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ABSTRACT

• Premise of the study: Tropical forest loss and fragmentation isolate and
reduce the size of remnant populations with negative consequences for
mating patterns and genetic structure of plant species. In a 4-yr study, we
determined the effect of fragmentation on mating patterns and pollen pool
genetic structure of the tropical tree Ceiba aesculifolia in two habitat
conditions: isolated trees in disturbed areas (≤3 trees/ha), and trees (≥6
trees/ha) in undisturbed mature forest.

• Methods: Using six allozyme loci, we estimated the outcrossing rate (tm),
the mean relatedness of progeny (rp) within and between fruits, the degree of
genetic structure of pollen pools (Φft), and the effective number of pollen
donors (Nep).

• Key results: The outcrossing rates reflected a strict self-incompatible
species. Relatedness of progeny within fruits was similar for all populations,
revealing single sires within fruits. However, relatedness of progeny between
fruits within trees was consistently greater for trees in fragmented conditions
across 4 yr. We found high levels of genetic structure of pollen pools in all
populations with more structure in isolated trees. The effective number of
pollen donors was greater for trees in undisturbed forest than in disturbed
conditions.

• Conclusions: Our study showed that the progeny produced by isolated trees
in disturbed habitats are sired by a fraction of the diversity of pollen donors
found in conserved forests. The foraging behavior of bats limits the exchange
of pollen between trees, causing higher levels of progeny relatedness in
isolated trees.
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Habitat loss and fragmentation are widespread processes affecting tropical
forests and represent the major threat for maintenance and viability of natural
plant populations (Heywood et al., 1994; Quesada and Stoner, 2004). Habitat
destruction and fragmentation directly reduce the size and increase the spatial
isolation of populations affecting reproduction, gene flow, and genetic
diversity of trees (McCauley, 1995; Young et al., 1996; Nason and Hamrick,
1997, Aguilar et al., 2008). It is anticipated that a decline in population size
may reduce the density of reproductive individuals, thereby limiting pollen
availability and increasing the probability of inbreeding in self compatible
species or reducing the number of pollen sources involved in seed production,
particularly in outcrossing species (Templeton et al., 1990; Ellstrand, 1992;
Ellstrand and Ellam, 1993; Sork et al., 1999; Cascante et al., 2002; Fuchs et
al., 2003; Lowe et al., 2005, Aguilar et al., 2008). Simultaneously, spatial
isolation may restrict connectivity because of low levels of gene flow between
patches and in the long term may cause a loss of genetic variability in the
remnant tree populations due to genetic drift or high levels of inbreeding
(Barrett and Kohn, 1991; Menges, 1991; Young et al., 1996; Sork and Smouse,
2006).

Several studies have shown that tropical trees are particularly vulnerable to
the effects of habitat fragmentation because they naturally occur at low
density, have complex self-incompatible mechanisms, high outcrossing rates
(Murawski et al., 1994; Hall et al., 1996; Cascante et al., 2002; Fuchs et al.,
2003; Lowe et al., 2005), and specialized interactions with pollinators and
seed dispersers (Didham et al., 1996; Dick et al., 2003; Ward et al., 2005). It
has been shown that fragmentation negatively affects plant reproduction by
reducing pollinator activity, pollen deposition, fruit set (Aizen and Feinsinger,
1994a, b; Ghazoul et al., 1998; Cunningham, 2000; Aguilar et al., 2006),
outcrossing rates, and the number of sires in fragmented landscapes
(Murawski et al., 1994; Aldrich et al., 1998; Cascante et al., 2002; Aguilar et
al., 2008). However, empirical evidence shows contrasting results, in some
species, and under certain conditions, forest fragmentation can increase gene
flow and connectivity between fragmented populations, reducing their genetic
differentiation and reducing the loss of genetic diversity in the long-term
(Foré et al., 1992; Hamrick et al., 1992; Dick, 2001; White et al., 2002; Dick et
al., 2003; Lowe et al., 2005). Such contrasting evidence may be due to the
quality of dispersal by different pollen vectors and by the degree of isolation
and the size of the remnant patch (Nason and Hamrick, 1997). Although
pollen flow can persist in fragmented habitats, remnant forest patches may be
at risk for loss of genetic diversity because of a reduced number of local and
immigrant pollen sources (Sork and Smouse, 2006). Therefore, integration of
estimated pollen-dispersal distance with data on the genetic diversity of
pollen pools is required to understand whether isolation and reduction of
population size due to fragmentation have negative effects on plant
reproduction and mating patterns of tree populations.

Due to the increased destruction of tropical forests in recent years, it is
imperative to study the consequences of forest fragmentation and habitat
disturbance for the preservation of tropical tree species. Several studies have
evaluated the effects of spatial and temporal isolation due to fragmentation
on gene flow and mating patterns (Aldrich et al., 1998; Cascante et al., 2002;
White et al., 2002; Dick et al., 2003; Fuchs et al., 2003; Quesada et al., 2003,
2004), but most of these studies have only analyzed a single reproductive
event in long-lived plants. Few studies have assessed year to year variation on
reproductive output and pollination behavior under fragmented conditions
(Herrerías-Diego et al., 2006), indicating that this variation can have an effect

http://www.amjbot.org/content/100/6/1095.long#xref-fn-2-1
mailto:mquesada@cieco.unam.mx
http://www.amjbot.org/content/100/6/1095.long#ref-34
http://www.amjbot.org/content/100/6/1095.long#ref-55
http://www.amjbot.org/content/100/6/1095.long#ref-44
http://www.amjbot.org/content/100/6/1095.long#ref-71
http://www.amjbot.org/content/100/6/1095.long#ref-49
http://www.amjbot.org/content/100/6/1095.long#ref-2
http://www.amjbot.org/content/100/6/1095.long#ref-68
http://www.amjbot.org/content/100/6/1095.long#ref-20
http://www.amjbot.org/content/100/6/1095.long#ref-21
http://www.amjbot.org/content/100/6/1095.long#ref-65
http://www.amjbot.org/content/100/6/1095.long#ref-13
http://www.amjbot.org/content/100/6/1095.long#ref-25
http://www.amjbot.org/content/100/6/1095.long#ref-42
http://www.amjbot.org/content/100/6/1095.long#ref-2
http://www.amjbot.org/content/100/6/1095.long#ref-10
http://www.amjbot.org/content/100/6/1095.long#ref-45
http://www.amjbot.org/content/100/6/1095.long#ref-71
http://www.amjbot.org/content/100/6/1095.long#ref-66
http://www.amjbot.org/content/100/6/1095.long#ref-46
http://www.amjbot.org/content/100/6/1095.long#ref-29
http://www.amjbot.org/content/100/6/1095.long#ref-13
http://www.amjbot.org/content/100/6/1095.long#ref-25
http://www.amjbot.org/content/100/6/1095.long#ref-42
http://www.amjbot.org/content/100/6/1095.long#ref-18
http://www.amjbot.org/content/100/6/1095.long#ref-17
http://www.amjbot.org/content/100/6/1095.long#ref-69
http://www.amjbot.org/content/100/6/1095.long#ref-3
http://www.amjbot.org/content/100/6/1095.long#ref-4
http://www.amjbot.org/content/100/6/1095.long#ref-26
http://www.amjbot.org/content/100/6/1095.long#ref-15
http://www.amjbot.org/content/100/6/1095.long#ref-1
http://www.amjbot.org/content/100/6/1095.long#ref-46
http://www.amjbot.org/content/100/6/1095.long#ref-6
http://www.amjbot.org/content/100/6/1095.long#ref-13
http://www.amjbot.org/content/100/6/1095.long#ref-2
http://www.amjbot.org/content/100/6/1095.long#ref-24
http://www.amjbot.org/content/100/6/1095.long#ref-31
http://www.amjbot.org/content/100/6/1095.long#ref-16
http://www.amjbot.org/content/100/6/1095.long#ref-70
http://www.amjbot.org/content/100/6/1095.long#ref-17
http://www.amjbot.org/content/100/6/1095.long#ref-42
http://www.amjbot.org/content/100/6/1095.long#ref-49
http://www.amjbot.org/content/100/6/1095.long#ref-66
http://www.amjbot.org/content/100/6/1095.long#ref-6
http://www.amjbot.org/content/100/6/1095.long#ref-13
http://www.amjbot.org/content/100/6/1095.long#ref-70
http://www.amjbot.org/content/100/6/1095.long#ref-17
http://www.amjbot.org/content/100/6/1095.long#ref-25
http://www.amjbot.org/content/100/6/1095.long#ref-57
http://www.amjbot.org/content/100/6/1095.long#ref-56
http://www.amjbot.org/content/100/6/1095.long#ref-33


View larger version:
In this page In a new window
Download as PowerPoint Slide

on mating patterns, number of pollen donors (Irwin et al., 2003), and progeny
performance. In contrast to 1-yr evaluations, studies of gene flow on long-
lived plants that include several reproductive events across multiple years will
provide more accurate descriptions of patterns of pollen movement, genetic
diversity, and structure of populations.

In this study, we determined the effects of spatial isolation and the reduction
of tree density due to habitat fragmentation on pollen movement, pollen pool
genetic structure, and on degree of progeny relatedness of the tropical tree
Ceiba aesculifolia over a 4-yr period. To accomplish our general objective, we
compared the following variables between undisturbed and disturbed
populations: (1) the frequency of outcross matings (tm), (2) mean relatedness
(rp) of seeds within and between fruits, and (3) TwoGener estimates of pollen
distance movement (δ) and structure of pollen pool (Φft) sampled by seed
parents.

MATERIALS AND METHODS

Study species

Ceiba aesculifolia (Malvaceae: Bombacoideae) is a neotropical tree species
distributed from Mexico to northern Costa Rica (Cascante-Marin, 1997). Adult
trees grow up to 20 m tall and have a diameter at breast height (dbh) of 20 to
50 cm. Ceiba aesculifolia has large (10–16 cm) hermaphroditic flowers with
five brown, pubescent petals. Styles are on average 15 cm long and surpass
the stamens by 2 cm. In the tropical dry forest of Mexico and Costa Rica, C.
aesculifolia flowers from June to July, and all the fruits mature during the
following dry season (Lobo et al., 2003; Quesada et al., 2004). Ceiba
aesculifolia has a predominantly outcrossing mating system and is effectively
pollinated by two bat species, Glossophaga soricina and Leptonycteris
curasoae (Quesada et al., 2004).

Trees
Selection of trees

To examine the effects of forest fragmentation on the genetic structure of the
progeny of C. aesculifolia, we compared reproductive adult trees in disturbed
and undisturbed habitat conditions. A tree was considered to be in disturbed
habitat when ≤3 trees per ha were surrounded by agricultural fields or
pastures. Trees in disturbed habitats were systematically selected in sites
along Federal Road no. 200 (Barra de Navidad to Puerto Vallarta) near the
Chamela-Cuixmala Biosphere Reserve and were grouped in three populations
(Arroyo Seco, Programa, and Boca de Iguanas) to control for the variation
between sites within condition. Populations in undisturbed habitats consisted
of groups individuals of ≥6 trees per ha surrounded by undisturbed mature
forest and were located within the Chamela-Cuixmala Biosphere Reserve. To
include the largest possible area within the reserve, we selected two
populations from two different watersheds within the reserve that were
separated from each other by more than 8 km (Chamela and Cuixmala). The
number of individuals of C. aesculifolia sampled varied among years due to
variation in the number of reproductive trees (see Herrerías-Diego et al.,
2006). Figure 1 shows the location of tree populations.

Fig. 1.Fig. 1.

Maps of populations studied on
the Pacific coast of Jalisco,
Mexico. Large map on left shows
populations studied in the
undisturbed habitat within the
Chamela-Cuixmala Biosphere
Reserve (ChCBR) and disturbed
habitats outside the reserve;
inset map of Mexico show site

location. Small, black squares represent clusters of trees. Maps on right
show distribution of trees in two populations of C. aesculifolia, in red
boxes in large map: (a) an undisturbed habitat in ChCBR and (b) a
disturbed habitat outside the reserve. Small, black circles represent
individual trees; lines represent temporary rivers. Trees of C. aesculifolia
occur in small, discrete populations along riparian habitats.

Genetic data

To determine the effects of forest fragmentation on the genetic structure of
the progeny, we conducted an allozyme analysis in six polymorphic loci using
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starch gel electrophoresis. We collected 5–10 fruits from each tree in
undisturbed and disturbed populations (Table 1) and randomly selected five
seeds from each fruit. Enzyme extraction, gel buffers, and staining protocols
followed Alfenas et al. (1991) and Soltis and Soltis (1989). We analyzed five
enzyme systems: shikimate dehydrogenase (SKDH, 1.1.1.25),
phosphoglucoisomerase (PGI, 5.3.1.9), aspartate aminotransferase (AAT,
2.6.1.1.), esterase (EST, 3.1.1.1.), and isocitrate dehydrogenase (IDH:
1.1.1.41). The AAT system showed two polymorphic loci; therefore, we used
six polymorphic loci for genetic analysis. The mean number of seeds sampled
for each tree was 25, which allows the identification of the maternal genotype
with high confidence. Maternal genotypes were estimated from progeny
genotypes using the method of Brown and Allard (1970).

Table 1.Table 1.

Number of Ceiba aesculifolia
trees and offspring sampled and

analyzed for each population in disturbed and undisturbed habitats in
each of 4 yr.

Spatial genetic structure of adults was analyzed with the method of Smouse
and Peakall (1999), using the software GenAlEx 6 (Peakall and Smouse, 2006).
This method was used because in cases of high genetic structure of adult tree
populations estimation of pollen flow through Fst statistics can be misleading
(Austerlitz and Smouse, 2001). Spatial genetic structure occurs when there is
correlation between spatial distance and genetic relatedness of individuals in a
population. Such correlation may occur as a result of limited seed dispersal,
low pollen flow, and selection. To study the spatial genetic structure of adult
trees, we estimated spatial and genetic pairwise distances between
individuals. The software GenAlEx conducts a random shuffling of all
individuals among the geographic locations to estimate a 95% confidence
interval of the distance between individuals under the assumption of a lack of
spatial structure. We used the multiloci distance (Codom-genotypic genetic
distance) proposed by Smouse and Peakall (1999) to estimate the genetic
distance between individuals. We estimated mean genetic distances between
pairs of trees located at 5 km intervals (i.e., 0–5 km, >5–10 km, >10–15 km,
etc.).

We estimated multilocus outcrossing rate (tm) of progeny in undisturbed and
disturbed populations using the program MLTR (Ritland, 2002). The standard
error of the estimates was calculated by bootstrapping with 1000 repetitions.

We calculated two coefficients of mean relatedness for seeds of each tree: the
mean relatedness of seed pairs (1) within and (2) between fruits. Estimates of
mean relatedness for trees within population and year were calculated with
the computer program RELATEDNESS 5.0 (Queller and Goodnight, 1989;
Goodnight and Queller, 1990). Standard errors of these estimates were
calculated using jackknife statistical procedure with 1000 repetitions.

To obtain estimates of the genetic differentiation between paternal alleles of
seeds from different progenies, we conducted a TwoGener analysis (Smouse et
al., 2001) using the software GenAlex (Peakall and Smouse, 2006). This
analysis estimates the statistic Φft, a variation of the Φst statistic in AMOVA
(Excoffier et al., 1992) except that the focus of the analysis is on populations
of male gametes of different progenies instead of adults. The parameter Φft
can have values between 0 and 1. High values of Φft indicate the population is
highly selfing, contains few pollen donors, and/or little pollen movement. Low
values of Φft indicate the population is highly outcrossing, contains many
pollen donors, and/or great pollen movement. To estimate the most robust
Φft with the lowest variance, we grouped trees within sampling year under
disturbed and undisturbed conditions as described already. We also estimated
the effective number of pollen donors contributing to the progeny of the
average mother tree (Nep), which was obtained directly from the estimates of
Φft for each population and year as Nep ≈ 1/2 Φft, as well as the parameter δ
(i.e., the average distance of realized pollen dispersal), assuming a normal
distribution of pollen dispersal around trees (Austerlitz and Smouse, 2002;
Austerlitz et al., 2004). We estimated δ from ΦFT assuming that the effective
density of reproductive trees was similar to the observed density of adult trees
in the field.

RESULTS

Allelic frequencies of progenies from undisturbed and disturbed habitats were
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calculated from three alleles of each of three loci Aat1, Icd, Fe; two alleles
from locus Aat2; and six alleles for locus Pgi. The total mean expected
heterozygosity for all populations was He = 0.403, SD = 0.084. Levels of
expected heterozygosity for progeny were He = 0.414, SD = 0.084, and He =
0.388, SD = 0.085 for undisturbed and disturbed populations respectively,
throughout the 4 yr of the study.

There was no significant correlation between genetic and spatial distance
between individuals, indicating a lack of spatial genetic structure. Values of r
(Codom-genotypic genetic distance) ranged between upper and lower 95%
confidence intervals values expected under the assumption of a lack of
genetic structure.

The multilocus outcrossing rate calculated on tree populations from both
habitat conditions over the 4 yr (tm ≈ 1) indicates that Ceiba aesculifolia
presents a predominantly outcrossing breeding system.

Estimates of relatedness of progeny within fruits from trees in both habitat
conditions were approximately 0.5 (range 0.42–0.58) over four consecutive
years, indicating a full-sib relationship and one single donor per fruit. In
contrast, progeny of trees from undisturbed populations showed consistently
lower levels of relatedness between fruits (≈0.25) than progeny from
disturbed populations (≈0.5) across the 4 yr (Fig. 2). This result indicates that
number of pollen donors siring seeds is higher on trees of undisturbed
populations.

Fig. 2.Fig. 2.

Mean fruit relatedness between
fruits of progeny per population
and year in two undisturbed
habitats in the Chamela-
Cuixmala Biosphere Reserve and
three disturbed habitats outside
the reserve. Bars represent

standard error.

The Φft values were high (0.12–0.35) throughout the 4 yr in both habitat
conditions (Table 2), indicating high genetic structure of pollen pools.
Nevertheless, populations in disturbed habitats presented greater Φft values
than undisturbed populations during all years except year 2000 (Table 2).
Mean pollen dispersal distances (δ) were consistently greater in disturbed
populations than in undisturbed populations throughout the 4 yr. Dispersal
distances ranged from 271 to 316 m in disturbed populations and from 166
to 217 m in undisturbed populations. The effective number of pollen donors
(Nep), derived from ΦFT values was greater in undisturbed populations, with
the exception of year 2000. The number of effective pollen donors ranged
from 2 to 4 in undisturbed populations and from 1 to 2 in disturbed
populations.

Table 2.Table 2.

Estimated values of genetic
structure (φFT), average distance

of pollen flow (δ), and the effective number of pollen donors per
maternal parent (Nep) for each population by habitat condition and year.

DISCUSSION

Our unique multiyear study shows that this bat-pollinated tree species
frequently experienced reduced gene flow through pollen in remnant trees
compared to trees surrounded by continuous forest. Overall, the genetic
structure of the pollen pool was high for all studied populations and varied
across the 4 yr of the study. The spatial isolation and decline of tree density
due to fragmentation clearly reduced pollen sources contributing to siring
seeds and increased the degree of relatedness of progeny in disturbed
conditions. Such decline of pollen donors are observed even though distance
of pollen movement is increased in disturbed habitat conditions. Our results
clearly showed that fragmentation does impact pollen flow not by imposing a
barrier for pollen movement between remnant patches, but by reducing the
diversity of pollen sources siring seeds. Thereby, a loss of genetic diversity of
progeny may negatively affect the long-term viability of tree populations
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remaining in fragmented tropical forests.

The present study shows that outcrossing rates in C. aesculifolia were similar
in disturbed and undisturbed habitat conditions across the 4 yr, indicating a
sustained strict self-incompatible mechanism of the species across the
landscape. Studies of mating systems of other species of the family
Bombacaceae suggest that levels of outcrossing can be influenced by
pollinators, tree density, or levels of forest fragmentation (Murawski and
Hamrick, 1992a, b; Gribel et al., 1999; Fuchs et al., 2003; Lobo et al., 2005).
For example, Pachira quinata was completely outcrossing in undisturbed
forest to partially outcrossing in disturbed populations (Quesada et al., 2001;
Fuchs et al., 2003). Ceiba pentandra shows varying levels of outcrossing
depending on the year and habitat (Murawski and Hamrick, 1992a; Lobo et al.,
2005), and Cavanillesia platanifolia responds to changes in population density
with changes in outcrossing rates (Murawski and Hamrick, 1992b). However,
such flexibility does not seem to be present in the self-incompatibility system
of C. aesculifolia.

This study shows that mean relatedness within fruits in all populations studied
was not statistically different from 0.5, indicating that all the seeds of a fruit
are full sibs independent of habitat condition, population, or year. One
explanation to this pattern is that enough pollen is transferred from a given
donor by pollinators to saturate the stigma surface, preventing multiple
paternity of seeds within fruits. Another explanation is that pollinators deposit
pollen from multiple donors, but only one successfully sires the seeds due to
pollen competition (Quesada et al., 1991, 1993, 2001; Mazer et al., 2010).
Conversely, mean relatedness of progeny among fruits was greater for seeds
of trees from disturbed populations across four consecutive years. This
variation in levels of relatedness between habitat condition may be attributed
to changes in patterns of foraging behavior of pollinators due to differences in
the distribution of floral resources: reproductive trees in disturbed
populations have lower conspecific density but higher number of flowers per
tree compared to trees in undisturbed populations (Herrerías-Diego et al.,
2006). Thus, in disturbed habitats, pollinators might use a concentrated
resource found on individuals with large numbers of flowers, thereby
obtaining large quantities of nectar and pollen of a single donor, possibly
optimizing the use of energy. The landscape of undisturbed populations is
more complex and has greater density of trees in bloom but with smaller
number of flowers per tree, forcing bat pollinators to visit more pollen and
nectar sources in a given night which may explain more pollen donors siring
progeny in these trees (Herrerías-Diego et al., 2006; Quesada et al., 2004).

The degree of genetic relatedness among fruits was higher for the progeny of
isolated trees than that of trees in continuous forest; however, relatedness
within fruits was similar between habitat conditions. This indicates that spatial
isolation and density decline of reproductive trees affect the pattern of pollen
movement among flowers within individual trees, but not the likelihood of
uniparental paternity within individual flowers. The two main pollinators of C.
aesculifolia at our study sites are the nectarivorous bats Glossophaga soricina
and Leptonycteris curasoae (Quesada et al., 2004); C. aesculifolia is their
principal source of food from April to June when trees are blooming (Lobo et
al., 2003; Quesada et al., 2004). These bat pollinators essentially depend on
C. aesculifolia during this time of the year, and their foraging behavior is
determined by the blooming pattern of this species. In particular, low density
of pollen sources and higher flower production due to fragmentation may
hinder the capability of pollinators to transfer pollen between trees, likely
modifying the dynamics of pollen deposition and the paternity of progeny.
Some studies showed a limited transfer of compatible pollen between
reproductive individuals in fragmented habitats (Ghazoul et al., 1998;
Cunningham, 2000). Similarly, Fuchs et al. (2003) found that in contrast to
continuous forest, trees of Pachira quinata in forest fragments have greater
levels of relatedness between fruits.

Our study showed that populations of C. aesculifolia presented high genetic
structure of pollen pools (Φft) in both habitat conditions, but it is consistently
higher in disturbed conditions across all years except 2000. The observed
values are high and similar to the maximum estimated Φft values reported in
the literature for tropical plants where maximum values range from 0.173–
0.205 (e.g., Dyer and Sork, 2001; Sork et al., 2002). This reveals that forest
fragmentation modifies the pollen pool structure of the bat-pollinated tree C.
aesculifolia, particularly indicating that pollen flow of trees in fragmented
patches is limited within populations and most of the seeds are sired by a few
pollen donors. Similarly, in the tree Symphonia globuliera, the number of
pollen donors mating with seed trees in fragmented landscapes (average Nep
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= 3.27) is considerably lower than in continuous forest (average Nep = 9.55)
(Carneiro et al., 2007).

Based on estimates of theoretical distributions of pollen flow (Austerlitz et al.,
2004), high differentiation between pollen pools indicates that pollen
dispersal occurs within flowering trees located within discrete neighborhoods.
While one has to be careful in estimates of pollen distances using TwoGener
because pollen dispersal may not fit a binormal distribution, it is interesting to
note that, an average estimate of the mean pollen dispersal distance of 300 m
and 198 m was found for trees in disturbed and undisturbed habitats,
respectively. Such distances correspond to the nearest neighbor mean
distance between trees. Similar effects of spatial structure of reproductive
trees on patterns of pollen dispersal have been reported. For example, Stacy
et al. (1996) found a predominance of local mating in populations of clumped
reproductive trees, whereas a reduction of the density of reproductive trees is
associated with an increase of pollination distance on three species of tropical
trees. On the basis of bat behavior, we originally predicted that these
pollinators of C. aesculifolia would fly long distances, dispersing and carrying
pollen over long distances from many pollen donors (Horner et al., 1998; Law
and Lean, 1999). However, the observed high differentiation between pollen
pools indicates that gene flow patterns may explain paternity better than just
the maximum range of bat movement reported in the literature. Our results
together with previous findings (Herrerías-Diego et al., 2006) indicate that the
spatial distribution of reproductive trees, the number of flowers per tree and
the presence of food sources during a given time of the year are as important
in determining the movement and foraging patterns of bats as their large
home ranges and maximum travel distances (Law and Lean, 1999).
Leptonycteris curasoae can cross open disturbed areas, has large home
ranges, and may travel up to 50 km to arrive at a foraging area (Horner et al.,
1998; Quesada et al., 2004). In contrast, the other pollinator of C. aesculifolia,
Glossophaga soricina, is a much smaller bat, with a relatively small foraging
range and is territorial (Heithaus et al., 1975; Lemke, 1984, 1985). Both
pollinators had the same rate of visitation to flowers in undisturbed forest, but
L. curasoae visited significantly more flowers of disturbed tree populations
(Quesada et al., 2004). Therefore, we could expect that the large pollinator, L.
curasaoe, would have moved pollen from many donors and over large
distances, reducing differentiation of the genetic structure of populations,
particularly in disturbed areas, and the opposite for G. soricina. However, both
species of bats tended to limit pollen flow to a restricted number of pollen
donors within specific neighbors maintaining discrete gamete structures.

Our results indicate that seeds produced by trees in conserved forest were
less related to each other than were seeds from trees in fragmented areas,
likely because two times more pollen sources contributed to sire progeny in
undisturbed habitats. This negative alteration of mating patterns due to
fragmentation was observed during 3 of 4 yr of study, even though the
average distance of pollen movement was 1.5 times higher in disturbed
conditions. Therefore, pollen movement across greater distances does not
necessarily imply greater number of sires; we found that while isolated trees
experienced pollination at higher distances, they received fewer pollen
donors. However, there is controversy in the literature concerning the
interpretation of pollen flow, pollen movement distance, and the genetic
diversity and number of pollen donors found in the pollen pool in fragmented
landscapes. Hamrick (2004) proposed that trees may be resilient to
fragmentation impacts because of their longevity, high standing genetic
diversity, and extensive pollen movement. Some empirical studies indicate
that a high level of pollen flow may counteract the negative impacts related to
fragmentation (Aldrich et al., 1998; Nason et al., 1998; White et al., 2002;
Dick et al., 2003). On the contrary, other studies have shown negative effects
of habitat fragmentation by a reduction in pollen flow among pasture trees
(Lowe et al., 2005), reduction in the number of pollen donors, and/or genetic
diversity found in the progeny of isolated trees or fragmented patches
(Cascante et al., 2002; Fuchs et al., 2003; Fernández-M and Sork, 2007; Rosas
et al., 2011). A meta-analysis review found that in most plants studied, forest
fragmentation decreased genetic diversity patterns, increased inbreeding, and
altered mating patterns in most plant species (Aguilar et al., 2008).

In conclusion, our 4-yr study showed that the progeny produced by isolated
trees located in disturbed habitats are consistently sired only by a fraction of
the diversity of pollen sources represented in trees in conserved forests across
years. The degree of relatedness of the progeny within trees was consistently
greater for trees in fragmented conditions across 4 yr. Similarly, the effective
number of pollen donors was greater for trees from undisturbed forest (2–4)
in contrast to that on disturbed conditions (1–2). We propose that the foraging
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behavior of bats limits the exchange of pollen between trees, causing higher
levels of progeny relatedness in isolated trees. Future studies need to evaluate
the fitness consequences on the progeny relatedness and their ability to
respond to environmental changes related to habitat deterioration.
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