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A review of multivariate calibration methods applied to biomedical analysis
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Abstract

The determination of the contents of therapeutic drugs, metabolites and other important biomedical analytes in biological samples is usually

performed by using high-performance liquid chromatography (HPLC). Modern multivariate calibration methods constitute an attractive

alternative, even when they are applied to intrinsically unselective spectroscopic or electrochemical signals. First-order (i.e., vectorized) data are

conveniently analyzed with classical chemometric tools such as partial least-squares (PLS). Certain analytical problems require more sophisticated

models, such as artificial neural networks (ANNs), which are especially able to cope with non-linearities in the data structure. Finally, models

based on the acquisition and processing of second- or higher-order data (i.e., matrices or higher dimensional data arrays) present the phenomenon

known as ‘‘second-order advantage’’, which permits quantitation of calibrated analytes in the presence of interferents. The latter models show

immense potentialities in the field of biomedical analysis. Pertinent literature examples are reviewed.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

High-performance liquid chromatography (HPLC) with

either ultraviolet, fluorescence or mass spectrometric detection

is regularly employed to analyze the content of therapeutic

drugs and their metabolites in biological fluids [1,2]. Other

techniques such as capillary electrophoresis [3], optical

biosensors [4], enzyme electrode amperometry [5], immunoas-

says [6], chemiluminescence [7], homogeneous substrate-

labeled fluorescence [8] and fluorescence polarization [9] have

also been extensively used for the investigation of analytes in

blood, urine and other biological fluids.

Alternatively, multivariate calibration methods are being

successfully applied to instrumental data of a variety of

sources, mainly spectroscopic, in order to construct predictive

models for selected analytes in biomedical samples, starting

from rather unselective signals. Linear calibration models are
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generally preferred, because they are simple to apply and

amenable to straightforward physico-chemical interpretation.

Many regression methods which are intrinsically linear have

been proposed for multicomponent analysis, among which the

most popular one is partial least-squares (PLS). The latter

enjoys this privileged place due to the performance of its

calibration models, to the availability of software, and to the

easiness of its implementation [10–15]. PLS shows several

important advantages: 1) it employs full spectral data, a feature

critical for the resolution of complex multi-analyte mixtures, 2)

analytical procedures can be carried out in a short time, usually

with no sample clean-up or physical separation, and 3) its

calibration models ignore the concentrations of all other

components except a selected analyte in the studied samples.

For all the above reasons, PLS is especially suitable for the

therapeutic drug determination in biological fluids, which often

presents a complex, high absorbing background, severely

overlapped with those from the analytes. Several recent articles

highlight the potentiality and applicability of multivariate

calibration methods in different areas [16–19].

Various alternative methods based on the useful net analyte

signal (NAS) concept have also been described in the field of
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Table 1

Classification of data by their tensorial properties, and typical methods for data

analysis

Classification Order of single

sample data

Sample

data set

Typical method Second-orde

advantage

Univariate Zeroth-order One-way Linear regression No

First-order Two-way PCR, PLS, NAP,

OSC

No

Higher-order

unfolded to

first-order

Two-way Unfold-PCR No

Unfold-PLS No

Second-order Three-way PARAFAC Yes

Multivariate GRAM Yes

BLLS Yes

SWATLD Yes

NPLS No

Third-order Four-way PARAFAC Yes

TLLS Yes

NPLS No
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bioanalysis [15,21], and presented as alternatives to PLS. They

are able to select spectral regions by estimating a moving-

window error indicator function (ELF), built upon information

from the NAS regression plot (NASRP) for each particular

sample [22].

Special attention is deserved by high-order data, which

have been recently introduced and applied in different

analytical chemistry fields. These data are provided by many

modem instruments, and are particularly useful for multicom-

ponent analysis in complex samples. Specifically, second-

order data, in which each sample produces a data matrix, are

gaining widespread analytical acceptance [23,24]. The interest

in this type of data is derived from a special property of a

three-way data array (obtained when second-order data for a

set of samples are grouped into a three-dimensional array): its

decomposition is often unique. This allows concentrations and

spectral profiles of individual sample components to be

extracted directly, permitting correction for uncalibrated

sample constituents. The property, coined into the name

second-order advantage [24,25], has an immense potential in

multi-component analysis. Three-way data are available to the

analyst by implementing hyphenated instrumental techniques,

although they can also be produced in a single instrument,

such as excitation-emission fluorescence matrices in a

spectrofluorometer and absorbance-time measurements in a

diode array detector [23]. In the latter case, the analytical

signal may be modulated by a reaction time or by a pH

gradient.

High-order data can be analyzed with models such as

generalized rank annihilation method (GRAM) [26,27], mul-

tivariate curve resolution-alternating least-squares (MCR-ALS)

[28–31], parallel factor analysis (PARAFAC) [32–34], non-

bilinear rank annihilation (NBRA) [35] and bilinear least-

squares (BLLS), a recently introduced method in the second-

order calibration scenario [36–38]. From the analytical point of

view, the interesting fact is all of them exploit the second-order

advantage. In contrast, the popular multi-way partial least-

squares (NPLS) method is available for application to second-

order data [39], and although it preserves the matrix data

structure, it is not able to achieve the second-order advantage.

In the present Review, the theories of the most employed

multivariate calibration models for first- and higher-order data

will be presented. Finally, an overview of several applications

in the biomedical field will be discussed.

2. Theory

2.1. Data orders

The various types of instrumental data have been classified

on the basis on tensor algebra [40–42]. Within this scheme,

when a given instrument produces a single instrumental

response for a chemical sample, this datum is a scalar or

zeroth-order tensor. Vector data for each sample belong to the

first-order type: for example, absorption or emission spectra

[UV-visible spectrophotometry, spectrofluorimetry, infrared,

near-infrared (NIR), etc.], electrochemical scans (voltammo-
grams, chrono-amperograms), nuclear magnetic resonance

spectra, etc.

When two first-order instruments are coupled in tandem

(e.g., GC-MS, MS-MS, etc.), the order increases from first- to

second-order. The latter can also be produced using a single

instrument: examples are a spectrofluorometer registering

excitation-emission matrices (EEMs) or a diode-array spectro-

photometer where a chemical reaction takes place. The data

order can be further increased to three if, for example, EEMs

are registered as a function of time.

Table 1 summarizes the classification scheme, including

information which will be clear below.

2.2. Zeroth-order data

Zeroth-order data are usually fitted to a straight line by least-

squares, a procedure known as univariate calibration [43], and

requiring full selectivity for the analyte of interest. In the event

that other sources respond, this signal should be constant, in

order to be eliminated by a background correction or modeled

by an intercept. When this is not the case, i.e., the responses are

intrinsically unselective, a different approach, either instru-

mental or mathematical, is required.

2.3. First-order data

First-order data belong to the multivariate domain, and are

processed by suitable first-order multivariate calibration

procedures. The central idea of all of these methodologies is

to compensate for the lack of total selectivity of the analyzed

signals, using efficient mathematical algorithms to extract the

portion of the overall signal which can be employed to predict

the concentration of a particular sample component.

The available arsenal of first-order methodologies can be

classified depending on whether the calibration model is

classical or inverse [11]. The classical model assumes that

instrumental data are a function of analyte concentration. The

specific model for a test sample can be written as follows,
r
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provided both linearity and additivity hold for the various

sample components:

y ¼ Sx: ð1Þ

In Eq. (l), y (a vector of size J� l) is the test sample

spectrum measured at J selected wavelengths, x (a vector of

size N� l) contains the predicted concentrations of the N

constituents, and S (a matrix of size J�N) is a spectral matrix

whose columns are the sensitivities of the N analytes at the J

wavelengths. The latter one is either measured (if standards for

all pure components are available) or estimated from the

analysis of calibration mixtures:

Y ¼ XST: ð2Þ

In the latter equation, Y (a matrix of sizes I�J) contains the

spectra for I calibration samples measured at the J wave-

lengths, X (a matrix of sizes I�N) contains the reference

concentrations of the N constituents in the I mixtures, and the

superscript FT_ denotes transposition. This multivariate tech-

nique is known as classical least-squares (CLS). The applica-

bility is rather limited, because it requires concentration

information of all contributing species for proper calibration

through Eq. (2), or knowledge of the pure spectra for

concentration prediction by Eq. (1) [11].

In many calibration situations, an approach different than

CLS is needed, simply because identifying all sample compo-

nents is impractical or virtually impossible. Inverse models may

conveniently solve these problems by assuming that the analyte

concentration is a function of the response [12]. A multivariate

inverse model for the test sample can be written as:

y ¼ xTb ð3Þ

where y (a scalar) is the predicted concentration of the analyte of

interest, x is the test sample spectrum (a vector of size J�1) and

b (a vector of size J�1) contains J regression coefficients

associated to the particular analyte being investigated. The

value of J is generally greater than the number of training

samples I, and therefore the calibration step requires to solve an

underdetermined system of equations, requiring a drastic

reduction in the number of sensors in order to apply least-

squares for estimating the regression vector b. Inverse least-

squares (ILS), also called multiple linear regression (MLR), is a

technique combining variable selection (to obtain an overde-

termined system of equations) and least-squares [11]. In this

method, calibration is carried out with the information provided

by I mixtures whose spectra are recorded at J sensors (with

I >J), and b is obtained from:

y ¼ Xb ð4Þ
where y (a vector of size I�1) holds the reference concentra-

tions and X (a matrix of size I�J) is the corresponding

calibration spectra.

Many algorithms exist for efficiently selecting the best

subset of sensors for implementing ILS. Since the number of

all possible combinations which may be employed for

calibration can be exceedingly large, the selection is made by
sensible algorithmic procedures, such as generalized simulated

annealing (GSA), artificial neural networks (ANN) or genetic

algorithms (GA) [44–46].

A popular alternative to ILS is to employ ‘‘scores’’ (linear

combinations of the original variables) instead of the original

responses, and then regress the reference concentrations on a

limited number of scores. In the technique known as principal

component regression (PCR), the scores are computed by

projection onto the space spanned by a reduced number of

eigenvectors of the square matrix (XTX). These loading vectors

are selected in such a way that they explain a significant

portion of the overall spectral variance displayed by the

calibration spectra. Specifically, the scores are found by

following these sequential steps: 1) obtaining the first A

significant eigenvectors of the square matrix (XTX) (which

define a loading matrix P of size J�A), and 2) projecting the

data matrix X onto the space spanned by P [11]:

T ¼ XP: ð5Þ

Hence, the size of the calibration score matrix T is (I�A).

The operation described by Eq. (5) compresses the information

contained in X into a significantly smaller matrix, allowing to

apply an inverse calibration procedure which involves the

scores instead of the original variables:

y ¼ Tvþ e ð6Þ

where v (size A�1) is the vector of regression coefficients and

e is a vector of residuals not fitted by the inverse calibration

model, The vector v, required for subsequent prediction on new

samples, is easily recovered from the least-squares solution to

Eq. (6), since the problem becomes overdetermined, because A

is in practice significantly smaller than I:

v ¼ Tþy ð7Þ

where T+=(TTT)�1TT is the so-called pseudo-inverse of T,

easily obtained since the columns of T are orthogonal.

Prediction proceeds as in the ILS method:

y ¼ tTv ð8Þ

except that the information contained in x is replaced by the

new sample scores t, where [11]:

t ¼ xP ð9Þ

This philosophy leads to the so-called ‘‘full-spectrum’’

methods of which PCR and also PLS regression are the prime

examples [11]. In fact, the latter has become the de facto

standard in chemometrics, because of the availability of

software and the ease of its implementation. PLS operates in

similar manner in comparison with PCR. The main difference

lies in the compression of the information contained in X, i.e.,

the analogous of Eq. (5). In PLS this compression is made

using the full calibration data, including instrumental signals

(X matrix) and concentrations (y vector). An iterative PLS

algorithm provides two types of loadings, contained in the

matrices W (weight loadings) and P (loadings), both of size

J�A, which help to explain the maximum covariance between
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signal and analyte concentration. The calibration scores are

found by the following projection:

T ¼ XW PTW
� ��1

: ð10Þ

The calibration step is inverse, and identical to PCR.

Once the regression coefficients are found, they are

employed to predict the analyte concentration through Eq.

(8), with the new sample scores found by an equation

analogous to Eq. (10):

t ¼ WTP
� ��1

WTx: ð11Þ

A problem which is common to most factor-based multi-

variate methodologies is the estimation of the optimum number

of factors (A) to be employed for future predictions. The most

popular procedure to estimate A is cross-validation [11].

Briefly, during cross-validation, from a given set of I

calibration spectra, a PLS model is built using (I�1) spectra.

Using this model, the concentration of the sample left out

during the calibration is predicted. This process is repeated a

total of I times, until each sample has been left out once. The

sum of squared prediction errors for all calibration samples, or

PRESS=~( yi,act�yi,pred)
2 is calculated each time a new factor

is added to the PLS model. The optimum number of factors is

estimated by computing the ratios F(A)=PRESS(A <A*) /

PRESS(A) (where A is a trial number of factors and A*

corresponds to the minimum PRESS), and selecting the

number of factors leading to a probability of less than 75%

that F >1 [11].

The arsenal of first-order methods has been complemented

in recent years by the introduction of methods for filtering or

preprocessing the raw instrumental data, producing new data

sets in which the correlation between signal and concentration

of particular analytes is enhanced. Pertinent examples of this

are net analyte preprocessing (NAP) [15] and orthogonal signal

correction (OSC) [47].

2.4. Second- and higher-order data

If a sample produces second- or higher-order data, then the

multivariate strategies are also known as multi-way techniques.

Data for a single sample are contained in a multidimensional

array (either a matrix, or a higher-order array). In general,

various components contribute to the overall matrix signal M

(of size J�K), and in the most interesting scenario the latter

can be written as:

M ¼ XZYT ð12Þ

where X is a matrix ( J�N) collecting the profiles of N

components at the J sensors spanned by the first dimension of

M, Y is a matrix (K�N) whose columns are the profiles at the

K sensors spanned by the second data dimension, and Z is a

diagonal (N�N) matrix whose diagonal elements are the

component concentrations (all off-diagonal elements are zero).

The columns of the so-called loading matrices X and Y are

usually normalized to unit length, in which case Z contains
only relative concentrations. Due to the special form of Eq.

(12), the model is called trilinear.

If matrix data for a group of samples are joined in the third

dimension, then a three-dimensional array is obtained (called a

Fthree-way_ array), and the methods employed for analyzing

them are called three-way methods. A mathematical model for

such an array is not easily written using standard matrix

notation, but can be simply understood in terms of individual

three-way elements. If the three-way array F (of size I�J�K,

I being the number of samples) has general Fijk elements, and

provided the trilinear model is valid, each of these elements can

be written as:

F
;

ijk ¼ ~
N

n¼1

XinZnnYjn þ E
;

ijk ð13Þ

where Eijk are the elements of an error array Ē of the same

dimensions as F. A popular algorithm for processing thee-way

data is parallel factor analysis (PARAFAC) [23]. The latter

method fits Eq. (13), often in a unique manner, using an

alternating least-squares (ALS) procedure, providing the

profiles in both dimensions for all sample components, as well

as the scores or relative concentrations, the latter ones

contained in the Z matrix. From this matrix, the nth column

corresponding to a given analyte can be isolated, and the scores

corresponding to the calibration samples are regressed against

reference analyte concentrations, in a pseudo-univariate fash-

ion. Interpolation of the new sample score into the latter graph

allows to predict the analyte concentration. Since the decom-

position of Eq. (13) is unique, profiles and scores are directly

extracted from the three-way data, regardless of whether

uncalibrated components occur in the new samples. This

constitutes the basis of the important second-order advantage.

We collect in Table 1 a brief nomenclature summary, in

order to avoid a common confusion which may arise from the

proliferation of data orders.

Second-order multivariate calibration methods are of great

interest because many instruments produce data that following

the trilinear model [48–50]. Other appropriate techniques for

analyzing these data are the generalized rank annihilation

method (GRAM) [40], bilinear least-squares (BLLS) [36] and

multivariate curve resolution-alternating least-squares (MCR-

ALS) [51]. Bilinear data are of great importance to the

analysis of complex mixtures, because they permit quantifi-

cation even in the presence of unsuspected sample constitu-

ents, which give rise to second-order advantage [40]. Hence,

even when second-order multivariate calibration may be

viewed as a natural extension of its first-order counterpart,

the change between these two orders is revolutionary rather

than evolutionary.

There are few literature reports on third-order calibration

methods, useful when a sample produces a three-way array, and

the set formed by joining a samples set is an I�J�K�L four-

way array characterized by four indexes: I is the number of

samples, and J, K and L are the numbers of sensors in the

corresponding data dimensions. Suitable methods for proces-

sing this information are PARAFAC and trilinear least-squares

(TLLS) [52].
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Fig. 1. Representation of data of various orders and of the calibration sets obtained when joining data sets.
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An alternative which is sometimes employed is to

rearrange the higher-order data arrays into vectors, and then

apply a first-order method. This procedure leads, for

example, to unfold-PCR and unfold-PLS [53]. A promising

alternative to these unfolding methods is NPLS [39], a

genuine N-way method. However, neither NPLS nor the

unfolded versions of PCR or PLS are able to achieve the

second-order advantage.

A summary of data orders, uni- and multivariate models,

and adherence to the second-order advantage, is given in Table

1. Fig. 1 shows, in turn, a pictorial representation of data of

various orders, as well as the nomenclature of the

corresponding training sets.

3. Application to biomedical analysis

3.1. Synthetic mixtures

Before their application to real samples, several chemo-

metric methods have been previously optimized and explored

on suitable sets of artificial samples. The latter are prepared in

the laboratory in order to simulate (sometimes only partially)

natural matrices. In several of these cases, the samples are

basically obtained by dissolving the analytes in adequate

solvents. Some examples are reviewed below.

A near-infrared method combined with PLS regression

was reported for determining serum proteins (albumin and

IgG) in phosphate buffer solutions [54]. A fluorescence

method applying multivariate calibration in real serum

samples was also developed for determining the same

proteins (see below).
A spectrophotometric method has been described and

applied to resolve binary synthetic mixtures of the corticoste-

roid dexamethasone and the antibiotic polymyxin B. Absorp-

tion spectra of these compounds were used to optimize the

spectral data set by applying PLS and PCR algorithms [55].

The simultaneous spectrophotometric determination of

vitamins belonging to the B complex (folic acid, thiamin,

riboflavin, and pyridoxal) has been described using the PLS

method [56,57]. Satisfactory results were obtained in all of the

laboratory-made analyzed samples.

Several works have employed multivariate calibration for the

determination of metal ions in both synthetic and commercial

dialysis fluids. Kargosha and Sarrafi developed a method for the

simultaneous determination of calcium and magnesium in

dialysis fluids using PCR and PLS algorithms [58]. The method

was based on the reaction between the analytes and eriochrome

black T at pH 10.1. The samples were analyzed with good

precision, corroborating that other components, frequently

added to dosage forms, do not cause a serious interference.

A method for the quantitation of zinc, copper and

manganese in dialysis fluids, based on their complex formation

with 1-(2-pyridylazo)-2-naphthol (PAN), was developed [59].

CLS was compared with PCR and PLS, concluding that all of

these multivariate algorithms showed similar results.

Binary and ternary mixtures of different metal ions [Zn(II),

Ni(II), Pb(II), Co(II) and Cd(II)] were analyzed by a ligand

substitution kinetic method and PARAFAC [60].Three-way

data matrices were generated by acquisition of UV-visible

spectra as a function of: 1) the reaction time of a substitution

reaction between the metal complex with 4-(2-pyridylazo)

resorcinol (PAR) and EDTA, and 2) different relative concen-
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trations of the metal ions in the micromolar concentration

range.

Differences between the luminescence lifetimes of EDTA–

lanthanides–protein complexes were exploited by analyzing

mixtures of anhydrase, human serum albumin (HSA) and g-

globulin. PLS regression analysis was used to determine HSA

and g-globulin in binary mixtures, without previous separation

at the concentration ranges typically found in clinical tests of

human blood serum [61].

The monitoring of free chlorine in dialysis fluids using a

calorimetric method and PLS was investigated [62], based on

the use of N,NV-diethyl-p-phenylenediamine (DPD). The results

were compared with those obtained from the current univariate

DPD-method, which uses a single wavelength detection at 515

nm. The multivariate approach showed better performance,

because it was able to model the influence of the high ionic

strengths of the saline matrices on the equilibrium among the

DPD species.

Finally, a new method for quantifying adrenaline and

noradrenaline in mixtures of catecholamine standards was

described by Nikolajsen et al. [63]. The method gains

selectivity from the different rates at which the fluorescing

3,5,64-trihydroxyindole derivatives (lutines) of the catechola-

mines are formed and degraded to adrenaline and noradrena-

line. Fluorescence surfaces were measured at consecutive time

points for every sample, creating a four-way data array.

Quantitative information was obtained by two-component

four-way PARAFAC and also by NPLS, with very similar

results. The authors expect the method to be suitable for the

determination of catecholamines in real urine samples.

3.2. Real biological samples

Although working with synthetic samples is a first

approximation to solve multi-component cases, analytical

methods are frequently required to work in situations which

are far from ideal. Real samples, especially those related to

biological systems, may show high viscosity and/or ionic

strength, or contain interfering species, high protein concentra-

tions, etc. Therefore, in recent years, multivariate calibration

methods have been gaining importance in the resolution of

complex multicomponent mixtures, such as serum, plasma,

urine and biological tissues.

Chemometric methods have been mainly developed for

spectroscopic data, for a variety of reasons. On one hand,

traditional chemometric analysis began by the need of exploit-

ing heavily overlapped NIR spectra for quantitative purposes.

On the other, spectroscopic data are, in general, less selective

than other data sources due to severe signal overlapping,

immediately calling for suitable chemometric tools. Conse-

quently most of the work cited below concern the application of

chemometrics to spectral data, although occasionally other data

types (i.e., electrochemical) have also been studied.

3.2.1. UV-visible spectrophotometry

The simultaneous spectrophotometric resolution of copper

(II) and zinc (II) using 2-carboxyl-2-hydroxy-5-sulfoformazyl-
benzene in blood serum by using a modified version of PLS

has been reported [64]. Likewise, the resolution of quaternary

mixtures formed by iron, cobalt, nickel and copper using UV-

visible spectrophotometric data was accomplished in biological

materials (dogfish liver, pig kidney and bovine liver) [65]. The

method is based on the absorption produced by the complexes

formed between the cited ions and 1,5-bis(di-2-pyridylmethy-

lene) thiocarbonohydrazide (DPTH). A comparative study of

the results obtained by using PCR and PLS for absorbance,

first-derivative and second-derivative data is presented, and the

authors concluded that best recovery values were obtained by

the PLS method.

A flow-injection analysis of five chlorophenols (priority

pollutants) in urine samples using spectrophotometric data and

PLS was developed [66]. PLS calibration of spectrophotomet-

ric data has been applied to the determination of theophylline (a

xanthine bronchodilator) in blood serum [67]. A comparison of

this method with an immunofluorescent polarization technique

revealed no significant differences in their prediction abilities.

This work also included the analyses of potential interferences.

Studies in the presence of triglycerides, bilirubin, hemoglobin

and caffeine showed that only the latter was able to interfere, as

with other theophylline monitoring techniques.

Spectrophotometry (in the first-derivative mode) and PLS

were also combined for the simultaneous determination of

triamterene (a diuretic drug) and leucovorin in serum and urine

[68]. The absorption spectra of samples of biological fluids,

spiked with either one or both pharmaceuticals, were used to

perform the optimization of the calibration matrices by PLS. It

is important to point out that the analysis could be successfully

carried out without sample pretreatment.

The determination of orotic acid in urine, useful for the

diagnosis of disorders on the urea cycle and hereditary orotic

aciduria, was performed by capillary zone electrophoresis with

diode array detection [69]. Due to small disturbances by

matrix-co-migrants, chemometric procedures (target transfor-

mation factor analysis, fixed size moving window-evolving

factor analysis, orthogonal projection approach and fixed size

moving window-target transformation factor analysis) had to

be applied when the orotic acid concentration was 10 Amol l� l.

Second-order calibrations of multivariate spectroscopic-

kinetic data in the visible region were proposed to improve

the Jaffé method for creatinine assay [70]. Quantitative

determinations of creatinine using PARAFAC and direct

trilinear decomposition (DTLD), performed on synthetic

mixtures containing bilirubin, glucose, and albumin, confirmed

that second-order calibration is useful for creatinine determi-

nation in human serum.

3.2.2. Mid- and near-infrared spectroscopy

Different authors have evaluated the application of chemo-

metric algorithms to infrared data, with especial attention to

near-infrared spectroscopy [71–75].

The determination of glucose in blood deserves a prominent

place in the present review, because it is the base of non-

invasive tools which could be efficiently employed in the war

against diabetes, mainly by using NIR spectroscopy.
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Khalil has reviewed infrared optical methods (NIR trans-

mission and reflectance, NIR Chronoscopic measurements,

spatially resolved diffuse reflectance, NIR frequency domain

reflectance, polarimetry, Raman scattering, NIR photoacoustic

spectroscopy) employed for non-invasive glucose measure-

ments, with emphasis on multivariate chemometric techniques

for data analysis [76]. McNichols and Coté reviewed optical

glucose sensing including calibration and data processing

methods useful for optical techniques [77], and Koschinsky

and Heinemann published an article devoted to both technical

and clinical aspects of glucose sensors [78].

Critical to the accurate measurement of glucose are the

product engineering and the multivariate algorithms. From the

point of view of NIR spectral properties, glucose molecules are

similar to water, and hence a major problem in the optics and

software design is to clearly distinguish the target molecule

from the intense water background. In the simplest device, the

light source shines NIR radiation into the skin, and the

reflected light is analyzed by a spectrometer and processed

by an algorithm to yield the blood glucose content. Prototypes

are being considered for the approval of the US Food and Drug

Administration (FDA) [116].

Since 1990, numerous researches were devoted to the

determination of glucose by both near- and mid-infrared

spectroscopies in water matrices, plasma, whole blood and

different tissues using chemometric tools (PLS, PCR and

ANNs) [79–100].

Lewis et al. developed an on-line, non-invasive method for

the determination of glucose in cell culture media, via NIR

spectroscopy [101], using a unique fiber optic coupling method

and a commercial Fourier transform infrared (FT-IR) spec-

trometer. This system was the first of its kind and integrates a

completely non-invasive optical probe to measure glucose

concentrations within cell culture media, in situ. PLS regres-

sion was used to extract the analyte-dependent information and

to build a multivariate calibration model.

In 2004, Du et al. published a novel chemometric method:

region orthogonal signal correction (ROSC), in order to pre-

treat NIR spectra of blood glucose measured in vivo [102].

Moving window-PLS (MWPLS) regression was used to select

NIR regions informative of glucose. The obtained results

demonstrated that ROSC-pre-treated spectra, either including

whole spectra or informative regions selected by MWPLS,

provided very good performance of the PLS models.

MWPLS was also employed to determine the concentrations

of human serum albumin, g-globulin and glucose by using NIR

spectroscopy [103,104]. The procedure was proposed to search

for the optimized combinations of informative regions (spectral

intervals) considered containing useful information for building

PLS models.

Very recently [105], Schrader et al. have described a suitable

optical set-up for the in vivo non-invasive NIR measurement of

glucose in the human eye. A chemometric (PLS) study of NIR

aqueous glucose spectra with concentrations of l0–350 mg/dl

furnished in a calibration model which was able to predict

physiological glucose concentrations. Even though the medi-

cally desired prediction error (less than 10 mg/dl) was not
reached, the results were very promising, and show the

feasibility of in vivo determination of glucose in the human eye.

Hall and Pollard determined total protein, albumin, globu-

lins, and urea in unmodified human serum using NIR

spectroscopy [106]. The distinctive NIR spectra of the

individual protein fractions allowed unique spectroscopic

models to be derived for each fraction, using MLR, while a

PLS regression analysis was necessary to fully extract the

relevant spectral information for urea.

Multicomponent assays for blood substrates, including

glucose, proteins, triglycerides, cholesterol, urea and uric acid

in human plasma by using mid- and near-infrared spectro-

scopies and PLS calibration were developed by Heise et al.

[107,108]. The results were compared with those obtained by

the official standard methods. They concluded that while in

several cases the standard prediction errors were in the

clinically accepted range, in other cases these errors were

higher, and therefore the proposed methods are only suitable

for screening purposes.

Results for the analysis of several blood substrates (protein,

cholesterol and triglycerides) in human blood plasma using

PLS multivariate calibration and short-wave NIR were

presented by Bittner et al. [109]. Whereas the relative mean-

squared prediction error for total protein using short wave NIR

data was comparable with previous results using conventional

NIR spectroscopy, the errors found for total cholesterol and

triglycerides were nearly a factor of two worse for this study.

A multicomponent assay of proteins, glucose, cholesterol,

triglycerides and urea was presented for human plasma using

mid-infrared spectra recorded in the attenuated total reflection

mode [110]. PLS was used for multivariate calibration based on

spectral intervals in the fingerprint region, selected for

optimum prediction and modelling.

The potential for noninvasive determinations of glucose,

lactate and ammonia in cell culture media was investigated

through NIR spectroscopy [111]. PLS regression was used to

build a multivariate model based on NIR spectra and reference

values. An independent calibration was performed with

aqueous mixtures of glucose, lactate, ammonia, glutamate

and glutamine. Finally, a calibration using a combination of

spectra from cell culture media samples and aqueous mixtures

was performed. The results indicated that a selective calibration

model can be produced by combining data from samples of

different type.

Berger et al. demonstrated the use of NIR Raman

spectroscopy to measure the concentration of many serum

constituents (glucose, cholesterol, urea, and other analytes) in

serum and whole blood samples using PLS [112].

Biomedical samples have been studied by combining

second derivative of IR spectra with chemometric methods

using glass substrates [113]. These analyses involved the

determination of serum triglycerides, fetal lung maturity

(through measurements of amniotic fluid lecithin/sphingomye-

lin—L/S ratios), and the classification of synovial fluid for the

differential diagnosis of arthritis. The IR methods for serum

triglyceride analysis and the determination of amniotic fluid L /

S ratios were calibrated using a PLS algorithm. The classifi-
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cation of the synovial fluid spectra was carried out using a

feature extraction method (optimal spectral region selection

algorithm) and linear discriminant analysis (LDA).

Heise et al. evaluated the quantification of urea, creatinine,

uric acid, phosphate, and sulfate in urine, using mid-infrared

attenuated total reflection spectroscopy and PLS calibration

[114].The limitations of the multicomponent assay and the

potential of fiber optic measurements were discussed.

The quantitative analysis of triglycerides in human plasma

was done using near-infrared spectroscopy by da Costa Filho

and Poppi [115]. The applied multivariate techniques (PLS,

MLR and ANN) showed similar performance, although MLR

was preferred because of its easy implementation.

Non-invasive analysis of ethanol in blood can be done by

NIR measurements combined with suitable chemometric

algorithms. Recent subject studies show that these instruments

measure alcohol more accurately than state-of-the-art breath

alcohol analyzers [116].

NIR spectroscopy was used to measure the somatic cell

count (SCC) content of cow milk [117]. The calibration for

log(SCC) was performed using PLS regression and different

spectral data. It was found that SCC determination by NIR milk

spectra is based on SCC-related changes in milk composition,

and the most significant factors simultaneously influencing

milk spectra with the increase in SCC were the alteration of

proteins and the changes in ionic concentration.

An adaptive calibration procedure was used by Rhiel et al.

to build selective multivariate calibration models for the

measurement of glucose, lactate, glutamine, and ammonia in

undiluted serum-based cell culture media [118]. This procedure

removes metabolism-induced covariance between these ana-

lytes in a series of calibration samples collected during the

cultivation of PC-3 human prostate cancer cells. PLS calibra-

tion models were generated from both full NIR spectra and

optimized spectral ranges. Similar analytical performance was

achieved, and with fewer model factors, when the optimized

spectral range was used. The results demonstrated that NIR

spectroscopy can be effectively used in the off-line measure-

ment of important nutrients (glucose and glutamine) and by-

products (lactate and ammonia) in a serum-based animal cell

culture medium.

Lafrance et al. evaluated NlR as a technique for lactate

analysis in plasma (in vitro) [119] and from exercising humans

(in vivo) [120]. Calibration of the lactate concentration by NIR

was made using PLS. The results suggest that NIR may

provide a valuable tool to assess in vivo physiological status

for both research and clinical needs.

A subject which accompanies a discussion based on NIR

spectra is the so-called calibration transfer, which refers to the

transfer of multivariate calibrations between different NIR

instruments or to the maintenance of a given calibration in time

[121,122]. As expected regulatory authorities have recently

moved towards this issue [123]. There are several important

reasons to implement a transference of models: a) when sample

pre-treatment is carried out, such as extraction or clean-up, b)

because of the need to transport a calibration model previously

built on a given instrument, to a second instrument, c) when
changes on the instrument over time (for example wavelength

shift) take place, and d) when variations between samples from

different production batches are observed.

When multivariate calibration is applied, especially in the

first-order domain, an enormous amount of calibration samples

are sometimes required in order to contemplate the large

number of variability sources which are present in biological

materials [20,67,88]. It is in this scenario where model transfer

plays an important role, because of the possibility of using this

information in order to analyze new samples, obtained in new

conditions, without the need of building the calibration model

again.

Among the most popular methods for calibration transfer,

the following can be cited: direct standardization (DS) [124],

piecewise direct standardization (PDS) [124], OSC [125],

ANN [126], wavelet analysis [127] and guided model re-

optimization (GMR) [122]. PDS is probably the best solution

for complex systems. It builds a multivariate model between

the response of a sample measured at the jth wavelength in

situation A and the corresponding window (a selected region)

of the response obtained on situation B. The regression

coefficients are located in a transformation matrix F

according to:

XA ¼ XBF ð14Þ

where XA and XB are the response matrices of the

standardization samples obtained from the primary and

secondary situations (A and B), respectively. Once the

transformation matrix is estimated, the response vector of a

new sample xB is projected onto the original measurement

space so that its property values can be predicted with the

old model:

xA ¼ FxB: ð15Þ

The relevant matrix F is usually estimated by means of PCR

or PLS regression in order to obtain a least-squares solution.

Literature reports examples of application of multivariate

calibration standardization on the bioanalytical field, which

are almost exclusively related with the determination of

glucose and other compounds in serum samples by FT-NIR

spectrometry. In these cases, samples measured in a second-

ary spectrophotometer are quantified by using the calibration

data previously obtained with a primary instrument

[122,128–130].

3.2.3. Spectrofluorimetry

Since fluorescence spectroscopy shows the advantages of

both high sensitivity and simplicity, it has found extensive use

in the determination of analytes at low concentrations.

However, it is noteworthy that only few works have been

published regarding the use of direct spectrofluorimetric

methods for the analysis of compounds in biological samples.

This is due to the frequently observed overlapping between the

intense fluorescence emission from human urine or serum and

the investigated compounds, which precludes their direct

spectrofluorimetric quantification. With the advent of chemo-

metric tools, this problem was solved in several important
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cases. The pioneering works were devoted to the use of first-

order calibration: Durán Merás et al. performed the fluorimetric

determination of the antibacterial nalidixic acid and 7-hydro-

xymethylnalidixic in urine by PLS and PCR multivariate

calibration [131].

PLS regression of fluorimetric data for the determination of

the diuretic triamterene in urine was successfully developed

[132]. The simultaneous determination of salicylic acid and

diflusinal in human serum has been performed by synchronous

fluorimetry in combination with PLS multivariate calibration

[133]. The method is based on the fluorescence of these

compounds in chloroform containing 1% (v/v) acetic acid.

Serum samples are treated with trichloroacetic acid too remove

the proteins, and both compounds are extracted in chloro-

form—l% (v/v) acetic acid prior to the determination.

The spectrofluorimetric determinations of two anti-inflam-

matory drugs (naproxen and salicylate) in serum [134], and of

naproxen, salicylic acid and acetylsalicylic acid have been

carried out by using PLS multivariate calibration [135].

The simultaneous resolution of naproxen–salicylic acid

mixtures in serum and naproxen–salicylic acid–salicyluric

acid mixtures in urine was accomplished and employed for a

discussion of the relative advantages of the applied both first-

(PLS) and second-order multivariate calibration of fluores-

cence data [136]. In this case, the analysis of second-order

data was performed using excitation-emission matrices, in

combination with chemometric software such as GRAM (in

the iteratively reweighted version called IRGRAM), parallel

factor analysis (PARAFAC) and self-weighted alternating

trilinear decomposition (SWATLD), and the fluorescence

signals were improved by the complexation of the studied

compounds with h-cyclodextrin.
Another widely used anti-inflammatory, piroxicam, was

spectrofluorimetrically determined in serum through the use of

three-way fluorescence data and multivariate calibration

performed with PARAFAC and SWATLD [137]. The method

exploits the so-called second-order advantage of the three-way

data, and was developed following two different procedures:

internal standard addition and external calibration with

standard solutions, which were compared and discussed.

Excitation-emission matrix fluorescence and multi-way

analysis (PARAFAC and NPLS) were also accomplished for

the direct determination of doxorubicin (a cytotoxic anthracy-

cline antibiotic) in human plasma [138].

An original approach is presented for the spectrofluorimetric

determination of the powerful anticonvulsant carbamazepine

and its main metabolite (10,11-epoxide) in human serum [139].

The strategy consists in supporting both compounds on a nylon

membrane, and subsequently determining them through a

solid-surface fluorescence methodology combined with che-

mometric analysis. The algorithms applied were PARAFAC,

SWATLD and NPLS. The results were compared with two-way

calibration data analysed with PLS regression.

The overlapping between the fluorescence spectra for

human serum and ibuprofen (the oldest of the newer non-

steroidal anti-inflammatory drugs) is significant and, in

principle, precludes the direct spectrofluorimetric determina-
tion of this drug. However, this problem was overcome by

combining the property of h-CD of enhancing the low native

fluorescence of ibuprofen with a suitable chemometric analy-

sis. Specifically, second-order data analysis was performed on

excitation-emission fluorescence matrices (EEMs) with the aid

of the SWATLD algorithm [140].

Ternary mixtures of fluoroquinolones (norfloxacin, oflox-

acin and enoxacin) have been spectrofluorimetrically deter-

mined in human urine samples by application of a PLS model

[141]. The method is based on the native fluorescence of these

compounds in the presence of the surfactant sodium dodecyl

sulfate at pH=4.

In a recent work, the analytical performances of two second-

order algorithms, the novel BLLS and the popular PARAFAC,

were compared as regards fluorescence data recorded for the

determination of ciprofloxacin (a fluoroquinolone antibiotic) in

urine [38].

The simultaneous determination of two serum proteins

(albumin and IgG) in real serum samples using spectro-

fluorimetry and multivariate calibration was attempted by

Wiberg et al. [142]. The results obtained showed reasonable

content predictions for both albumin and IgG, although in a

few cases interfering fluorescence from other serum proteins

was detected.

Very recently, four-way fluorescence data recorded by

following the kinetic evolution of excitation-emission fluores-

cence matrices (EEMs) have been analyzed by PARAFAC and

trilinear least-squares (TLLS) algorithms [52]. They were

applied to the simultaneous determination of the components

of the anticancer combination of methotrexate and leucovorin

in human urine samples. Both analytes were converted into

highly fluorescent compounds by oxidation with potassium

permanganate, and the kinetic of the reaction was continuously

monitored by recording full EEM of the samples at different

reaction times. The excitation, emission and kinetic time

profiles recovered by both chemometric techniques were in

good agreement with experimental observations.

It should be mentioned that non-invasive screening of Type

2 diabetes is being performed by fluorescence measurements.

In a similar way to the NIR devices discussed above,

fluorescence spectroscopy allows one to measure advanced

glycation end products (AGEs) in the dermis of a patient’s

forearm [116]. The concentration of AGEs in the dermis is an

excellent indicator of cumulative hyperglycemic exposure and

is highly correlated with the development of diabetes compli-

cations [143].

3.2.4. Electrochemistry

Reports on the use of chemometric techniques in biomedical

analysis involving electrochemical data are not as abundant as

its spectroscopic counterpart. In 2002, Pravdová et al. reviewed

multivariate chemometric methods employed in electrochem-

istry, and applied to a wide variety of samples [144]. Most of

them refer to the analysis of classification problems (in a

variety of samples including foodstuffs, beverages, microbial

species, explosive gases, etc.), generally performed by PCA

and ANNs.
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An amperometric glucose biosensor was developed by

Kulys and Hansen [145]. The long-term stable biosensors

were obtained using stabilized glucose oxidase and an array of

biosensors. The application of a chemometric method permit-

ted employment of the biosensor during more than 166 days at

35 -C and relative humidity 75%. The relative error of

chemometric prediction was less than 5.4%, and the response

changes less than 0.15% per week.

In several cases, chemometric tools were used with the

purpose of optimizing the different analytical variables. In

1995, Furlanetto et al. [146] proposed an adsorptive stripping

voltammetric method for the determination of rufloxacin in

tablets, plasma and urine, using a multivariate strategy for the

optimization of the experimental design.

A chemometric method was applied for determining

quinolinic acid in human plasma and urine by differential

pulse polarography. The variables involved in the applied

procedure were evaluated by means of experimental design: a

screening symmetric matrix and a central composite design

[147].

An ionic-selective-electrode multisensor system and back-

propagation ANN for the simultaneous determination of

several cations and anions were successfully employed in a

solution modelling human blood plasma [148].

An array of conducting polymer-coated microelectrodes was

employed as an amperometric detector to analyze a range of

proteins [149]. Protein identification and quantification were

performed using PCA, soft independent modelling of class

analogy (SIMCA), ordinary least-squares (OLS) and PLS.

Individual proteins in a two component mixture were

quantitatively analyzed with acceptable accuracy.

Lobanov et al. have applied ANNs to the analysis of

ethanol–glucose mixtures by using two sensors based upon

whole microbial cells [150]. Amperometric sensors were

constructed using immobilized cells of either Gluconobacter

oxyduns or Pichia methanolica. The bacterial cells of G.

oxydans were sensitive to both substrates, while the yeast cells

of P. methanolica oxidized only ethanol. Using a polynomial

approximation, data from both of these sensors were processed

to provide accurate estimates of glucose and ethanol over a

concentration range of 1.0–8.0 mM. When data were

processed using an artificial neural network, glucose and

ethanol were accurately estimated over a range of 1.0–10.0

mM.

A voltammetric method based on the oxidation at a glassy

carbon electrode was proposed for the simultaneous determi-

nation of two antipsychotic drugs (chlorpromazine hydrochlo-

ride and promethazine hydrochloride) [151]. Since the

voltammetric peaks of these two drugs seriously overlap, they

were interpreted with the aid of chemometric methods such as

CLS, PCR and PLS. The proposed method was applied to

determine these two drugs in a set of synthetic mixtures and

blood samples, and, in general, satisfactory results were

obtained.

An electrochemical approach for the determination of the

antibacterial enrofloxacin in spiked canine urine was proposed.

The method, based on adsorptive stripping voltammetry and
PCR analysis, was developed in the presence of the enroflox-

acin metabolite (ciprofloxacin) and yielded successful results

[152].

An array of six potentiometric sensors, constituted by two

creatinine biosensors and four ion-selective electrodes for

potassium, sodium, ammonium and calcium, was employed

to calibrate a multivariate model based on PLS for the response

to creatinine [153]. The array was used for the analysis of

creatinine in urine samples, and the results were compared with

the classical clinical analysis.

Freire et al. developed a simple method for a rapid

evaluation of mixtures of phenolic compounds (phenol/

chlorophenol, cathecol/phenol, cresol/chlorocresol and phe-

nol/cresol) using a dual amperometric device [154]. The

approach is based on the difference between the sensitivity of

lactase and tyrosinase for different phenolic compounds. A

multichannel potentiostat is used to simultaneously monitor

lactase- and tyrosinase-based biosensors, and the data are

treated using the PLS algorithm. The results showed that the

proposed methodology can be employed to the simultaneous

determination of phenolic compounds in industrial, clinical or

environmental samples.

Recently, Berrettoni et al. used home-made RVC (reticulat-

ed vitreous carbon) microelectrodes array to monitor bacterial

loads, by coupling electrochemical with chemometric methods

[155,156]. Normal pulse voltammograms (NPV) were recorded

with the purpose of obtaining the growth curves of bacterial

species: Staphylococcus aureus, Escherichia coli and Pseudo-

monas aeruginosa. The electrochemical signals processed by

PLS allowed to correlate the instrumental signals with the

bacterial population.

3.2.5. Chromatography

Chemometric processing of chromatographic data has

been mainly used with classification purposes, although

some work has also been done on quantitative analysis.

For example, studies of polychlorinated biphenyls in serum

using gas chromatography were performed by Luotamo et al.

[157]. Their results not only demonstrated that polychlori-

nated biphenyls can be used for classifying persons according

to the source of exposure (occupational, accidental, or

environmental), but also that PLS is suitable for the

quantitation of polychlorinated biphenyl compounds in

biological materials.

Principal component analysis (PCA) has also been used in

the determination of the chromatographic peak purity, allow-

ing, for example, for the analysis of synthetic binary mixtures

of the local anaesthetic drugs lidocaine and prilocaine [158].
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Espinosa Mansilla, Second-order advantage achieved with four-way

fluorescent excitation-emission-kinetic data processed by parallel factor

analysis and trilinear least-squares. Determination of methotrexate and

leucovorin in human, Anal. Chem. 76 (2004) 5657–5666.

[53] S. Wold, P. Geladi, K. Esbensen, J. Öhman, Multi-way principal
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[66] F. Navarro Villoslada, L.V. Pérez Arribas, M.E. León Gonzalez, L.M.

Polo Dı́ez, Matrix effect modelling in multivariate determination of

priority pollutant chlorophenols in urine samples, Anal. Chim. Acta 381

(1999) 93–102.

[67] H.C. Goicoechea, A.C. Olivieri, A. Muñoz de la Peña, Determi-
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