
ar
X

iv
:2

01
2.

09
01

8v
2 

 [
m

at
h.

FA
] 

 1
3 

A
pr

 2
02

1

Absolute variation of Ritz values,

principal angles and spectral spread

Pedro Massey, Demetrio Stojanoff and Sebastián Zárate ∗
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Abstract

Let A be a d × d complex self-adjoint matrix, X ,Y ⊂ C
d be k-dimensional subspaces

and let X be a d × k complex matrix whose columns form an orthonormal basis of
X ; that is, X is an isometry whose range is the subspace X . We construct a d × k

complex matrix Yr whose columns form an orthonormal basis of Y and obtain sharp
upper bounds for the singular values s(X∗AX − Y ∗

r AYr) in terms of submajorization
relations involving the principal angles between X and Y and the spectral spread of
A. We apply these results to obtain sharp upper bounds for the absolute variation of
the Ritz values of A associated with the subspaces X and Y, that partially confirm
conjectures by Knyazev and Argentati.
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1 Introduction

The problem of computing eigenvalues and invariant subspaces of self-adjoint matrices is
ubiquitous in applications of linear algebra and numerical analysis. For example, given a
d × d complex positive semidefinite matrix A, we could be interested in computing a low
rank matrix approximation, which is an essential tool to deal with large and/or sparse self-
adjoint matrices (see [17, 18, 19]); in this case, optimal approximations of A of rank k are
constructed in terms of invariant subspaces associated with the k largest eigenvalues of A.
In general, there is no universal effective solution to these problems ; there are several fun-
damental algorithmic methods for the computation of approximate eigenvalues and invariant
subspaces, and the best suited such method typically depends on the context. One com-
mon fundamental aspect of these algorithms is the assessment of the quality of a subspace
(and its associated Ritz values), as a candidate for an approximate invariant subspace (and
approximate eigenvalues). Indeed, let X be a d × k complex matrix whose columns form
an orthonormal basis of a k-dimensional subspace X . Then, X is an A-invariant subspace
if and only if the so-called residual of A at X , given by RX = AX − X(X∗AX), is the
zero matrix. In this case, the Ritz values of A associated with X that is, the eigenvalues
λ(X∗AX) = (λj(X

∗AX))kj=1 (counting multiplicities and arranged non-increasingly) of the
k × k submatrix X∗AX , are eigenvalues of A. In general, if the residual is small, then we
consider X an approximate invariant subspace and its associated Ritz values as approximate
eigenvalues of A.

The are some other, rather indirect, measures of the quality of a subspace X as a possible
invariant subspace of the complex d × d self-adjoint matrix A, based of the local behavior
of the Ritz values of A associated with subspaces Y that are close to X (an example of this
phenomenon is described at the beginning of Section 3.2). This fact has been one motivation
for the study of the so-called absolute variation of Ritz values (see [1, 3, 8, 9, 10, 11, 15, 16,
20, 21, 22]). In this context, we are interested in getting upper bounds for (some measure
of) the vector

|λ(X∗AX)− λ(Y ∗AY )| := ( | λj(X
∗AX)− λj(Y

∗AY ) | )kj=1 ∈ R
k
≥0 , (1)

where X and Y are d × k isometries with ranges R(X) = X and R(Y ) = Y . By continuity
of eigenvalues, the absolute variation of Ritz values is controlled by the distance between the
subspaces X and Y ; as a vector valued measure of distance between the subspaces X and Y ,
we consider the principal angles between X and Y , denoted Θ(X ,Y) = (θj)

k
j=1 ∈ [0, π/2]k,

that are the angles whose cosines are the singular values of X∗Y arranged in non-decreasing
order and counting multiplicities.

On the other hand, it turns out that the absolute variation of Ritz values is also controlled
by the spread of the eigenvalues of A (independently of the subspaces X and Y); notice that
in the extreme case in which A = a Id is a multiple of the identity matrix, or equivalently
when the spread of the eigenvalues of A is zero, then X∗AX = a Ik = Y ∗AY so the variation
of Ritz values is also zero. As a vector valued measure of the spread of the eigenvalues of A,
Knyazev and Argentati (see [10]) have suggested to consider the so-called spectral spread of
A, denoted Spr+(A), given by

Spr+(A) =
(

λj(A)− λd−j+1(A)
)h

j=1
∈ (Rh

≥0)
↓ ,

where h = [d
2
] (integer part). In this context, they have conjectured the following (au-

tonomous) a priori upper bounds (see [10, Conjecture 2.1]): given two d × k isometries X
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and Y then
|λ(X∗AX)− λ(Y ∗AY )| ≺w sin(Θ(X ,Y)) Spr+(A) , (2)

where multiplication is performed entry-wise and ≺w denotes submajorization, which is a
pre-order relation between real vectors (see Section 2 for details). Moreover, if in addition
the subspace X is A-invariant then they have also conjectured that

|λ(X∗AX)− λ(Y ∗AY )| ≺w sin(Θ(X ,Y))2 Spr+(A) . (3)

There has been important progress in this direction, and there are several related results and
numerical evidence supporting these conjectures (see [8, 10, 13]).

Based on Lidskii’s additive inequality, in order to bound the absolute variation of Ritz values
we can look for upper bounds of the singular values

s(X∗AX − Y ∗AY ) ∈ R
k , (4)

where s(Z) ∈ Rd denotes the vector of singular values of a d×d complez matrix Z, counting
multiplicities and arranged in non-decreasing order. As opposed to the variation of Ritz
values in Eq. (1), the singular values in Eq. (4) actually depend on the particular choices
of partial isometries X and Y with fixed ranges R(X) = X and R(Y ) = Y . Motivated
by geometric insights, given the isometry X ∈ Md,k(C) with range R(X) = X and the
subspace Y as above, we will choose an explicit (and convenient) Y = Yr and obtain upper
bounds for the singular values in Eq. (4) in terms of submajorization relations involving the
principal angles between X and Y and the spectral spread of A (see Section 3.1 for a detailed
description of our main results regarding this problem). In a sense, our approach corresponds
to the study of the stability of the restricted submatrix extraction process (A,X,Y) 7→ Y ∗

r AYr

around the fixed data (X,A), where Yr = Yr(X, Y) has an explicit dependence that we
describe in detail in Section 4.

Once we have obtained such upper bounds we can apply Lidskii’s additive inequality and
obtain the following upper bounds for the absolute variation of Ritz values:

|λ(X∗AX)− λ(Y ∗AY )| ≺w Θ(X ,Y) Spr+(A) , (5)

where multiplication is performed entry-wise, and if in addition the subspace X is an A-
invariant subspace:

|λ(X∗AX)− λ(Y ∗AY )| ≺w Θ(X ,Y)2 Spr+(A) . (6)

Although our results do not settle the conjectures in their original form, our upper bounds
in Eqs. (5) and (6) are comparable with those conjectured in Eqs. (2) and (3) for the general

and the invariant case, specially for perturbations Y of X , since limθ→0+
sin(θ)

θ
= 1. Moreover,

we include a family of examples that show that our vector valued upper bounds are sharp
(see Section 3.2): explicitly, we show that there exist selections of d× k isometries Y (t) 6= X
for t ∈ (0, 1) such that

lim
t→0+

Y (t) = X and lim
t→0+

|λ(X∗AX)− λ(Y (t)∗AY (t))|

Θ(X ,Y(t)) Spr+(A)
= (1, . . . , 1) ∈ R

k .

The previous facts suggest that the upper bounds in Eqs. (5) and (6) could be a useful tool
to deal with the case where Y is a perturbation of X .
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The paper is organized as follows. In section 2 we introduce the notation and terminology
used throughout the paper. In Section 3 we state our main results; indeed, in Section 3.1 we
state our results on the stability of the restricted submatrix extraction process (A,X,Y) 7→
Y ∗
r AYr (for Yr = Yr(X,Y) explicitly constructed) around the fixed data (X,A), in terms of

the principal angles Θ(X ,Y) and the spectral spread Spr+(A). In Section 3.2 we apply the
previous results to obtain upper bounds for the absolute variation of Ritz values. In Section
4 we develop the proofs of the results in Section 3.1. Our approach is based on bounding
the singular values of X∗AX − Y ∗

r AYr in terms of the integral of the singular values of the
derivative γ′(t) of a smooth curve γ(t) joining X∗AX with Y ∗

r AYr. An essential part of
our argument relies on the construction of a convenient curve γ(t). Then, we apply recent
results from [14] for the spectral spread of self-adjoint matrices to bound the singular values
of the derivative s(γ′(t)). We have included a short Appendix (Section 5) with some facts
related to majorization theory and the spectral spread of self-adjoint matrices, that are used
throughout the paper.

2 Preliminaries

Throughout our work we use the following.

Notation and terminology. We let Md, k(C) be the space of complex d × k matrices
and write Md,d(C) = Md(C) for the algebra of d × d complex matrices. We denote by
H(d) ⊂ Md(C) the real subspace of Hermitian (self-adjoint) matrices, by i · H(d) the space
of skew-Hermitian matrices and by Md(C)

+, the cone of positive semi-definite matrices.
Also, U(d) ⊂ Md(C) denotes the group of unitary matrices. Given 1 ≤ k ≤ d we denote
I(k, d) the set of isometries X ∈ Md, k(C) i.e. such that X∗X = Ik; notice that I(k, d) can
be identified in a natural way with the complex Stiefel manifold. Moreover, if X ⊂ C

d is
a k-dimensional subspace of Cd we let IX (k, d) denote those isometries X ∈ Md, k(C) with
range R(X) = X .

For d ∈ N, let Id = {1, . . . , d}. Given a vector x ∈ Cd we denote by Dx = diag(x1, . . . , xd)
the diagonal matrix in Md(C) whose main diagonal is x. Given x = (xi)i∈Id ∈ Rd we denote
by x↓ = (x↓

i )i∈Id the vector obtained by rearranging the entries of x in non-increasing order.
We also use the notation (Rd)↓ = {x ∈ R

d : x = x↓} and (Rd
≥0)

↓ = {x ∈ R
d
≥0 : x = x↓}.

For r ∈ N, we let 1r = (1, . . . , 1) ∈ Rr.

Given a matrix A ∈ H(d) we denote by λ(A) = (λi(A))i∈Id ∈ (Rd)↓ the eigenvalues of
A counting multiplicities and arranged in non-increasing order. For B ∈ Md(C), s(B) =
λ(|B|) ∈ (Rd

≥0)
↓ denotes the singular values of B, i.e. the eigenvalues of |B| = (B∗B)1/2 ∈

Md(C)
+. Arithmetic operations with vectors are performed entry-wise i.e., in case x =

(xi)i∈Ik , y = (yi)i∈Ik ∈ C
k then x + y = (xi + yi)i, x y = (xi yi)i and (assuming that yi 6= 0,

for i ∈ Ik) x/y = (xi/yi)i, where these vectors all lie in Ck. Moreover, if we assume further
which x, y ∈ Rk then we write x6 y whenever xi ≤ yi, for i ∈ Ik. Finally, given a function
f : I → R defined on I ⊆ R and x = (xi)i∈Ik ∈ Ik then we set f(x) = (f(xi))i∈Ik ∈ Rk. △

Next we recall the notion of majorization between vectors, which will play a central role
throughout our work.

Definition 2.1. Let x, y ∈ Rk. We say that x is submajorized by y, and write x ≺w y, if
r

∑

i=1

x↓
i ≤

r
∑

i=1

y↓i for every r ∈ Ik .

4



If x ≺w y and tr x
def

=
k
∑

i=1

xi = tr y, then we say that x is majorized by y, and write x ≺ y. △

We point out that (sub)majorization is a preorder relation in Rk that plays a central role in
matrix analysis (see Section 5.1).

Remark 2.2. Let x ∈ Rk
≥0 and y ∈ Rh

≥0 be two vector with non-negative entries (of different
sizes). We extend the notion of submajorization, sum and the product between x and y in
the following sense: Let 0n denotes the zero vector of Rn and ℓ := max{h , k}.

1. We say that x is submajorized by y if

x ≺w y if

{

(x , 0h−k) ≺w y for k < h

x ≺w (y , 0k−h) for h < k
, (7)

2. Similarly we define x + y and x y ∈ Rℓ
≥0 , adding zeros to the right to get two vectors

with equal size. △

3 On principal submatrices, angles and spectral spread

In this section we state our main results. Indeed, in Section 3.1 we state our results on
the stability of the restricted submatrix extraction process (A,X,Y) 7→ Y ∗

r AYr, where Yr =
Yr(X,Y) is defined as Yr = U X for a direct rotation U from X to Y . In this case, we
bound the vector of singular values s(X∗AX−Y ∗

r AYr) (counting multiplicities and arranged
non-increasingly) in terms of the principal angles Θ(X ,Y) and the spectral spread Spr+(A).
In Section 3.2 below we apply the previous results to obtain upper bounds for the absolute
variation of Ritz values.

3.1 On the variation of principal submatrices

Remark 3.1. We begin by recalling some of the notions involved in the statements of our
main results. Given k-dimensional subspaces X , Y ⊂ Cd, we denote by IX (k, d) the set of
isometries X ∈ Md, k(C) with range R(X) = X (similarly IY(k, d) ), and we consider the
principal angles between X and Y , denoted Θ(X ,Y) = (θj)j∈Ik ∈ [0, π/2]k, given by

cos(Θ) = (cos(θj))j∈Ik = (sk−j+1(X
∗Y ))j∈Ik , (8)

where X ∈ IX (k, d) and Y ∈ IY(k, d). By construction, Θ(X ,Y) = Θ(X ,Y)↓. On the other
hand we also consider direct rotations between subspaces, introduced by Davis and Kahan
in [4] (also see [5]); for the purposes of this work, it is convenient to describe such a concept
in a direct and suitable way. In order to do this, we introduce a series of subspaces naturally
associated with X and Y , that decompose Cd into mutually orthogonal components; then we
describe the direct rotations from X onto Y in terms of block representations with respect to
the previous orthogonal decomposition of Cd (see Eq. (10)). Indeed, we consider the generic
part in the decomposition of Cd in terms of the two subspaces X and Y (see Section 4.1),
defined as the subspace

G
def

=
[

(X ∩ Y)⊕ (X ∩ Y⊥)⊕ (X⊥ ∩ Y)⊕ (X⊥ ∩ Y⊥)
]⊥

. (9)
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Denote by p = dimX ∩ Y⊥ = dimX⊥ ∩ Y , r = dimX ∩ G = dimX⊥ ∩ G = dimY ∩ G,

S1 = (X ∩Y⊥)⊕ (X ∩ G) , S2 = (X⊥∩ Y)⊕ (X⊥ ∩ G) and S3 = (X⊥∩ Y)⊕ (Y ∩ G) .

Notice that S1 ⊆ X , S2 ⊆ X⊥ and S3 ⊆ Y . Consider the angles Θ′ = Θ(S1 , S3) ∈ [0, π/2]p+r,
and the diagonal matrices

C = diag( cos(Θ′) ) and S = diag( sin(Θ′) ) ∈ Mp+r(C)
+ .

Finally, we say that a unitary U ∈ U(d) is a direct rotation from X onto Y if there exists B
an orthonormal basis (ONB) of Cd obtained by juxtaposition of ONB’s for X ∩ Y , S1 , S2

and X⊥ ∩ Y⊥ such that the block matrix representation of U with respect to B and these
subspaces is









I 0 0 0
0 C −S 0
0 S C 0
0 0 0 I









X ∩ Y
S1

S2

X⊥ ∩ Y⊥

(10)

Moreover, we remark that in this case, if s = dimX ∩ Y , then

Θ′ =
( π

2
1p , θ1 , . . . , θr

)

and Θ(X , Y) = (Θ′, 0s) . (11)

Notice that since X , Y ⊂ C
d and dimX = dimY , a direct rotation U between X and

Y always exists. This relies on the fact that p = dimX ∩ Y⊥ = dimX⊥ ∩ Y (see [4] for
more details). On the other hand, recall that given a self-adjoint matrix A ∈ H(d) then the
spectral spread of A, denoted Spr+(A), is given by

Spr+(A) =
(

Sprj(A)
)

j∈Ih
=

(

λj(A)− λ↑
j (A)

)

j∈Ih
∈ (Rh

≥0)
↓ ,

where h = [d
2
] (integer part). See section 5.2 for more information about this notion. △

In the following formulae we operate among vectors with non-negative entries of different
sizes, using the notation given in Remark 2.2. The proofs of Theorems 3.2 and 3.3 below are
developed in Section 4.

Theorem 3.2. Let A, B ∈ H(d) and let X , Y ⊂ Cd be k-dimensional subspaces. Let
U = U(X ,Y) be a direct rotation of X onto Y and Θ = Θ(X ,Y)↓ ∈ [0, π/2]k the principal
angles between X and Y defined in (8). Given X ∈ IX (k, d), if we let

Yr = Yr(X,U)
def

= UX ∈ IY(k, d)

then we have that

s(X∗AX − Y ∗
r B Yr) ≺w s(A− B) + Θ(X ,Y)↓

(

Spr+ (A) + Spr+ (B)

2

)

, (12)

where submajorization, sums and products are as in Remark 2.2. �

Notice that we have considered the more general situation of two self-adjoint matrices A, B ∈
H(d). In the next section, we apply this result in the particular case A = B to obtain upper
bounds for the absolute variation of the Ritz values in the self-adjoint case.

In the following result we deal with the so-called invariant case, and obtain a stronger upper
bound for small perturbations Y of X .
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Theorem 3.3. With the same hypothesis and notation of Theorem 3.2, assume further that
the k-dimensional subspace X is A-invariant. Then we have that

s(X∗AX − Y ∗
r AYr) ≺w Θ2(X ,Y)↓ Spr+ (A) , (13)

where submajorization and products are as in Remark 2.2. �

In the next section, we apply Theorems 3.2 and 3.3 and obtain upper bounds for the absolute
variation of the Ritz values in the self-adjoint case.

3.2 An application: on the absolute variation of Ritz values

As already mentioned in the Introduction, one motivation for the study of absolute variation
of Ritz values of A ∈ H(d) around a subspace X in Cd, is that such variation provides an
indirect measure of the quality of X as a possible invariant subspace of A. As an example of
this phenomenon, we recall the following inequality, recently obtained in [13]: let PX+Y denote
the orthogonal projection onto the subspace X + Y of Cd, let RX = AX −X(X∗AX) and
RY = AY −Y (Y ∗AY ) denote the residuals of A at X and Y , let s(PX+Y RX), s(PX+Y RY ) ∈
Rk denote the vectors of singular values of PX+Y RX and PX+Y RY (counting multiplicities
and arranged non-increasingly); if X and Y are in a acute relative position (i.e. so that
θj < π/2, for j ∈ Ik) then

|λ(X∗AX)− λ(Y ∗AY )| ≺w [s(PX+Y RX) + s(PX+Y RY )] (tan(θj))
k
j=1 . (14)

In case X and Y are close to each other, then the residuals of A at X and Y are comparable;
moreover, since the tangents tan(θj) ≈ θj are comparable, for j ∈ Ik, then conclude that the
inequality in Eq. (14) provides an upper bound for the first order absolute variation of the
Ritz values of A around X , in terms of the residual RX (where we measured the distance
between subspaces in terms of the principal angles). Hence, if RX is small, then this first
order variation (that can be tested numerically) is also small.

We are interested in obtaining autonomous upper bounds for the absolute variation of Ritz
values of A ∈ H(d) associated with the k-dimensional subspaces X and Y , in terms of the
principal angles between X and Y , and the spectral spread of the matrix A. In this context,
Knyazev and Argentati have conjectured (see [10, Conjecture 2.1]) the upper bounds in Eq.
(2) (for the general subspaces) and (3) (for an A-invariant subspace X ). The following results
partially confirm these conjectures.

Theorem 3.4. Let A ∈ H(d) and let X, Y ∈ I(k, d), with ranges X = R(X) and Y = R(Y )
such that dimX = dimY = k. If Θ = Θ(X ,Y) then:

1. We have that
|λ(X∗AX)− λ(Y ∗AY )| ≺w ΘSpr+(A) . (15)

2. If we further assume that X is A-invariant, we have that

|λ(X∗AX)− λ(Y ∗AY )| ≺w Θ2 Spr+(A) . (16)

Proof. Let U ∈ U(d) be a direct rotation from X onto Y and let Yr = U X be as in Theorem
3.2. Since R(Yr) = R(Y ) then V = Y ∗

r Y ∈ U(k), and we get that

λ(Y ∗AY ) = λ(V Y ∗AY V ∗) = λ(Y ∗
r PY APY Yr) = λ(Y ∗

r AYr) ∈ R
k .
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By Lidskii’s inequality (Theorem 5.2) and Theorem 3.2 we have that

|λ(X∗AX)− λ(Y ∗AY )| = |λ(X∗AX)− λ(Y ∗
r AYr)|

≺w |λ(X∗AX − Y ∗
r AYr)|

↓

= s(X∗AX − Y ∗
r AYr) ≺w ΘSpr+(A) .

Item 2 follows from a similar argument, using Theorem 3.3.

Remark 3.5. The only difference between the Conjectures (2) and (3) and our main result
Theorem 3.4 relies in the slightly bigger upper bounds Θ (resp. Θ2) instead of sinΘ (resp.
sin2Θ). These numbers are asymptotically close when the angles Θ → 0+, and they can be
globally compared with a constant π/2.

Nevertheless, Conjectures (2) and (3) are supported by large computational experimentation.
In order to explore the content of our main results we consider the following examples, where
we show that both Conjectures (2) and (3) and Theorem 3.4 are sharp inequalities. △

Example 3.6. Consider a > b > 0 and let

A =









0 0 a 0
0 0 0 b
a 0 0 0
0 b 0 0









∈ H(4) .

If {e1, e2, e3, e4} denotes the canonical basis of C4, we let X = Span{e1, e2}. On the other
hand, given θ ∈ [0, π/2] let

f1(θ) = cos(θ) e1 + sin(θ) e3 and f2(θ) = cos(θ) e2 + sin(θ) e4 . (17)

Then, we set Y(θ) = Span{f1(θ), f2(θ)}, for θ ∈ [0, π/2]. It is straightforward to show
that Θ(X , Y(θ)) = (θ, θ). Then, it follows that the isometries X, Yr(θ) as in Theorem 3.2
(associated with the subspaces X and Y(θ)) are given by

X =









1 0
0 1
0 0
0 0









and Yr(θ) =









cos(θ) 0
0 cos(θ)

sin(θ) 0
0 sin(θ)









. (18)

Direct computations with the matrices described above show that

X∗AX = 0 and Yr(θ)
∗AYr(θ) =

(

a sin(2θ) 0
0 b sin(2θ)

)

Hence, in this case we get that for θ ∈ [0, π/2],

|λ(X∗AX)− λ(Yr(θ)
∗AYr(θ))| = |λ(X∗AX − Yr(θ)

∗AYr(θ))| = sin(2θ) (a, b)

so in particular, Lidskii’s inequality holds with equality in this case. On the other hand, it
turns out that λ(A) = (a, b,−b,−a) ∈ (R4)↓ which shows that Spr+(A) = 2 (a, b). Therefore,
the inequalities in Theorems 3.2 (with A = B) and 3.4 (item 1.) become

sin(2θ) (a, b) ≺w 2 (θ , θ) (a, b) = 2 θ (a, b) ,

8



where the submajorization relation above is equivalent to the inequalities

sin(2θ) a ≤ 2 θ a and sin(2θ) (a+ b) ≤ 2 θ (a+ b)

which are sharp; this last claim can be seen by considering θ → 0+. Notice that we further
get that

lim
θ→0+

|λ(X∗AX)− λ(Yr(θ)
∗AYr(θ))|

Θ(X , Y(θ)) Spr+(A)
= 12

where we have considered the entry-wise quotient of the vectors. This last fact shows that
our upper bound for the absolute variation of Ritz values is sharp. △

Example 3.7. Consider a > b > 0 and let

A =









a 0 0 0
0 b 0 0
0 0 0 0
0 0 0 0









∈ H(4) .

We consider the canonical basis {e1, e2, e3, e4} of C4, and we let X = Span{e1, e2}. Notice
that in this case X is an A-invariant subspace. On the other hand, given θ ∈ [0, π/2] let
Y(θ) = Span{f1(θ), f2(θ)}, where fj(θ) are as in Eq. (17). Hence, as in the previous example,
we have that Θ(X , Y(θ)) = (θ, θ). In this case, the isometries X, Yr(θ) as in Theorem 3.3
are given by Eq. (18). Direct computations with the matrices described above show that

X∗AX =

(

a 0
0 b

)

and Yr(θ)
∗AYr(θ) =

(

a cos2(θ) 0
0 b cos2(θ)

)

Hence, in this case we get that for θ ∈ [0, π/2],

|λ(X∗AX)− λ(Yr(θ)
∗AYr(θ))| = |λ(X∗AX − Yr(θ)

∗AYr(θ))| = sin2(θ) (a, b)

so in particular, Lidskii’s inequality holds with equality in this case. On the other hand, it
turns out that λ(A) = (a, b, 0, 0) ∈ (R4)↓ which shows that Spr+(A) = (a, b). Therefore, the
inequalities in Theorems 3.3 and 3.4 (item 2.) become

sin2(θ) (a, b) ≺w (θ , θ)2 (a, b) = θ2 (a, b) ,

where the submajorization relation above is equivalent to the inequalities

sin2(θ) a ≤ θ2 a and sin2(θ) (a+ b) ≤ θ2 (a+ b)

which are sharp; this last claim can be seen by considering θ → 0+. Notice that we further
get that

lim
θ→0+

|λ(X∗AX)− λ(Yr(θ)
∗AYr(θ))|

Θ(X ,Y(θ))2 Spr+(A)
= 12 ,

where we have considered the entry-wise quotient of the vectors. This last fact shows that
our upper bound for the absolute variation of Ritz values is sharp. △

As a final comment, notice that it’s natural to wonder whether the estimates from Theorems
3.2 and 3.3 can be used to obtain estimates for the distance between the compressions (that
we can think of as lower rank approximations of A) given by PX APX and PY APY . It turns
out that this is not the case. Indeed, in the trivial case in which A = I then we have that
PX I PX − PY I PY = PX − PY ; but we have that Spr+(I) = 0 is the zero vector, so there is
no hope in obtaining an upper bound for PX APX − PY APY in terms Spr+(A) in general.
Also, in general there is no dependence of PX APX −PY APY in terms of Θ(X ,Y)2 when X
is A-invariant (again, take A = I to see this).
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4 Proof of the main results

In this section we present complete proofs of our main results. Our approach is based on
some geometric arguments and inequalities for the spectral spread recently obtained in [14].

4.1 Proof of Theorem 3.2

Throughout this section we adopt the notation and terminology in Theorem 3.2. Hence, we
consider:

1. A, B ∈ H(d);

2. X , Y ⊂ Cd, k-dimensional subspaces and X ∈ IX (k, d);

3. a direct rotation U = U(X ,Y) ∈ U(d), of X onto Y .

4. Yr = Yr(X,Y)
def

= UX ∈ IY(k, d).

Our approach to prove Theorem 3.2 is as follows: we will consider smooth curves

L(·) : [0, 1] → H(d) and Yr(·) : [0, 1] → I(k, d) (19)

such that L(0) = A, L(1) = B, Yr(0) = X and Yr(1) = Yr. Then, we consider the smooth
curve

γ : [0, 1] → H(k) given by γ(t) = Yr(t)
∗ L(t) Yr(t) for t ∈ [0, 1] . (20)

Once we have constructed γ(·) we will apply the following result. Recall that given Z ∈
Md(C), s(Z) ∈ Rd denotes the vector of singular values, counting multiplicities and arranged
in non-increasing order.

Proposition 4.1. Let γ : [0, 1] → Mm,n(C) be a smooth curve such that γ(0) = C and
γ(1) = D. Then

s(D − C) ≺w

∫ 1

0

s(γ′(t)) dt .

Proof. First notice that by the fundamental theorem of calculus we have that

D − C = γ(1)− γ(0) =

∫ 1

0

γ′(t) dt . (21)

On the other hand, for n ∈ N consider the regular partition {t0 = 0 < t1 < . . . < tn = 1} of
[0, 1] so that tj =

j
n
, for j ∈ {0} ∪ In and ∆j = tj − tj−1 =

1
n
= ∆n, for j ∈ In. Then,

∫ 1

0

γ′(t) dt = lim
n→∞

n
∑

j=1

γ′(tj) ∆n ,

∫ 1

0

s(γ′(t)) dt = lim
n→∞

n
∑

j=1

s(γ′(tj)) ∆n (22)

where we have used that the curves γ′(t) ∈ Mm,n(C) and s(γ′(t)) ∈ Rd, for t ∈ [0, 1], are
continuous (by hypothesis and by the continuity of singular values). By Weyl’s additive
inequality (see Theorem 5.1) we have that

s(

n
∑

j=1

γ′(tj) ∆n) ≺w

n
∑

j=1

s(γ′(tj)) ∆n (23)
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The result now follows from Eqs. (21), (22), (23), the continuity of singular values and the
following fact: if (xn)n∈N and (yn)n∈N ∈ Rd are sequences that converge to x and y ∈ Rd

respectively, and such that xn ≺w yn for n ∈ N, then x ≺w y.

Although the arguments considered in the previous paragraphs are valid for any choice of
smooth curves L(·) and Yr(·) as in Eq. (19), we are interested in choices that lead to better
upper bounds. Thus, we are interested in those curves L(·) and Yr(·) for which the associated
curve γ(·) in Eq. (20) is minimal in a certain sense. We point out that we will not study
the corresponding minimality problem, but rather we will choose L(·) and Yr(·) that have
separately minimal properties, and use these choices to build γ(·).

For L(·) there is a natural choice, namely the line segment joining A and B, i.e.

L(t) = (1− t)A+ t B for t ∈ [0, 1] . (24)

Next we construct Yr(t), based on the notion of direct rotation as developed in [4]; hence,
we consider the following notions related to the direct rotation of X onto Y as in Remark
3.1. Indeed, given these subspaces we have the orthogonal decomposition (see [6])

C
d = (X ∩ Y)⊕ (X ∩ Y⊥)⊕ G ⊕ (X⊥ ∩ Y)⊕ (X⊥ ∩ Y⊥) .

Here G ⊆ Cd stands for the generic part of the pair of subspaces X and Y (see Eq. (9)). We
point out that some of these subspaces can be null. It turns out that for our purposes, we
can assume further (see the proof of Theorem 3.2 below) that

X⊥ ∩ Y⊥ = {0} .

Recall that we can decompose the generic part G = X ∩G ⊕X⊥ ∩G into two subspaces such
that dimX ∩ G = dimX⊥ ∩ G = r. Therefore, in our case we get the decomposition

C
d = (X ∩ Y)⊕ S1 ⊕ S2 , (25)

where
S1 = (X ∩ Y⊥)⊕ (X ∩ G) and S2 = (X⊥ ∩ Y)⊕ (X⊥ ∩ G) .

Since dimX = dimY we conclude that dimX ∩ Y⊥ = dimX⊥ ∩ Y = p so, in particular,
dimS1 = dimS2 = r + p.

Let U be a direct rotation of X onto Y . In this case, there exist orthonormal bases of S1

and S2 and diagonal positive semidefinite matrices

C = diag( cos(Θ′) ) and S = diag( sin(Θ′) ) ∈ Mp+r(C)
+

where Θ′ = (π
2
1p , θ1, . . . , θr) denote the principal angles between S1 and (Y∩G)⊕(X⊥∩Y),

such that

U =





I 0 0
0 C −S
0 S C



 , (26)

where the block matrix representation is with respect to the ONB obtained by juxtaposition
of the ONB’s of X ∩ Y , S1 and S2. Here (θ1, . . . , θr) ∈ (0, π/2)r denote the principal angles
between X ∩ G and Y ∩ G. We now define

U(t) =





I 0 0
0 C(t) −S(t)
0 S(t) C(t)



 ∈ U(d) , (27)
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where S(·), C(·) : [0 , 1] → H(p+ r) are given by

S(t) = diag( sin(tΘ′) ) and C(t) = diag( cos(tΘ′) ) ∈ Mp+r(C)
+ . (28)

Then U(0) = I and U(1) = U . Now that we have explicitly constructed U(t) we define

Yr(t) = U(t)X =





I 0
0 C(t)
0 S(t)



 with X =





I 0
0 I
0 0



 , (29)

where the matrix block representation above is with respect to the decomposition
Cd = (X ∩ Y)⊕ S1 ⊕ S2, as before.

In this case, we have that

γ(t) = Yr(t)
∗ L(t) Yr(t) = X∗ (U(t)∗ L(t)U(t) )X for t ∈ [0, 1] . (30)

Notice that by taking a derivative,

γ′(t) = X∗U(t)∗ L′(t)U(t)X +X∗ ( (U ′(t))∗ L(t)U(t) + U(t)∗ L(t)U ′(t) )X . (31)

The first term in Eq. (31) can be dealt with using Lidskii’s inequality in a simple way. Thus,
we are left with the analysis of the second term. Using basic trigonometric identities we get
that U(t + h) = U(t)U(h) for t, h, t + h ∈ [0, 1]; hence U ′(t) = U(t)U ′(0) and similarly
(U ′(t))∗ = −U ′(0)U(t)∗. Therefore, if we let

A(t) = U(t)∗ L(t)U(t) (32)

then we have that

X∗ ( (U ′(t))∗ L(t)U(t) + U(t)∗ L(t)U ′(t) )X = X∗ (A(t)U ′(0)− U ′(0)A(t))X . (33)

By taking a derivative in Eq. (27) we get that

U ′(0) =





0 0 0
0 0 −DΘ′

0 DΘ′ 0



 ∈ i · H(d) .

where DΘ′ is the diagonal matrix with main diagonal Θ′ = (π
2
1p , θ1, . . . , θr) defined above,

and i · H(d) denotes the space of skew-Hermitian matrices.

Consider the block matrix representation of A(t) = (Aij(t))
3
i,j=1 with respect to the decom-

position in Eq. (25). A direct computation, using the previous block matrix representations,
shows that

X∗ (A(t)U ′(0)− U ′(0)A(t))X = 2 Re (

(

0 A13(t)
0 A23(t)

) (

0
DΘ′

)

) . (34)

Remark 4.2. With the previous notation, using Weyl’s multiplicative inequality (see The-
orem 5.1) we conclude that

s(X∗ (A(t)U ′(0)− U ′(0)A(t))X) ≺w 2Θ s

((

A13(t)
A23(t)

))

, (35)
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where we have used that Θ = (Θ′, 0s) ∈ (Rk
≥0)

↓ and item 2 in Remark 2.2. The previous facts
suggest to develop a bound for the singular values of the anti-diagonal block of A according
to the representation





A11(t) A12(t) A13(t)
A21(t) A22(t) A23(t)
A31(t) A32(t) A33(t)



 (36)

(that formally corresponds to the decomposition Cd = (X ∩ Y ⊕ S1) ⊕ S2, where S1 and
S2 are described after Eq. (25)) in terms of spectral properties of the matrix A(t) ∈ H(d)
(defined in Eq. (32)). △

Next, we describe a bound of the singular values of the anti-diagonal block as in Eq. (36) in
terms of the spectral spread of A(t).

Theorem 4.3 (See [14]). Let H =

[

H11 H12

H∗
12 H22

]

C
k

Cr ∈ H(k + r) be arbitrary. Then

2 s(H12) ≺w Spr+(H) . (37)

�

We can now prove our first main result. We will re-write the statement for the reader’s
convenience.

Theorem 3.2. Let A, B ∈ H(d) and let X , Y ⊂ Cd be k-dimensional subspaces. Let
U = U(X ,Y) be a direct rotation of X onto Y and Θ = Θ(X ,Y)↓ ∈ [0, π/2]k the principal
angles between X and Y defined in (8). Given X ∈ IX (k, d), if we let

Yr = Yr(X,U)
def

= UX ∈ IY(k, d)

then we have that

s(X∗AX − Y ∗
r B Yr) ≺w s(A− B) + Θ(X ,Y)↓

(

Spr+ (A) + Spr+ (B)

2

)

,

where submajorization, sums and products are as in Remark 2.2.

Proof. Assume first that X⊥ ∩ Y⊥ = {0}. Let γ(·) : [0, 1] → H(k) be defined as in Eq. (30),
where Yr(·) is defined as in Eq. (29). Notice that by construction γ is a smooth curve such
that γ(0) = X∗AX and γ(1) = Y ∗

r B Yr . By Proposition 4.1 we have that

s(X∗AX − Y ∗
r B Yr) ≺w

∫ 1

0

s(γ′(t)) dt . (38)

Using Eq. (31) and Weyl’s inequality for singular values (see Theorem 5.1), we have that

s(γ′(t)) ≺w s(X∗ U(t)∗ L′(t)U(t)X)

+s(X∗ ( (U ′(t))∗ L(t)U(t) + U(t)∗ L(t)U ′(t) )X) ,
(39)

where L(t) = (1− t)A+ t B, for t ∈ [0, 1] as before. Hence L′(t) = B − A and therefore

s(X∗ U(t)∗ L′(t)U(t)X) = s(X∗ U(t)∗ (B −A)U(t)X) ≺w s(A−B) ,
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where we have used Remark 5.4. The previous facts together with item 3. in Lemma 5.3
imply that

∫ 1

0

s(X∗ U(t)∗ L′(t)U(t)X) dt ≺w s(A− B) . (40)

Moreover, using Eqs. (33), (34), (35) and Theorem 4.3 (also see item 5. in Lemma 5.3) we
get that

s(X∗ ( (U ′(t))∗ L(t)U(t) + U(t)∗ L(t)U ′(t) )X) ≺w ΘSpr+(A(t)) . (41)

Notice that A(t) and L(t) are unitary conjugates, so they have the same spectral spread.
Hence, by Proposition 5.6 we get that

Spr+(A(t)) = Spr+(L(t)) ≺ (1− t) Spr+(A) + t Spr+(B) . (42)

By Eqs. (41) , (42) and item 3. in Lemma 5.3,
∫ 1

0

s(X∗ ( (U ′(t))∗ L(t)U(t) + U(t)∗ L(t)U ′(t) )X) dt ≺w

Θ

(

Spr+(A)

∫ 1

0

(1− t) dt+ Spr+(B)

∫ 1

0

t dt

)

=
1

2
Θ ( Spr+(A) + Spr+(B) ) .

Using this last submajorization relation, together with Eq. (39) and Eq. (40) we get that
∫ 1

0

s(γ′(t)) dt ≺w sj(A− B)kj=1 +Θ

(

Spr+ (A) + Spr+ (B)

2

)

, (43)

where we have used the first part of item 3. in Lemma 5.3. The result now follows from Eq.
(38) and (43).

In case X⊥∩Y⊥ 6= {0}, we consider the subspace Z = X +Y ⊂ Cd and Z ∈ IZ(m, d), where
m = dim Z. Let A′ = Z∗AZ, B′ = Z∗B Z ∈ H(m) and let X ′ = Z∗X ∈ I(k,m). If we let
X ′ = R(X ′) and Y ′ = R(Z∗ Yr) denote the subspaces that are the ranges of X ′ and Z∗ Yr in
Cm we get that (X ′)⊥∩ (Y ′)⊥ = {0}. Moreover, since (X ′)∗Y ′ = (X∗Z)(Z∗Yr) = X∗ PZ Yr =
X∗Yr (where PZ ∈ H(d) denotes the orthogonal projection onto Z ⊂ Cd) we conclude that
Θ(X ′,Y ′) = Θ(X ,Y) ∈ Rk, by definition of principal angles. By the first part of the proof,
we now have that

s((X ′)∗A′ X ′ − (Y ′
r )

∗B′ Y ′
r ) ≺w sj(A

′ − B′)kj=1 +Θ

(

Spr+ (A′) + Spr+ (B′)

2

)

, (44)

where Y ′
r = U ′ X ′, and U ′ is a direct rotation of X ′ onto Y ′. But notice that Z∗UZ is a

direct rotation from X ′ onto Y ′ so we can take Y ′
r = Z∗ U Z Z∗X = Z∗ Yr. Hence,

(X ′)∗A′ X ′ = X∗ PZ APZ X = X∗AX and

(Y ′
r )

∗B′ Y ′
r = Y ∗

r PZ B PZ Yr = Y ∗
r B Yr

Therefore,
s((X ′)∗A′ X ′ − (Y ′

r )
∗B′ Y ′

r ) = s(X∗AX − Y ∗
r B Yr) . (45)

On the other hand, using Remark 5.4 (or the interlacing inequalities) we now see that

s(A′ −B′) = s(Z∗ (A− B)Z) ≺w s(A−B) and

Spr+(A′) ≺w Spr+(A) , Spr+(B′) ≺w Spr+(B) .

Thus, in this case the result follows from the previous submajorization relations together
with Eq. (44) and Eq. (45). �
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4.2 Proof of Theorem 3.3

Notation 4.4. Throughout this section we adopt the notation and terminology in Theorem
3.3. Hence, we consider:

1. A ∈ H(d);

2. X , Y ⊂ Cd, k-dimensional subspaces such that X is A-invariant;

3. a direct rotation U = U(X ,Y) ∈ U(d), from X onto Y .

4. Yr = Yr(X,Y)
def

= UX ∈ IY(k, d).

5. We denote by Θ = Θ(X ,Y)↓ ∈ [0, π/2]k the principal angles between X and Y . △

Our approach to prove the result is similar to that in the previous section. We first prove
Theorem 3.3 in the particular case that k = dimX = dimY ≤ d/2 (see Propositions 4.6
and 4.7 below). Then, we reduce the general case to the previous particular case. In what
follows we consider the decomposition

C
d = X ⊕ X⊥ assuming that X ∩ Y = {0} and X⊥ ∩ Y⊥ = {0} .

Notice that in this case we have that

A =

(

A11 0
0 A22

)

i.e. A12 = A∗
21 = 0 . (46)

Given a direct rotation U from X onto Y we consider the block representation

U(t) =

(

C(t) −S(t)
S(t) C(t)

)

,

where S(·), C(·) : [0 , 1] → H(r) are given by

S(t) = diag( sin(tΘ) ) and C(t) = diag( cos(tΘ) ) ∈ Mp+r(C)
+ .

Here Θ = Θ(X ,Y)↓ = (π
2
1p , θ1, . . . , θr) ∈ [0, π/2]k where, as before,

p = dimX ∩ Y⊥ = dimX⊥ ∩ Y and r = dimX ⊖ (X ∩ Y⊥) = k − p .

In this case, we define

Yr(t) = U(t)X =

(

C(t)
S(t)

)

with X =

(

I
0

)

, (47)

where the matrix block representation is with respect to the decomposition Cd = X ⊕ X⊥,
as before. In this case, we set

γ(t) = Yr(t)
∗AYr(t) = X (U(t)∗ AU(t) )X = X∗A(t)X for t ∈ [0, 1] , (48)

where A(t) = U(t)∗ AU(t). By taking derivatives,

γ′(t) = X∗A′(t)X = X∗ (A(t)U ′(0)− U ′(0)A(t))X , (49)
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where we have used that U(t+h) = U(t) (h), for t, h, t+h ∈ [0, 1], so that U ′(t) = U(t)U ′(0)
and similarly (U ′(t))∗ = −U ′(0)U(t)∗. In a similar way as in Eq. (34), using the previous
block matrix representations and setting A(t) := (Aij(t))

2
i,j=1, we have that

γ′(t) = X∗ (A(t)U ′(0)− U ′(0)A(t))X = 2 Re(A12(t)DΘ) . (50)

Now, using the fact that X is an A-invariant subspace(so that A has the block represen-
tation in Eq. (46)), if we consider the block matrix representation A(t) = U(t)∗ AU(t) =
(Aij(t))

2
i,j=1 then, for t ∈ [0, 1]

A12(t) = S(t)A22C(t)− C(t)A11 S(t) . (51)

Equation (51) shows that X might not be A(t)-invariant, for t ∈ (0, 1]; nevertheless,
based on the fact that X is A-invariant, we show that it is possible to obtain a convenient
upper bound for the growth of the singular values γ′(t), for t ∈ (0, 1]. Indeed, using Eq. (51)
we see that

2Re(A12(t) DΘ) = 2Re( (S(t)A22C(t)− C(t)A11 S(t) )DΘ)

Moreover, since S(t), C(t) and DΘ commute with each other, then

2Re(A12(t) DΘ) = 2Re(S(t)(A22DΘ −DΘA11)C(t) ) . (52)

Using Weyl’s multiplicative inequality (item 3 of Theorem 5.1) and that given E ∈ Mk(C),
then s(Re(E)) ≺w s(E), we get from Eqs. (50) and (52) that

s(γ′(t) ) = 2 s (Re(A12(t) DΘ) ) ≺w 2 tΘ s(A22DΘ −DΘ A11) , (53)

where we have used that s(S(t) ) = λ(S(t) ) = sin(tΘ)6 tΘ and that 0 ≤ C(t) ≤ I.

We will also consider the following inequality for the singular values of the so-called gener-
alized commutators.

Theorem 4.5 (See [14]). Let A1, A2 ∈ H(k) be arbitrary and let D ∈ Mk(C). Then

s(A1D −DA2) ≺w s(D) Spr+ (A1 ⊕A2) . (54)

Proposition 4.6. With the notation and terminology of Notation 4.4, assume that X ∩Y =
{0}. Then we have that

s(X∗AX − Y ∗
r AYr) ≺w Θ2 Spr+ A , (55)

Proof. We first assume that X⊥∩Y⊥ = {0}. Under this hypothesis, we consider the notation
and terminology introduced previously in this section. In particular, we consider the smooth
curve γ(t) for t ∈ [0, 1] introduced in Eq. (48). Since γ(0) = X∗AX and γ(1) = Y ∗

r AYr

then, Proposition 4.1 shows that

s(X∗AX − Y ∗
r AYr) ≺w

∫ 1

0

s(γ′(t)) dt . (56)

By Eq. (53) above, we have that

s(γ′(t)) ≺w 2 tΘ s(A22DΘ −DΘ A11) , (57)
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By Theorem 4.5 we get

s(A22 DΘ −DΘA11) ≺w Θ Spr+(A11 ⊕A22) = Θ Spr+(A) , (58)

since A = A11 ⊕ A22 by hypothesis (X is A-invariant). Therefore, by Eqs. (57) and (58),

s(γ′(t)) ≺w 2 tΘ2 Spr+(A)
(56)
=⇒ s(X∗AX − Y ∗

r AYr) ≺w Θ2 Spr+A ,

where we have used items 5. and 3. in Lemma 5.3. Finally, in case X⊥ ∩ Y⊥ 6= {0} we can
argue by reduction to the case in which X⊥ ∩Y⊥ = {0}, in the same way as in the last part
of the proof of Theorem 3.2, and prove the inequality in Eq. (55) (without the restriction
X⊥ ∩ Y⊥ = {0}). The details are left to the reader. �

Proposition 4.7. With the notation and terminology of Notation 4.4, assume that X , Y ⊂
C

d be k-dimensional subspaces with k ≤ d/2. Then we have that

s(X∗AX − Y ∗
r AYr) ≺w Θ2 Spr+ A , (59)

Proof. Assume that k = dimX = dimY ≤ d/2 and that X and Y are arbitrary subspaces
such that X is A-invariant. If X ∩ Y = {0} then we conclude that Eq. (59) holds in this
case, by Proposition 4.6. In case X ∩ Y 6= {0} we consider the following

Claim: for every t ∈ [0, 1] there exist a k-dimensional subspace Y(t) ⊂ Cd and a direct
rotation W (t) ∈ U(d) from X onto Y(t) in such a way that X ∩ Y(t) = {0} for t ∈ (0, 1],

lim
t→0+

PY(t) = PY ∈ H(d) and lim
t→0+

W (t) = U .

Let us assume for a moment that the claim is true. Let Yr,t = W (t)X , for t ∈ [0, 1], and notice
that limt→0+ Yr,t = U X = Yr (as in the statement of the theorem). Since X ∩Y(t) = {0} for
t ∈ (0, 1], by Proposition 4.6 we have that

s(X∗AX − Y ∗
r,tAYr,t) ≺w Θ(X , Y(t))2 Spr+(A) for t ∈ (0, 1] .

By continuity of singular values (and hence of principal angles) we conclude that

s(X∗AX − Y ∗
r AYr) = lim

t→0+
s(X∗AX − Y ∗

r, t AYr, t) ≺w lim
t→0+

Θ(X , Y(t))2 Spr+(A)

= Θ(X , Y)2 Spr+(A) .

Proof of the claim. In case dim(X ∩ Y) = s ≥ 1, we notice that

dimX⊥ ∩ Y⊥ = dimX⊥ + dimY⊥ − dim(X ∩ Y)⊥ ≥ s .

On the other hand, we have the decompositions

X = (X ∩ Y)⊕ (X ∩ Y⊥)⊕ (X ∩ G) and Y = (X ∩ Y)⊕ (X⊥ ∩ Y)⊕ (Y ∩ G) ,

where G denotes the generic part of the pair of subspaces X and Y (see Eq. (9)). Let
Θ′ = (π

2
1p , θ1 . . . , θr) denote the principal angles between S1 := (X ∩ Y⊥) ⊕ (X ∩ G) and

(X⊥ ∩Y)⊕ (Y ∩G), where p = dimX ∩Y⊥ = dimX⊥ ∩Y and r = dimX ∩ G = dimY ∩ G;
then, Θ = Θ(X , Y) = (Θ′ , 0s) ∈ [0, π/2]k, where k = p + r + s.
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Let U ∈ U(d) be a direct rotation from X onto Y . Then there exists B an ONB for Cd,
compatible with the decomposition

C
d = (X ∩ Y)⊕ S1 ⊕ S2 ⊕ (X⊥ ∩ Y⊥) , (60)

where S2 = (X⊥ ∩ Y)⊕ (X⊥ ∩ G), such that

U =









I 0 0 0
0 C −S 0
0 S C 0
0 0 0 I









, (61)

where C = diag( cos(Θ′) ) and S = diag( sin(Θ′) ) ∈ Mp+r(C)
+

are diagonal positive semidefinite matrices.

Let {vj}j∈Is be the vectors in B that form an ONB of X ∩ Y and let {wj}j∈Is be vectors in
B that form an ONS in X⊥ ∩ Y⊥ (here we are using that dimX⊥ ∩ Y⊥ ≥ s). We now set
uj(t) = cos(t) vj + sin(t)wj, for j ∈ Is, and let S(t) be the subspace generated by the ONS
{uj(t)}j∈Is, for t ∈ [0, 1]. Also, let

Y(t) = S(t)⊕ (X⊥ ∩ Y)⊕ (Y ∩ G) for t ∈ [0, 1] .

By construction, dimY(t) = k, and for 0 < t ≤ θr we have that

Θ(X ,Y(t)) = (θj(t))j∈Ik = (Θ′ , t1s) ∈ (0, π/2]k .

In particular, X ∩ Y(t) = {0} for 0 < t < θr. It is clear that limt→0+ PY(t) = PY .

Consider the orthogonal decomposition

C
d = Z1 ⊕ Z2 ⊕ T (62)

where T = (X⊥ ∩ Y⊥)⊖ S(π
2
),

Z1 = (X ∩ Y)⊕ (X ∩ Y⊥)⊕ (X ∩ G) and Z2 = (X⊥ ∩ Y)⊕ (X⊥ ∩ G)⊕ S(
π

2
) .

We now construct the block matrix W (t) in terms of the decomposition in Eq. (62), given
by

W (t) =





C1(t) −S1(t) 0
S1(t) C1(t) 0
0 0 I



 for t ∈ [0, 1] , (63)

where C1(t) = diag(cos(t)1s, cos(Θ
′)) and S1(t) = diag(sin(t)1s, sin(Θ

′)). Then, W (·) is a
continuous function such that W (t) is a direct rotation from X onto Y(t), for t ∈ [0, 1], and
such that W (0) = U (compare Eqs. (61) and (63)). The claim follows from these remarks.
�

We can now prove our second main result. We will re-write the statement with all its notation
and terminology for the reader’s convenience.

Theorem 3.3. Let A ∈ H(d) and let X , Y ⊂ Cd be k-dimensional subspaces such that X
is A-invariant. Let U = U(X ,Y) be a direct rotation of X onto Y and Θ = Θ(X ,Y)↓ ∈
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[0, π/2]k the principal angles between X and Y defined in (8). Given X ∈ IX (k, d), if we let
Yr = Yr(X,U) = UX ∈ IY(k, d) then we have that

s(X∗AX − Y ∗
r AYr) ≺w Θ2(X ,Y)↓ Spr+ (A) , (64)

where submajorization and products are as in Remark 2.2.

Proof. In case k ≤ d/2, the result follows from Proposition 4.7. On the other hand, if
k > d/2 we embed the subspaces X , Y in C

d′ = C
d ⊕ C

(d′−d) for some k ≤ d ′/2 and get
X ′ = X ⊕0(d′−d) and Y ′ = Y⊕0(d′−d). Notice that in this case Θ(X ′,Y ′) = (Θ(X ,Y), 0(d′−d)).

Similarly, we can embed X , A and U and get X ′ =

(

X
0

)

∈ IX ′(k, d ′) ,

A′ =

(

A 0
0 λh(A) I

)

∈ H(d ′) and U ′ =

(

U 0
0 I

)

∈ U(d ′) ,

where h = [d+1
2
] (integer part). In this case U ′ is a direct rotation of X ′ onto Y ′ such that

Y ′
r = U ′X ′ =

(

UX
0

)

=

(

Yr

0

)

.

Now it is straightforward to check that

(X ′)∗A′ X ′ − (Y ′
r )

∗A′ Y ′
r =

(

X∗AX − Y ∗
r AYr

0

)

.

Hence, by Proposition 4.7 we get that

s(X∗AX − Y ∗
r AYr) = s((X ′)∗A′ X ′ − (Y ′

r )
∗A′ Y ′

r ) ≺w Θ(X ′,Y ′)2 Spr+(A′) .

Notice that, by construction,

Spr+(A′) = (Spr+(A), 0h′) =⇒ Θ(X ′,Y ′)2 Spr+(A′) = Θ(X ,Y)2 Spr+(A) ,

where h′ = [d
′

2
]− [d

2
] ≥ 1. �

Remark 4.8 (Final comments). Consider the notation of Theorem 3.4. The reader could
wonder why is it that our bounds do not coincide with the bounds in Eqs. (2) and (3). Now
that we have described our techniques in detail we can give our opinion on this issue. We
believe that the fact that our bounds depend on the Θ(X ,Y), which from a geometric point
of view corresponds to the arc length between subspaces, is a consequence of our choice of
curves that lead to the construction of γ(t) as in Eqs. (30) and (48), based on direct rotations.
On the other hand sin(Θ(X ,Y)), which from a geometric point of view corresponds to the
chordal length between subspaces, seems to be associated with shorter curves γ̃(t). Still, the
importance of our choice γ(t) is that its derivative γ′(t) leads to singular values inequalities
that allow to reduce the problem to the infinitesimal level (these inequalities where obtained
in [14], motivated by the problems in the present paper). For example, notice that the
shortest curve µ(t) = (1 − t)X∗AX − tY ∗AY , t ∈ [0, 1], joining X∗AX and Y ∗AY does
not provide such reduction, since µ′(t) = Y ∗AY − X∗AX , for t ∈ [0, 1]. Nevertheless, the
geometric technique considered in here is rather flexible in several ways, and we plan to keep
working in these problems in the future. △
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5 Appendix

Here we collect several results about majorization and the spectral spread of self-adjoint
matrices, used throughout our work.

5.1 Majorization theory in matrix analysis

There are many fundamental results in matrix theory that are stated in terms of subma-
jorization relations. Below, we mention only those results related to the content of this work;
for a detailed exposition on majorization theory see [2, Chapters II and III], [7, Chapter 3]
and [12, Chapter 9].

The first result deals with submajorization relations between singular values of arbitrary
matrices in Md(C) (see [2] p. 35, p. 74 and p. 94).

Theorem 5.1. Let C, D ∈ Md(C). Then,

1. Weyl’s additive inequality for singular values : s(C +D) ≺w s(C) + s(D);

2. s(Re(C)) ≺w s(C) ;

3. Weyl’s multiplicative inequality for singular values: s(CD) ≺w s(C) s(D);

�

Theorem 5.2. ([2], Thm.III.4.1) Let C, D ∈ H(d). Then,

1. Lidskii’s additive inequality: λ(C)− λ(D) ≺ λ(C −D);

2. Lidskii’s additive inequality for singular values: |λ(C)− λ(D)| ≺w s(C −D); �

In the next result we describe several elementary but useful properties of majorization and
submajorization between real vectors.

Lemma 5.3. Let x , y , z , w ∈ Rk. Then,

1. x↓ + y↑ ≺ x+ y ≺ x↓ + y↓;

2. If x ≺w y and y, z ∈ (Rk)↓ then x+ z ≺w y + z;

3. If z , w ∈ (Rk)↓, x ≺ z and y ≺ w then x+y ≺ z+w. Moreover, if x(·), z(·) : [0, 1] → Rk

are continuous functions such that x(t) ≺w z(t) = (z(t))↓ for t ∈ [0, 1], then

∫ 1

0

x(t) dt ≺w

∫ 1

0

z(t) dt .

If we assume further that x , y , z ∈ Rk
≥0 then,

4. x↓ y↑ ≺w x y ≺w x↓ y↓;

5. If x ≺w y and y, z ∈ (Rk
≥0)

↓ then x z ≺w y z. �
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Proof. A proof of all these facts can be found in [2] with the exception of the second assertion
in item 3, that we now prove. Indeed, for n ∈ N consider the regular partition {t0 = 0 <
t1 < . . . < tn = 1} of [0, 1] so that tj =

j
n
for j ∈ {0} ∪ In and ∆j = tj − tj−1 =

1
n
= ∆n, for

j ∈ In. By the first part of item 3. we have that, for n ∈ N,

n
∑

j=1

x(tj)∆n ≺w

n
∑

j=1

z(tj)∆n .

Since x(·), z(·) are continuous functions, we have that

∫ 1

0

x(t) dt = lim
n

n
∑

j=1

x(tj)∆n ≺w lim
n

n
∑

j=1

z(tj)∆n =

∫ 1

0

z(t) dt ,

where we have used the following fact: if (un)n∈N and (vn)n∈N ∈ Rd are sequences that
converge to u and v ∈ Rd respectively, and such that un ≺w vn for n ∈ N, then u ≺w v.

Remark 5.4. Let x, y ∈ Rk. If x6 y then,

x↓6 y↓ and x ≺w y .

In particular, if A, P ∈ Md(C) are such that P is a projection then s(PAP )6 s(A) so that
s(PAP ) ≺w S(A). △

Proposition 5.5. Let 1 ≤ k < d and let E ∈ Mk,(d−k)(C). Then

Ê =

(

0 E
E∗ 0

)

∈ H(d) and λ(Ê) = (s(E),−s(E∗))↓ ∈ (Rd
≥0)

↓ . (65)

�

5.2 Spectral spread of self-adjoint matrices

In this section we describe a Weyl’s type inequality for the spectral spread. Recall that given
A ∈ H(d) then the spectral spread of A is

Spr+(A) =
(

Sprj(A)
)

j∈Ih
=

(

λj(A)− λ↑
j(A)

)

j∈Ih
∈ (Rh

+)
↓ .

where h = [d
2
] (integer part).

Proposition 5.6. Let A,B ∈ H(d). Then

Spr+(A +B) ≺ Spr+(A) + Spr+(B) .

Proof. By Lidskii’s additive inequality

λ(A+B) ≺ λ(A) + λ(B) =⇒ −λ(A +B) ≺ −λ(A)− λ(B) .

By item 3 of Lemma 5.3, since −λ↑(A)− λ↑(B) ∈ (Rd)↓, then

λ(A+B)− λ↑(A+B) ≺ λ(A) + λ(B)− λ↑(A)− λ↑(B)

= (λ(A)− λ↑(A)) + (λ(B)− λ↑(B)) ∈ (Rd)↓ .
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Let h = [d
2
] (integer part). If r ∈ Ih,

r
∑

i=1

Spr+i (A +B) =
r
∑

i=1

λi(A+B)− λ↑
i (A+B)

≤
r
∑

i=1

(λi(A)− λ↑
i (A)) + (λi(B)− λ↑

i (B))

=
r
∑

i=1

Spr+i (A) + Spr+i (B) .

(66)

�
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