd).

(2) If Q is bounded we can construct frames for KQ using Theorem 4.5. Let
δ = diam(Q), and x0 ∈ Rd such that Q ⊆ B(x0, δ). Let X = {xk, k ∈ K}
be such that ρ(X) < 1

4δ . Then using Beurlings Theorem (4.5) we obtain
that {exkχB(0,δ), k ∈ K} is a frame of KB(0,δ). So, using Corollary 5.2(1),
{exkχB(x0,δ), k ∈ K} is an outer frame of KQ, and {exkχQ, k ∈ K} is a
frame for KQ.

5.3. Existence and construction of Riesz partitions of unity. In view of
the previous results, we will be interested in constructing particular kinds of Riesz
partitions of unity associated to special coverings of the space. The next results
provide the necessary tools to accomplish this task.

If A is a d×d matrix, we will say that A is expansive, if |λ| > 1 for every eigenvalue
λ of A.

We will use the following known result (see for example [HJ91],pg. 297).

Lemma 5.8. Let B be in Cd×d and ε > 0. There exists a matrix norm |||·||| such
that

s(B) ≤ |||B||| ≤ s(B) + ε,

where s(B) is the spectral radius of the matrix B, and there exists a norm ‖ · ‖ in
Cd such that

‖Bx‖ ≤ |||B||| ‖x‖.

As a consequence of this lemma, if A is an expansive matrix, then there exists a
norm ‖ · ‖ in Cd such that

‖A−1x‖ ≤ c‖x‖ 0 < c < 1,

and therefore
‖Ax‖ ≥ c′‖x‖ c′ > 1.

In particular for every x ∈ Cd,

(5.8) lim
j→∞

‖A−jx‖ = 0 and if x 6= 0 lim
j→∞

‖Ajx‖ = +∞.

Proposition 5.9. Let A be a d × d expansive matrix and V ⊂ Rd a bounded set
such that

(i) there exists ε > 0 such that B(0, ε) ∩ V = ∅.
(ii)

⋃
j∈ZA

jV = Rd \ {0}.

Then ρA,V , the covering index of the family {AjV }j∈Z, is finite, i.e. there exists
an integer n ≥ 1 such that 1 ≤ ρA,V ≤ n.
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Proof. For x ∈ Rd define

z+
x = {j ≥ 0 : x ∈ AjV } and z−x = {j < 0 : x ∈ AjV }.

Since ρA,V ≤ ess supx(#(z+
x )) + ess supx(#(z−x )), it is enough to prove that #(z+

x )
and #(z−x ) are uniformly bounded in Rd. We will see that #(z+

x ) is uniformly
bounded. A similar argument proves the claim for #(z−x ).

It is easy to see that

#(z+
x ) = #(z+

Asx) ∀ s ∈ Z, ∀ x ∈ Rd.

Thus, if #(z+
x ) is bounded on V , then, by (ii) #(z+

x ) is bounded in Rd \ {0} with
the same bound. Now, using (i), we see that there exist 0 < c1 < c2 < +∞ such
that c1 ≤ ‖x‖ ≤ c2, for all x ∈ V . Fix x ∈ V . If j ∈ z+

x , then there exists v ∈ V
such that x = Ajv and

c2 ≥ ‖x‖ = ‖Ajv‖ ≥ ‖v‖
‖A−j‖

≥ c1
‖A−j‖

,

and therefore ‖A−j‖ ≥ c1
c2

. But since ‖A−j‖ → 0, necessarily there exists j0 such
that for every s ≥ j0, ‖A−s‖ ≤ c1

c2
. Hence for every x ∈ V , #(z+

x ) ≤ j0. �

The next proposition shows the construction of a large class of Riesz partitions of
unity, for families of sets obtained by dilation of a compact set.

Proposition 5.10. Let Q ⊂ Rd be a compact set and A a d× d expansive matrix
such that

(i) 0 6∈ Q
(ii)

⋃
j∈ZA

jQ = Rd \ {0}.

Let h be any measurable function, and 0 < c1 ≤ c2 < +∞ some constants such that

(a) 0 ≤ |h|2 ≤ c2
(b) 0 < c1 ≤ |h|2 on Q

(c) h = 0 on Rd \Qε, where 0 < ε < d(0, Q) and Qε ≡ {x ∈ Rd : d(x,Q) ≤ ε}.

Then the family of functions {hj(·) = h(A−j ·)}j∈Z is a RPU associated to {AjQε}.

Proof. If x 6= 0, by (ii) there exists j ∈ Z and q ∈ Q such that Ajq = x, so by (b),

c1 ≤ |h(q)|2 = |h(A−jx)|2. Thus
∑
s∈Z
|h(A−sx)|2 ≥ c1.

Now by Proposition 5.9, the covering index ρA,Qε of the family {AjQε}j∈Z is finite.
Using (i) and (ii), we see that Supp(hj) ⊂ AjQε and since 0 ≤ |hj(x)|2 ≤ c2 ∀ x,
we obtain that ∑

j∈Z
|hj(x)|2 ≤ ρA,Qεc2,

which proves the proposition. �

Remark. This proposition generalizes easily to the case where we replace for each
j, Aj by an invertible matrix Aj in such a way that {AjQ}j∈Z is a covering of
Rd \ {0} with finite index.
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The next Lemma shows, that the assumption of having a compact set that covers
Rd by dilations is actually necessary, if one wants to construct a RPU associated
to a covering of Rd of the form S = {AjV, j ∈ Z}, where V is a bounded open set.

Lemma 5.11. If A is invertible, and V is a bounded open set such that

(1) there exists ε > 0 with B(0, ε) ∩ V = ∅
(2)

⋃
j∈ZA

jV = Rd \ {0}

then there exists a compact set Q ⊂ V such that ∪j∈ZA
jQ ⊃ Rd \ {0}.

Proof. It is clearly enough to find Q such that ∪jAjQ ⊃ V . Let

Qn =
{
x ∈ V : d(x, ∂V ) ≥ 1

n

}
.

We will prove (by the contradiction) that for some n ≥ 1, Qn covers V by dilations
by A.

Assume that for each n ≥ 1, there exists xn ∈ V such that xn 6∈ ∪jAjQn. Since V
is compact, and d(xn, ∂V ) < 1

n , there exists a subsequence {xnk} and x ∈ ∂V such
that xnk → x. By (1) and (2) there exists j0 such that x ∈ Aj0V , and since Aj0V
is open, xnk ∈ Aj0V for k ≥ k0. Set y = A−j0x and yk = A−j0xnk , then y, yk ∈ V
for k ≥ k0. Choose ε small enough such that B(y, ε) ⊂ V , and so d(y, ∂V ) ≥ ε.
Let m0 be such that if m ≥ m0, then ym ∈ B(y, ε2 ).

Then for z ∈ B(y, ε2 ), and v ∈ ∂V we have

ε− d(y, z) ≤ d(y, v)− d(y, z) ≤ d(z, v),

and thus
ε

2
≤ d(z, ∂V ).

So B(y, ε2 ) ⊂ Qn for all n such that 1
n <

ε
2 . This contradicts our assumption that

xnm = Aj0ynm /∈ Qnm , since, if m ≥ m0 and 1
nm

< ε
2 , we have ym ∈ B(y, ε2 ) ⊂ Qnm ,

and so xnm ∈ Aj0Qnm . �

We show next that it is not difficult to construct bounded sets that cover Rd by
dilations.

Lemma 5.12. Let V ⊂ Rd be a bounded set such that 0 ∈ V ◦, and A an expansive
d × d matrix. Set Q = AV \ V , then {AjQ, j ∈ Z} is a covering of Rd \ {0} with
finite covering index. Furthermore, if V ⊂ AV then the sets {AjQ} are disjoint.

Proof. Choose ε > 0 such that B(0, ε) ⊂ V . Let x ∈ Rd \{0} be an arbitrary point.
By equation (5.8) limj→∞ ‖A−jx‖ = 0, for some norm ‖ · ‖ in Cd.

So there exists a positive integer n such that ∀j ≥ n, y := A−jx ∈ B(0, ε), i.e.,
x ∈ AjV,∀j ≥ n.

Since V is bounded, and ‖x‖ > 0, there exists j0 ∈ Z such that x ∈ Aj0+1V and
x 6∈ AjV,∀j ≤ j0, i.e., x ∈ Aj0+1V \Aj0V = Aj0Q.

The finiteness of the covering index follows from Proposition 5.9, and if V ⊂ AV
the disjointness property follows immediately. �
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Remark.

• If we want to obtain coverings of Rd \{0} with compact sets, we can choose
the set Q where Q is the set constructed in the previous Lemma. Clearly the
sets {AjQ : j ∈ J} cover Rd \ {0}, and if µ(∂V ) = 0, then {AjQ : j ∈ J}
are almost disjoint, i.e. µ(AjQ ∩AkQ) = 0, j 6= k.
• Even though for any set V it is true that Aj(AV \V )∩Aj+1(AV \V ) = ∅,

in general it is not true that the family {Aj(AV \ V )} is disjoint, as the
following example shows: Let A =

[
0 −2
2 0

]
and V the rectangle [−3, 3] ×

[−1, 1].

5.4. Recipe for constructing smooth wavelet frames using a single dilation
matrix and an irregular grid. We can combine the results of this section with
Theorem 3.1, to obtain the following recipe to construct smooth, wavelet frames
of Rd associated to a single dilation matrix A and an irregular grid. The wavelets
obtained by this method can be constructed to have polynomial decay of any degree,
as exemplified in Section 4.2.

Recipe:

• Select a bounded set V ⊂ Rd such that 0 ∈ V ◦ and µ(∂V ) = 0.
• Select a function h of class Cr, r > 0 such that |h| 6= 0 on Q = ATV \ V

and Supph ⊂ Qε for some small ε > 0.
• Consider a set X = {xk}k∈K ⊂ Rd, such that X is separated and ρ(X) <

1
2δ , where δ = diam(Qε).

Then the following collection is a frame of L2(Rd):

{|detA|j/2ψ(Ajx− xk) : k ∈ K, j ∈ Z)},

where ψ is the inverse Fourier transform of h.

6. Reconstruction formulas

We first note that although the set {|detAj |1/2ψ(Ajx − xj,k) : j ∈ J, k ∈ K}
in Theorem 3.1 is a wavelet frame for L2(Rd), it is not in general true that for a
fixed j the set {ψj,xj,k(x) = |detAj |1/2ψ(Ajx − xj,k) : k ∈ K} is a frame, unless
the wavelet frame is of Shannon-type, hence, not well-localized. Thus, for well-
localized wavelets, it appears that the reconstruction of a function f ∈ L2(Rd)
from the wavelet coefficients {< f,ψj,xj,k >: j ∈ J, k ∈ K} cannot be obtained in a
stable way by first reconstructing at each level j and then obtaining f by summing
over all levels j. However what follows shows that this is still possible:

For a matrix R, denote by DR the dilation operator DR(f) = |detR|1/2f ◦R. Using
the notation of Theorem 3.1 we have that

< f,ψj,xj,k >=< f̂, hjDBjexj,k >=< hj f̂ , DBjexj,k > .

This, together with the assumptions that {exj,kχQ : k ∈ K} is a frame for KQ
for each j, and that Supphj ⊂ Sj , permits to reconstruct f̂j = hj f̂ using a dual
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frame {φj,k : k ∈ K} of {exj,kχQ : k ∈ K}. Note that, since DBj is unitary then
{DBjφj,k : k ∈ K} is a dual frame of {DBj (exj,kχQ) : k ∈ K} for KSj .

Thus, it is always possible to reconstruct each fj in a stable way and then obtain
f by summing up over all levels j. One drawback is that the dual frame may not
be well-localized, since each φj,k may be discontinuous at the boundary of Q. To
treat this problem we simply note that

hj f̂ =
∑
k

< f̂, hjDBjexj,k > DBjφj,k.

Multiplying both sides by hj we obtain

(6.1) |hj |2f̂ =
∑
k

< f̂, hjDBjexj,k > DBjθj,k,

where θj,k = hφj,k. If we choose h to be in Cr(Rd), and if φj,k is in Cr(Q) ,
then θj,k will be in Cr(Rd) and therefore decays polynomially in space. Hence the
partial sums of the series (6.1) will have good convergence properties. We can then
sum equation (6.1) over j ∈ J to obtain f̂

∑
j |hj |2, and then divide by

∑
j |hj |2 to

obtain f̂ .

Acknowledgments: We wish to thank Professors Chris Heil, Yves Meyer, Gestur
Ólafsson, and Qiyu Sun for insightful remarks.
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