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On a conjecture by Mbekhta about best approximation by

polar factors

Eduardo Chiumiento

Abstract

The polar factor of a bounded operator acting on a Hilbert space is the unique partial

isometry arising in the polar decomposition. It is well known that the polar factor might

not be a best approximant to its associated operator in the set of all partial isometries,

when the distance is measured in the operator norm. We show that the polar factor of an

arbitrary operator T is a best approximant to T in the set of all partial isometries X such

that dim(ker(X)∩ker(T )⊥) ≤ dim(ker(X)⊥∩ker(T )). We also provide a characterization of

best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which

can be answered using our results.
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Keywords: partial isometries, best approximation, polar decomposition, polar factor, index,
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1 Introduction

Let H be a complex separable Hilbert space, B(H) the algebra of bounded linear operators and
I the set of all partial isometries on H. The polar factor of an operator T is the unique V ∈ I
such T = V |T | and ker(V ) = ker(T ). Here, we write |T | = (T ∗T )1/2. The following conjecture
was stated by M. Mbekhta [12].

Conjecture 1.1. Let T ∈ B(H) and X0 ∈ I such that ker(X0) = ker(T ). The following
conditions are equivalent:

(i) X0 is the polar factor of T ;

(ii) ‖T −X0‖ = min{‖T −X‖ : X ∈ I, ker(X) = ker(T )}.

The norm considered is the usual operator norm (or spectral norm). M. Mbekhta proved as
a partial result that the first item implies the second when T is injective. In this work we show
that this implication holds true for an arbitrary operator T . We also show that the converse
implication is false.

We actually prove in Section 2 that the polar factor is a best approximant to its associated
operator in a larger set of partial isometries. Instead of fixing the kernel of the partial isometries,
our set is given in terms of the dimension of certain subspaces. More precisely, given P,Q two
orthogonal projections on H, we set

j(P,Q) := dim(ran(P ) ∩ ker(Q))− dim(ker(P ) ∩ ran(Q)) ∈ [−∞,∞],
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if one of these dimensions is finite, and j(P,Q) = 0 if both dimensions are infinite. In Theorem
2.4 we prove the following best approximation property of the polar factor V of an operator T :

‖T − V ‖ = min{‖T −X‖ : X ∈ I, j(V ∗V,X∗X) ≤ 0}. (1)

From this result, we obtain that the first item implies the second in Conjecture 1.1. Indeed, note
that j(V ∗V,X∗X) = 0 if ker(X) = ker(T ) (= ker(V )). Then we find a necessary and sufficient
condition for the polar factor to be a best approximant to its associated operator in the set of
all partial isometries. The reduced minimum modulus γ(T ) of the operator T naturally shows
up as in this condition. More precisely, we prove in Proposition 2.6 that ‖T‖ − 1 < 1 − γ(T ),
or γ(T ) < 1/2, if and only if the polar factor V is a best approximant to T in the set I . If
our condition fails, then other partial isometries, which are best approximants in I and different
from the polar factor, can be explicitly constructed (see Remark 2.7).

We have already mentioned that the converse of Conjecture 1.1 does not hold true; a coun-
terexample is given at the beginning of Section 3. This motivates the characterization we give
in Theorem 3.2 of those partial isometries attaining the minimum in (1). It relies on characteri-
zations of operators satisfying the equality case in the triangle inequality [5, 10] combined with
our previous results.

We end this section with remarks and connections to previous works. It is worth pointing
out that the definition of j(P,Q) already appeared in the literature. If the operator QP |ran(P ) :
ran(P ) → ran(Q) is Fredholm, then j(P,Q) coincides with its Fredholm index. In this case,
the pair (P,Q) is called a Fredholm pair, a notion studied in [1, 4]. A fundamental result in
this regard, which applies also when (P,Q) is not necessary Fredholm, is that the condition
j(P,Q) = 0 is equivalent to unitary equivalence of the projections with a unitary permuting
them (see [13, 14]).

On the false implication of the conjecture, we remark that the operator norm is neither
strictly convex nor differentiable. These facts are essential to obtain information about the
minimizers. For instance, this implication of the conjecture holds true when the operator norm
is replaced by the Hilbert-Schmidt norm for arbitrary Hilbert spaces [6, 8], or by any strictly
convex unitarily invariant norm for finite dimensional Hilbert spaces [2]. In these works, best
approximation by partial isometries with the Hilbert-Schmidt norm has deserved special attention
due its importance for frame theory. In particular we observe that in [6] previous results using the
notion of Fredholm pairs of projections were given; though for dealing with the Hilbert-Schmidt
norm the proofs depend on different techniques like majorization of singular values, which do
not apply to the present work. Best approximation by partial isometries with the operator norm
was studied by P.W. Wu [15], where among other results, it was shown that the distance of
an operator to the set of all partial isometries is always attained. However, the role of the
polar factor in best approximation by partial isometries was not considered in that work. Other
related articles concern with best approximation by partial isometries in the matricial case and
its applications [9], best approximation using the Schatten p-norms of operators [11], and the
polar decomposition of products of projections [7].

2 Best approximation by the polar factor

An operator X ∈ B(H) is called a partial isometry if XX∗X = X, or equivalently, if X∗X is an
orthogonal projection. This is also equivalent to have ‖Xξ‖ = ‖ξ‖, for every vector ξ ∈ ker(X)⊥.
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As we mentioned above, I denotes the set consisting of all partial isometries. We observe that
X ∈ I if and only if X∗ ∈ I . Lastly, we note for later use that when X ∈ I , the projection
X∗X, called the initial projection, projects onto ker(X)⊥; meanwhile XX∗, the final projection,
projects onto ran(X).

Let σ(T ) denote the spectrum of an operator T . Recall the definition of the reduced minimum
modulus γ(T ) of an operator T 6= 0 (see, e.g. [3]):

γ(T ) = inf{‖Tξ‖ : ξ ∈ ker(T )⊥, ‖ξ‖ = 1}

= inf σ(|T |) \ {0}. (2)

Lemma 2.1. Let T ∈ B(H), T 6= 0, with polar decomposition T = V |T |. Then

‖T − V ‖ = max{1 − γ(T ), ‖T‖ − 1}.

Proof. We write P = V ∗V for the initial projection of the partial isometry V . Since ran(|T |) =
ker(|T |)⊥ = ker(V )⊥ = ran(P ), the partial isometry V acts isometrically on ran(|T |), and it
follows that ‖T − V ‖ = ‖V (|T | − P )‖ = ‖|T | − P‖. Noting that ker(|T | − P )⊥ ⊆ ran(P ) and
ran(|T | − P ) ⊆ ran(P ), we have ‖|T | − P‖ = ‖(|T | − P )|ran(P )‖, where the second norm is
taken in the invariant subspace ran(P ). If we put T0 := |T ||ran(P ) : ran(P ) → ran(P ), then
‖|T | − P‖ = ‖T0 − I‖, where I is the identity on ran(P ) 6= {0}. Therefore an application of the
spectral theorem on ran(P ) gives

‖|T | − P‖ = ‖T0 − I‖

= sup{|λ− 1| : λ ∈ σ(T0)}

= max{1 − inf σ(T0), supσ(T0)− 1}

= max{1 − γ(T ), ‖T‖ − 1}.

In the last equality we have used that supσ(T0) = ‖T‖ and inf σ(T0) = γ(T ). The proofs of
these facts are straightforward; one only needs to note that σ(T0) \ {0} = σ(|T |) \ {0} because
ran(P ) is an invariant subspace of |T | and ran(P )⊥ = ker(|T |).

Lemma 2.2. [15, Thm. 3.4] Given T, S ∈ B(H), then

‖T − S‖ ≥ sup
λ∈σ(|T |)

inf
µ∈σ(|S|)

{λ, |λ− µ| }.

Moreover, if dimker(S) ≥ dim ran(S)⊥, then

‖T − S‖ ≥ sup
λ∈σ(|T |)

inf
µ∈σ(|S|)

|λ− µ|.

Remark 2.3. The dimensions of the subspaces ker(S) and ran(S)⊥ in the second part of the
statement could be infinite.

Our main result on best approximation by the polar factor is the following.

Theorem 2.4. Let T ∈ B(H) with polar decomposition T = V |T |. Then

‖T − V ‖ = min{‖T −X‖ : X ∈ I, j(V ∗V,X∗X) ≤ 0}

= min{‖T −X‖ : X ∈ I, j(V V ∗,XX∗) ≤ 0}.
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Proof. It is not difficult to check that T ∗ = V ∗|T ∗| is the polar decomposition of T ∗. Thus, the
second characterization using the final projections can be derived from the first characterization
using the initial projections. Also we observe that the result clearly follows when T = 0. In order
to prove the first characterization for T 6= 0, we divide the proof into two cases. In the first case
we suppose that ‖T − V ‖ = ‖T‖ − 1 in Lemma 2.1. In particular, this implies ‖T‖ ≥ 1. For
any partial isometry X we have that X∗X is a projection, so that σ(|X|) = {0, 1}. According
to Lemma 2.2, and noting that ‖T‖ ∈ σ(|T |), we have

‖T −X‖ ≥ sup
λ∈σ(|T |)

inf
µ∈{0, 1}

{λ, |λ− µ|}

≥ inf
µ∈{0, 1}

{‖T‖, ‖T‖ − µ}

= ‖T‖ − 1 = ‖T − V ‖.

This proves the first case.
In the second case we assume that ‖T − V ‖ = 1 − γ(T ) in Lemma 2.1. Thus, γ(T ) ∈ [0, 1].

Pick a partial isometry X such that j(V ∗V,X∗X) ≤ 0. For notational simplicity, we write
P = V ∗V and Q = X∗X. We divide this part of the proof in three steps.

Step 1. If we suppose that there is a vector ξ ∈ ker(P ) ∩ ran(Q), ‖ξ‖ = 1, then

‖T −X‖ ≥ ‖(T −X)ξ‖ = ‖Xξ‖ = 1

≥ 1− γ(T ) = ‖T − V ‖. (3)

Thus, we can assume that ker(P ) ∩ ran(Q) = {0} for the rest of the proof. By the condition
j(P,Q) ≤ 0, we also have ker(Q) ∩ ran(P ) = {0}. Hence, G := PQ|ran(Q) : ran(Q) → ran(P ) is
an injective operator with dense range.

Step 2. Next we suppose that ran(T ) ∩ ran(X)⊥ 6= {0}. We are going to prove the desired
conclusion under this assumption. Take a sequence (ξn) in ker(T )⊥, Tξn → η ∈ ran(X)⊥, η 6= 0.
Since the range of the operator G is dense in ran(P ) = ker(T )⊥, then there is a sequence (ζn) in
ran(Q) such that ‖Gζn − ξn‖ ≤ 1/n. Observe that

‖ζn‖
2‖T −X‖2 ≥ ‖ζn‖

2‖TPQ−XQ‖2 ≥ ‖TGζn −Xζn‖
2

= ‖TGζn‖
2 + ‖Xζn‖

2 − 2ℜ 〈TGζn,Xζn〉 ,

which gives

‖T −X‖2 ≥ ‖TPQ−X‖2

≥

∥

∥

∥

∥

TG
ζn
‖ζn‖

∥

∥

∥

∥

2

+

∥

∥

∥

∥

X
ζn

‖ζn‖

∥

∥

∥

∥

2

−
2

‖ζn‖2
ℜ 〈TGζn,Xζn〉

≥ 1−
2

‖ζn‖
ℜ

〈

TGζn,X
ζn

‖ζn‖

〉

. (4)

In the last inequality we have used that ‖ζn‖
−1ζn are unit vectors in ran(Q) = ker(X)⊥. We

have to show that the second term in (4) goes to zero. To this end, we first note that ‖Tξn−η‖ ≥
‖η‖ − ‖T‖‖ξn‖, which implies ‖ξn‖ ≥ ‖T‖−1(‖η‖ − ‖Tξn − η‖). Using that 1/n ≥ ‖Gζn − ξn‖ ≥
‖ξn‖ − ‖G‖‖ζn‖, and noting that ‖G‖ ≤ 1, we get

‖ζn‖ ≥ ‖ξn‖ −
1

n
≥

‖η‖

‖T‖
−

‖Tξn − η‖

‖T‖
−

1

n
.
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Thus, for n ≥ 1 large enough, it follows that ‖ζn‖ ≥ C, for some constant C > 0. Now we use
that η ∈ ran(X)⊥ to compute the limit:

∣

∣

∣

∣

‖ζn‖
−1

〈

TGζn,X
ζn
‖ζn‖

〉∣

∣

∣

∣

≤ C−1

(∣

∣

∣

∣

〈

TGζn − η,X
ζn
‖ζn‖

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

η,X
ζn
‖ζn‖

〉∣

∣

∣

∣

)

≤ C−1‖TGζn − η‖

∥

∥

∥

∥

X
ζn
‖ζn‖

∥

∥

∥

∥

≤ C−1(‖T‖ ‖Gζn − ξn‖+ ‖Tξn − η‖) → 0.

Taking limit in (4) we find that ‖T −X‖ ≥ 1 ≥ 1− γ(T ) = ‖T − V ‖.

Step 3. We denote by F and E the orthogonal projections onto ran(T ) and ran(X), respec-
tively. From the previous steps, we can assume that G = PQ|ran(Q) : ran(Q) → ran(P ) is injective
with dense range, and the operator R := EF |ran(F ) : ran(F ) → ran(E) is injective. We consider
the restrictions T0 := ET |ran(Q) : ran(Q) → ran(E) and X0 := EX|ran(Q) : ran(Q) → ran(E).
These clearly satisfy ‖E(T −X)Q‖ = ‖T0 −X0‖, where the first operator norm is taken as an
operator on H, and the second as an operator from ran(Q) to ran(E). Before the forthcoming
inequalities, it is also convenient to observe two facts. First, the operator X0 is an isomet-
ric isomorphism, which implies that σ(|X0|) = {1}. Second, we note that γ(T0) ∈ σ(|T0|) by
the characterization (2) of the reduced minimum modulus. Then an application of the second
statement in Lemma 2.2 yields

‖T −X‖ ≥ ‖T0 −X0‖

≥ sup
λ∈σ(|T0|)

inf
µ∈σ(|X0|)

|µ− λ|

= sup
λ∈σ(|T0|)

|1− λ|

≥ 1− γ(T0)

≥ 1− γ(T ) = ‖T − V ‖. (5)

It remains to be shown the last inequality used above: γ(T0) ≤ γ(T ). To see this fact, note that T0

is injective. This follows immediately using that T0 = ET |ran(Q) = EFTPQ|ran(Q) = RTG|ran(Q),

and noting that R and G are injective with ran(G) = ran(P ) = ker(T )⊥. Since ‖R‖ ≤ 1 and
‖G‖ ≤ 1, then

γ(T0) = inf{‖RTGζ‖ : ζ ∈ ran(Q), ‖ζ‖ = 1}

≤ inf{‖TGζ‖ : ζ ∈ ran(Q), ‖ζ‖ = 1}

= inf

{∥

∥

∥

∥

T
Gζ

‖Gζ‖

∥

∥

∥

∥

‖Gζ‖ : ζ ∈ ran(Q), ‖ζ‖ = 1

}

≤ inf

{∥

∥

∥

∥

T
Gζ

‖Gζ‖

∥

∥

∥

∥

: ζ ∈ ran(Q), ‖ζ‖ = 1

}

= γ(T ), (6)

where the last equality follows by using again the fact ran(G) = ker(T )⊥. This finishes the
proof.

Now we can prove that the first item implies the second in Conjecture 1.1.
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Corollary 2.5. Let T ∈ B(H) with polar decomposition T = V |T |. Then

‖T − V ‖ = min{‖T −X‖ : X ∈ I, ker(X) = ker(T )}.

Proof. Since ker(X) = ker(T ) (= ker(V )), then j(V ∗V,X∗X) = 0. Then the result follows
immediately from Theorem 2.4.

The distance of an arbitrary operator to the set of all partial isometries is always attained
(see [15, Thm. 3.6]). Based on this result, we can give necessary and sufficient conditions on the
spectrum of an operator to guarantee that its polar factor becomes a best approximant in the
set of all partial isometries.

Proposition 2.6. Let T ∈ B(H), T 6= 0, with polar decomposition T = V |T |. The following
conditions are equivalent:

(i) ‖T‖ − 1 ≥ 1− γ(T ), or γ(T ) ≥ 1/2;

(ii) ‖T − V ‖ = min{‖T −X‖ : X ∈ I}.

Proof. Consider the function f(λ) = min{λ, |1 − λ|}, and put i0 := inf{‖T −X‖ : X ∈ I}. In
[15, Thm. 3.6] P.Y. Wu proved that this infimum is attained. Moreover, it can be computed
in terms of the spectrum of |T | as i0 = supλ∈σ(|T |) f(λ). As in the proof of Lemma 2.1, we set
P = V ∗V and T0 = |T ||ran(P ) : ran(P ) → ran(P ). Recall that in the proof of the aforementioned
lemma, we have shown that ‖T − V ‖ = supλ∈σ(T0) |1 − λ|, σ(T0) \ {0} = σ(|T |) \ {0} and
inf σ(T0) = γ(T ). Under the assumptions ‖T‖ − 1 ≥ 1− γ(T ), or γ(T ) ≥ 1/2, it follows that

i0 = sup
λ∈σ(|T |)

f(λ) = sup
λ∈σ(T0)

|1− λ| = ‖T − V ‖.

This proves one implication.
In order to prove the converse, we assume that γ(T ) < 1/2 and ‖T‖ − 1 < 1 − γ(T ). By

Lemma 2.1, ‖T − V ‖ = 1 − γ(T ). Note that the function f can attain its maximum restricted
to σ(|T |) in any of the following intervals [0, 1/2], [1/2, 1] and [1,∞). Then we have that i0 =
supλ∈σ(|T |) f(λ) = max{a, 1− b, ‖T‖ − 1} for some positive numbers a ≤ 1/2 and b ≥ 1/2. We
consider the three cases. In the first case, a < 1−γ(T ) by the assumption γ(T ) < 1/2. Similarly,
in the second case 1 − b < 1 − γ(T ). The last case uses the assumption ‖T‖ − 1 < 1 − γ(T ).
Hence i0 < ‖T − V ‖.

Remark 2.7. In the case where γ(T ) < 1/2 and ‖T‖ − 1 < 1 − γ(T ), we have shown in the
above proof that i0 = inf{‖T − X‖ : X ∈ I} < ‖T − V ‖. The infimum is attained, so this
means that there exists a partial isometry X0 such that i0 = ‖T −X0‖ < ‖T −V ‖. According to
Theorem 2.4, it must be j(V ∗V,X∗

0X0) > 0. It is interesting to recall how X0 is constructed in
[15, Thm. 3.6]. For this, consider the function φ(t) = 1− χ(0,1/2)(t). Then, X0 is defined using
Borel functional calculus by X0 = V φ(|T |). Note that by the condition γ(T ) < 1/2, φ(|T |) turns
out to be a proper subprojection of V ∗V .
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3 Characterization of best approximations

The following example shows that the second item does not imply the first item in Conjecture
1.1.

Example 3.1. Consider the following matrices

T =





a 0 0
0 1 0
0 0 1



 , a > 3; X0 =





1 0 0
0 0 −1
0 −1 0



 .

The polar factor of T is the identity matrix I, and ‖T − I‖ = a−1. Clearly, ker(T ) = ker(X0) =
{0} and

‖T −X0‖ = max

{

a− 1 ,

∥

∥

∥

∥

(

1 1
1 1

)∥

∥

∥

∥

}

= max{ a− 1 , 2 } = a− 1.

Thus, we have

‖T −X0‖ = ‖T − I‖ = min{‖T −X‖ : X ∈ I, ker(X) = {0}},

and X0 6= I.

It is then natural to study those partial isometries whose distance to a fixed operator coincides
with the distance of the operator to its polar factor. That is, those partial isometries that attain
the minimum in Conjecture 1.1, or more generally, the minimum in Theorem 2.4. In this direction
we have the following result.

Theorem 3.2. Let T ∈ B(H) with polar decomposition T = V |T |. Let X0 be a partial isometry
satisfying j(V ∗V,X∗

0X0) ≤ 0. Then,

‖T −X0‖ = min{‖T −X‖ : X ∈ I, j(V ∗V,X∗X) ≤ 0} (7)

if and only if any of the following conditions hold:

(i) There exist unit vectors (ξn) such that ‖X0ξn‖ → 1 and ‖T −X0‖X0ξn − (T −X0)ξn → 0.

(ii) There exist unit vectors (ξn) such that ‖X0ξn‖ → 1, ‖T −X0‖X0ξn + (T −X0)ξn → 0 and
(γ(T )X0 − T )ξn → 0.

Proof. Suppose that X0 is a partial isometry, j(V ∗V,X∗
0X0) ≤ 0, and X0 attains the minimum

in (7). Then, ‖T − X0‖ = ‖T − V ‖ by Theorem 2.4. According to Lemma 2.1, we have
to consider the cases ‖T − V ‖ = ‖T‖ − 1 and ‖T − V ‖ = 1 − γ(T ). In the first case, we
have ‖T − X0‖ + ‖X0‖ = ‖T‖. That is, equality in the triangle inequality for the operator
norm. From [10, Thm. 1] we have that there exists a sequence of unit vectors (ξn) such that
‖X0 − T‖X0ξn − (T −X0)ξn → 0. An examination of the proof of the quoted result yields that
the sequence (ξn) satisfies ‖(T −X0)ξn‖ → ‖T −X0‖. From this fact, it follows that ‖X0ξn‖ → 1.

In the second case, we assume that ‖T −X0‖ = ‖T − V ‖ = 1 − γ(T ) > ‖T‖ − 1. As in the
proof of Theorem 2.4, we have to consider three steps. Put P = V ∗V and Q = X∗

0X0.

7



Step 1. Suppose that ker(P ) ∩ ran(Q) 6= {0}. From the inequalities (3) and the assumption
‖T − X0‖ = ‖T − V ‖, it must be γ(T ) = 0 and ‖T − X0‖ = 1. Then, pick a unit vector
ξ ∈ ker(P )∩ran(Q), and note that ‖T−X0‖X0ξ+(T−X0)ξ = 0. This is the required conclusion.
For the remainder of the proof of this item we will suppose that ran(Q) ∩ ker(P ) = {0}. Since
j(P,Q) ≤ 0, then also ran(P ) ∩ ker(Q) = {0}.

Step 2. We further assume that ran(T ) ∩ ran(X0)
⊥ 6= {0}. At the end of the proof of the

second step in Theorem 2.4 we have shown that ‖T −X0‖ ≥ 1 ≥ 1 − γ(T ) = ‖T − V ‖. Again,
since ‖T −X0‖ = ‖T − V ‖, then γ(T ) = 0 and ‖T −X0‖ = 1. From the inequalities (4), there
exist unit vectors ξn := ‖ζn‖

−1ζn ∈ ran(Q) such that

1 = ‖T −X0‖
2 ≥ ‖(T −X0)ξn‖

2 = ‖Tξn‖
2 + ‖X0ξn‖

2 +An ≥ 1 +An,

where (An) is a sequence converging to zero. Hence (ξn) are unit vectors in ran(Q) satisfying
‖(T −X0)ξn‖ → ‖T −X0‖ and ‖Tξn‖ → γ(T ). We will see that this condition is sufficient to
finish the proof.

Step 3. Now we are under the same assumptions and notation of the third step in the
proof of Theorem 2.4. Using that ‖T − X0‖ = ‖T − V ‖ in the inequalities (5), it follows that
γ(T0) = γ(T ). Therefore all the inequalities in (6) become equalities, which in particular implies
that there are unit vectors (ξn) in ran(Q) such that ‖Tξn‖ = ‖TGξn‖ → γ(T ). Furthermore,
‖T−X0‖ ≥ ‖(T−X0)ξn‖ ≥ 1−‖Tξn‖ and ‖T−X0‖ = 1−γ(T ), implies ‖(T−X0)ξn‖ → ‖T−X0‖.

We have seen in both step 2 and 3 that there are unit vectors (ξn) ⊆ ran(Q) such that
‖Tξn‖ → γ(T ) and ‖(T −X0)ξn‖ → ‖T −X0‖. Now note that

‖(γ(T )X0 + T )ξn‖ ≥ | ‖(γ(T ) + 1)X0ξn‖ − ‖(X0 − T )ξn‖ | → |1 + γ(T )− (1− γ(T ))| = 2γ(T ).

Therefore, by the parallelogram law,

‖(γ(T )X0 − T )ξn‖
2 = 2(γ(T )2 + ‖Tξn‖

2)− ‖(γ(T )X0 + T )ξn‖
2 → 0.

Now the remaining condition follows:

‖ (‖T −X0‖X0 + (T −X0))ξn‖ ≤ ‖(‖T −X0‖+ (γ(T )− 1))X0ξn‖+ ‖(T − γ(T )X0)ξn‖

= ‖(T − γ(T )X0)ξn‖ → 0.

To prove the converse, take (ξn) unit vectors satisfying the conditions of item (i). Observe
that

〈(T −X0)ξn,X0ξn〉 = 〈((T −X0)− ‖T −X0‖X0)ξn,X0ξn〉+ ‖T −X0‖‖X0ξn‖
2 → ‖T −X0‖.

In [5, Thm. 2.1] the authors proved that given two operators A,B, then ‖A+B‖ = ‖A‖+‖B‖ if
and only if ‖A‖‖B‖ ∈ W (A∗B). Here W (C) = {〈Cξ, ξ〉 : ‖ξ‖ = 1} is the numerical range of an
operator C. The above computation means that ‖X0‖‖T −X0‖ = ‖T −X0‖ ∈ W (X∗

0 (T −X0)).
Thus, we have ‖T −X0‖+ ‖X0‖ = ‖T‖. Then, ‖T −X0‖ = ‖T‖ − 1 ≤ ‖T − V ‖ by Lemma 2.1.
Since we are assuming that j(V ∗V,X∗

0X0) ≤ 0, Theorem 2.4 implies that ‖T −X0‖ = ‖T − V ‖,
and thus X0 attains the minimum in (7).

Now suppose that (ξn) are unit vectors satisfying the conditions in item (ii). Note that

‖(T −X0)ξn‖ ≤ ‖(T − γ(T )X0)ξn‖+ ‖(γ(T )− 1)X0ξn‖ → |1− γ(T )|.

Since ‖(T −X0)ξn‖ → ‖T −X0‖, then ‖T −X0‖ ≤ |1 − γ(T )| ≤ ‖T − V ‖. Again this implies
that ‖T −X0‖ = ‖T − V ‖ and X0 attains the minimum.
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Remark 3.3. Both of the conditions ‖T −X0‖X0ξn + (T −X0)ξn → 0 and (γ(T )X0 − T )ξn → 0
in item (ii) of the above theorem are used to prove that X0 is a minimizer. We remark that only
one of these conditions is not sufficient to obtain the same conclusion. For instance, take

T =

(

1 0
0 1/2

)

, X0 =

(

−1 0
0 1

)

.

Then, ‖T − V ‖ = 1/2, ‖T − X0‖ = 2 and ‖T − X0‖X0ξ1 + (T −X0)ξ1 = 0, ξ1 = (1, 0). Also
note that (γ(T )X0 − T )ξ2 = 0, ξ2 = (0, 1).
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