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ABSTRACT: The selection of suitable control structures has
an important influence on the economic performance of process
systems in the presence of disturbances. Economics has been
incorporated in the control structure selection problem using
different formulations based on different criteria. The back-off
approach is based on the idea of minimizing the economic loss
that results from the need to back off from the active constraints
to avoid violating them in the presence of disturbances. On the
other hand, self-optimizing control schemes aim at selecting
controlled variables and constant setpoint values, such that the
economic loss with respect to optimal operation is minimized in
the presence of disturbances. This paper presents a
comprehensive study of different formulations of the back-off
approach that pays attention to steady-state feasibility in the presence of disturbances. We argue that the back-off approach that
selects controlled variables and optimal setpoint values by minimizing the average cost in the presence of disturbances is a global
self-optimizing control approach. The performance of the different formulations is compared by means of three different case
studies.

1. INTRODUCTION

Control structure (CS) selection involves the selection of
controlled variables (CVs), manipulated variables (MVs), the
control policy (decentralized or centralized), the controller
technology (classical or advanced), the pairing between the CVs
and the MVs in the case of a decentralized controller, and the
tuning of the controllers. Historically, the design of a plantwide
control system has been based on heuristics, mathematical
understanding, and process knowledge.1−3

This paper considers the problem of control structure
selection based on economics in the presence of disturbances
and constraints. This problem has been studied by many
researchers in the last 35 years using different criteria for
incorporating economics in the control structure selection
problem or for combining economic objectives with other
objectives such as stability and controllability and using different
simplifications and approximations to formulate the control
structure selection problem. There is also a vast literature
wherein the control structure selection problem has been
integrated with the design problem.4−6 Because the dynamic
performance of a process strongly depends on its design, and due
to conflicts between economy and controllability of chemical
processes, there are strong incentives for integrating plant design
and control structure decisions.6 Two strategies for control
structure selection based on economics that have been studied
independently by different researchers are the back-off approach
and self-optimizing control.

1.1. Back-Off Approach.The optimal operating point of an
industrial plant is often located at the intersection of the active
constraints. However, in the presence of disturbances it is
necessary to back off from the constraint boundaries to avoid
constraint violations. The size of the back-offs depends on the
variability of the constrained variables for the closed-loop
controlled system. Many back-off approaches found in the
literature have been formulated for the integration of process
design and control. By fixing the variables that define the design
and topology of the open-loop plant, these formulations reduce
to a control structure selection problem. The back-off approach
for process control structure selection is based on the idea of
selecting the control structure that minimizes the economic cost
associated with the required constraint back-offs. A list of back-
off approaches found in the literature is provided in Table 1.
Several classifications are possible for back-off approaches:

• Steady-State Economics vs Dynamic Economics: A
general framework consists in formulating the control
structure selection problem as a mixed-integer dynamic
optimization (MIDO) problem, wherein the dynamic
economics of the controlled plant are optimized for a

Special Issue: Dominique Bonvin Festschrift

Received: December 19, 2018
Revised: March 15, 2019
Accepted: March 21, 2019
Published: March 21, 2019

Article

pubs.acs.org/IECRCite This: Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.iecr.8b06296
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

C
O

N
IC

E
T

 o
n 

A
pr

il 
22

, 2
01

9 
at

 1
3:

14
:4

1 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/IECR
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.8b06296
http://dx.doi.org/10.1021/acs.iecr.8b06296


given time period23−25 (see also Yuan et al.5 and
references therein). In these approaches, the disturbance
dynamics are specified a priori. However, because
continuously operating plants are typically designed to
operate at steady-state conditions, many back-off
approaches evaluate the economics of operation at steady
state.7−22

• Nominal Cost vs Average Cost: The evaluation of
economic performance has been incorporated using
different criteria. Several back-off approaches proceed
by minimizing the nominal cost.7−19 The cost is evaluated
only for the nominal values of the disturbances, while the
variations of the disturbances with respect to their
nominal values are used to evaluate the back-offs. Another
criterion is to minimize the expected cost, which can be
approximated as a weighted average over a specified (or
sampled) set of disturbance scenarios.20−25

• Steady-State Back-Offs vs Dynamic Back-Offs: Steady-
state back-off approaches are only concerned with
avoiding constraint violations at steady state. The back-
offs are determined by computing optimal setpoint values
such that steady-state feasibility is guaranteed for all
disturbance scenarios.18,20,21 These approaches use a
steady-state model of the process and do not require
modeling the controller or defining the controller
technology and tuning its parameters. The only
assumption is that the controllers have integral action,
i.e., the controlled variables match their setpoint values at
steady state. On the other hand, dynamic back-off
approaches pay attention to constraint violations during
transient operation (even if the economic cost might be
evaluated at steady state).8−17,19,22−25 These approaches
require modeling the dynamic behavior of the closed-loop
plant in the presence of disturbances. For each control
structure, the set of differential and algebraic equations of
the controllers need to be synthesized analytically. The

controller’s parameters may be either optimized or tuned
automatically using analytical rules. To avoid the
complexities posed by modeling the controllers, the
assumption of perfect control has often been
made.13−15,17,22 While this assumption might be useful
for selecting the control structure, it leads to dynamic
back-offs equal to zero for the controlled variables, which
may lead to constraint violations in practice. Hence, when
perfect control is assumed, the back-offs for the selected
control structure need to be reevaluated by means of
dynamic simulations after modeling the controllers.

• Back-Off Problem vs Control Structure Selection
Problem: The back-off problem is typically formulated
as a nonlinear programming (NLP) problem, which is
solved for a given (fixed) control structure.8−12 The
problem may consist of finding optimal setpoint values
that pay attention to constraint feasibility for a given set of
disturbance scenarios, or in directly computing the back-
offs with respect to the nominal optimal operation and
then evaluating the associated economic loss. Based on
the back-off approach, the control structure selection
problem incorporates binary variables that are used to
determine the optimal control structure.13−25 The
problem may be formulated as a MIDO or a mixed-
integer nonlinear programming (MINLP) problem.
Several simplifications and approximations have been
proposed for reducing the computational load of the
problem (for example, linearizing the steady-state and
dynamicmodel equations and approximating the problem
as a mixed-integer linear programming (MILP) prob-
lem13−15 and including the perfect control assump-
tion).13−15,17,22

1.2. Self-Optimizing Control. Self-optimizing control
(SOC) aims at selecting controlled variables and constant
setpoint values such that, in the presence of disturbances, the
closed-loop plant reaches a steady state operating point with an

Table 1. Representative Literature on the Back-off Approach

steady-state
economics

dynamic
economics

nominal
cost

average
cost

steady-state
back-off

dynamic
back-off

back-off
problem

CS selection
problem

Bahri et al.7 √ √ √ √
Bahri et al.8 √ √ √ √
Figueroa et al.9 √ √ √ √
Narraway et al.10 √ √ √ √
Loeblein and Perkins11 √ √ √ √
Soliman et al.12 √ √ √ √
Narraway and Perkins13 √ √ √ √
Heath et al.14 √ √ √ √
Psaltis et al.15 √ √ √ √
Zumoffen et al.16 √ √ √ √
Kookos and Perkins17 √ √ √ √
Kookos and Perkins18 √ √ √ √
Kookos and Perkins18 √ √ √ √
Kookos and Perkins19 √ √ √ √
Kookos20 √ √ √ √
Sharifzadeh and
Thornhill21

√ √ √ √

Sharifzadeh and
Thornhill22

√ √ √ √

Mohideen et al.23 √ √ √ √
Bansal et al.24 √ √ √ √
Sakizlis et al.25 √ √ √ √
Yuan et al.5 √ √ √ √
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acceptable economic loss.26−28 Most of the SOC approaches
found in the literature are local methods.28 Most local SOC
methods are based on the assumption that the set of active
constraints does not change with the disturbance values. With
this assumption, it is optimal (from a steady-state perspective) to
control the active input and output variables at their optimal
boundary values, which requires assigning a number of input
variables to control these active constraints. This permits us to
view the optimization problem as an unconstrained problem in
the reduced input space that is left after satisfying all the active
constraints. Local SOC methods aim at selecting additional
controlled variables such that these remaining inputs reach near-
optimal values at steady state when disturbances occur. A
particularity of most SOC approaches is that these additional
controlled variables are selected as linear combinations of the
output and input variables.
Based on the first-order variation of the necessary conditions

of optimality (NCO) for an unconstrained optimization
problem and a linearized model of the output variables,
Halvorsen et al.27 derived a local expression for the economic
loss as a function of the disturbance values and the measurement
error. This local loss expression was used to derive optimal linear
combinations of measurements that minimize the (local) worst-
case loss27 and the (local) average loss29 in the presence of
disturbances. Another local SOC method is the null space
method proposed by Alstad and Skogestad,30 which consists in
selecting as controlled variables linear combinations of measure-
ments that lie in the null space of the sensitivity matrix of the
optimal outputs with respect to the disturbances. Later on,
Alstad et al.31 showed that (in the absence of implementation
error) the null space method zeroes the local loss expression
derived by Halvorsen et al.27 The equivalence between the null
space method and gradient control has been established32 as
well as its equivalence with neighboring-extremal control.33 A
formulation of the null space method in the whole input space is
presented in Marchetti and Zumoffen34 for constrained
problems with active constraints. In local SOC methods,29−31,34

the setpoint values for the linear combinations of measurements
are selected as the values of these linear combinations evaluated
at the nominal optimum.
Because, in many practical applications, the set of active

constraints does change with the disturbance values, variants of
the local SOC methods have been proposed to handle changes
in the active set. For instance, Manum and Skogestad35 use a
parametric programming approach to determine the active set
regions and proposed the selection of the controlled variables by
applying the null spacemethod within each region. The values of
the controlled variables for each region are used to decide when
to switch regions. Instead of detecting the active set and
changing the control structure, Hu et al.36 proposed a local
approach for finding a single control structure that guarantees
feasibility for all disturbance values within pre-specified bounds.
The optimal linear combination control structure is obtained by
minimizing the average local loss subject to linearized
constraints.
Recently, Ye et al·37 proposed a global SOC approach that is

restricted to problems for which the set of active constraints is
invariant. Instead of relying on the local loss computed at the
nominal optimum only, a number of disturbance scenarios is
randomly sampled, and the optimization problem is solved for
each scenario. For each disturbance scenario, the corresponding
local loss expression is computed, and the optimal linear
combination of measurements, together with their correspond-

ing optimal setpoint values, are found by minimizing the average
loss. A variant of this approach, which also uses local information
for each disturbance scenario, was extended to constrained
problems with active set changes.38 Notice that the difference
between local and global SOC methods is that local SOC
methods rely on optimality information obtained at a single
optimal operating point, which corresponds to the nominal
disturbance values (the nominal optimum), whereas global SOC
methods rely on optimality information obtained for a
representative (e.g., sampled) set of disturbance scenarios. A
review of local and global SOC approaches can be found in
Jas̈chke et al.28

1.3. Contributions of ThisWork. The focus of this paper is
on steady-state back-off approaches. Hence, we are concerned
with avoiding constraint violations only at steady-state operation
in the presence of disturbances. We present a comparative study
analyzing the difference between minimizing the nominal cost
and the average cost. We notice that the steady-state back-off
approach and self-optimizing control share the same objectives,
and we argue that the back-off approach with average cost
minimization represents a global SOC problem. The contribu-
tions of this work are the following:

• By means of simple tutorial case studies, we present a
comparative study between the steady-state back-off
approach with nominal cost minimization and average
cost minimization.

• Because, for the purpose of control structure selection,
minimizing the average cost is equivalent to minimizing
the average loss, we argue that the steady-state back-off
problem with average cost minimization is a global SOC
approach. This is verified bymeans of a comparative study
concerning the operation of a CSTR reactor, where the
performance of the approach is compared to that of a local
SOC method, such as the null space method.

• We consider two different formulations of the steady-state
back-off problem with average cost minimization. The
first formulation consists in an MINLP that selects the
best classical control structure, while the second
formulation is an NLP that selects optimal linear
combinations of input and output variables as controlled
variables. Both formulations are global SOC approaches
that find optimal setpoint values for the controlled
variables and for the fixed inputs that are not used as
manipulated variables while guaranteeing constraint
satisfaction for a set of disturbance scenarios. The
MINLP formulation is very similar to the formulation
for control structure selection based on economics
proposed by Kookos.20

• We include in the MINLP formulation additional linear
constraints that are used to bound the elements of the
RGA matrix of the selected control structure. We show
that these additional constraints may help avoid obtaining
an unsuitable control structure.

• We present two alternative convex mixed integer
quadratic programming (MIQP) approximations of the
MINLP formulation. The first MIQP approximation is
local in the inputs and global in the disturbances, while the
secondMIQP is local in both the inputs and disturbances.

• In three case studies, we compare the performance
obtained by the best classical control structure with the
performance of an optimal linear combination control
structure. It is shown that by controlling appropriate
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linear combinations of input and output variables, it might
be possible to improve the economic performance of the
controlled plant at steady state. While in the SOC
literature, the selection of linear combination control
structures has been aimed at achieving near-optimal
conditions for the unconstrained degrees of freedom, in
our first case study, we show that they are also useful in
cases in which the optimum is completely determined by
the intersection of active constraints, and the set of active
constraints changes with the disturbance values.

• Based on our study, we provide a number of
recommendations for steady-state back-off approaches
and SOC.

The paper is organized as follows. Preliminary material is
presented in section 2, including the formulation of the
optimization problem, the steady-state back-off approach and
self-optimizing control. Two different steady-state back-off
formulations with average cost minimization are presented in
section 3: (i) an MINLP problem that selects the optimal
classical CS and (ii) an NLP problem that selects optimal linear
combinations of output and input variables as controlled
variables. Section 4 presents two alternative MIQP approx-
imations of the MINLP problem. The different CS selection
strategies are applied to three different case studies in section 5.
Finally, section 6 concludes the paper and presents a number of
recommendations.

2. PRELIMINARIES
2.1. Problem Formulation. The open-loop behavior of the

plant can be represented by the following system of differential
algebraic equations:

f x x w u d 0( , , , , )D ̇ = (1a)

f x w u d 0( , , , )A = (1b)

y F x w u d( , , , )= (1c)

where x nx∈ is the vector of state variables, w nw∈ is the
vector of algebraic variables, u nu∈ is the vector of input
(decision) variables, d nd∈ is the vector of uncertain
parameters and disturbances, fD is the vector of nx differential
equations, fA is the vector of nw algebraic equations, and y ny∈
is the vector of measured output variables.
Continuously operating plants are typically designed to

operate at steady-state conditions. The optimum steady-state
operating point is given by the solution of the following NLP
problem:

J x w u d

f 0 x w u d 0
f x w u d 0
y y F x w u d y
u u u

min ( , , , ) (2a)

s.t. ( , , , , ) (2b)
( , , , ) (2c)

( , , , ) (2d)
(2e)

x w u

D

A

, ,

L U

L U

=
=

≤ = ≤
≤ ≤

where J is the economic objective function (or cost) to be
minimized, yL and yU are the lower and upper bounds on the
output variables, while uL and uU are the lower and upper
bounds on the input variables.
Let us introduce the input−output mappings y(u,d) and

J(u,d), which correspond to the steady-state behavior of the
process. Note that the evaluation of these mappings requires

solving the system (2b and 2c) for x and w for given values of u
and d and then evaluating y from (1c) and J from (2a). By using
these mappings, Problem (2) can be written in a compact form
as follows:

J u d

y y u d y
u u u

min ( , ) (3a)

s.t. ( , ) (3b)
(3c)

u
L U

L U
≤ ≤
≤ ≤

Problem (3) is defined for a given value of the disturbance
vector d. We denote by u*(d) the optimal input of Problem (3)
as a function of the disturbance values. Note that the set of active
constraints may change for different values of d.
The nominal disturbance values, denoted as dn, represent the

best known or average values for each disturbance. In this paper,
we assume the disturbances belong to a disturbance set
containing all possible realizations of the disturbances. The set

is typically defined by considering box constraints of the form
d d d d:n L Ud= { ∈ ≤ ≤ }.

2.2. Steady-State Back-Off Approach with Nominal
Cost Minimization. The aim of the steady-state back-off
problem is to determine the control structure and the setpoint
values that minimize the cost for the nominal disturbance values
while guaranteeing steady-state feasibility for all possible
disturbances d ∈ . Let z denote the vector of binary variables
that determines the choice of the control structure. For a given z,
it is possible to construct the vector r z u y( , , ) nu∈ , which
includes the selected controlled output variables and the fixed
input variables. The input variables that are not included in
r(z,u,y) are the selected manipulated variables. Likewise, we
introduce the vector r nsp u∈ , which includes the setpoint
values for the controlled output variables and the target values
for the fixed inputs. This way, the effect of the controller on the
steady-state behavior of the controlled plant can be accounted
for by introducing the following nu equations:

r z u y u d r( , , ( , )) sp= (4)

Here, we assume that the controller is designed with integral
action and that the manipulated variables u reached by the
controlled plant at steady state can be computed by solving (4)
for d and rsp given. The closed-loop steady-state back-off
problem can now be formulated as follows:

J u d

r z u y u d r d

r z u y u d r d

y y u d y d

u u u

min ( , )

s.t. ( , , ( , )) ,

( , , ( , )) ,

( , ) ,

.

,
n n

n n n n

z r

sp

sp

L U

L U

sp

= ∈

= ∀ ∈

≤ ≤ ∀ ∈

≤ ≤

(5)

This formulation corresponds to a mixed integer nonlinear
semi-infinite optimization problem. Feasible values of the
decision variables z and rsp require that for each disturbance
d ∈ , there is an input u, such that the constraints are satisfied.
Note that Problem (5) is the steady-state version of the closed-
loop dynamic back-off problem presented in Bahri et al.8

2.3. Self-Optimizing Control. The self-optimizing control
(SOC) approaches proposed in the literature are based on the
idea of selecting the controlled variables so as to minimize the
economic loss of the controlled plant with respect to optimal
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plant operation in the presence of disturbances.26,28 This loss is
given by:

L J Jz d u z d d u d d( , ) ( ( , ), ) ( ( ), )*= − (6)

where u(z,d) is the input reached at steady state by the
controlled plant using the control structure z, and u*(d) is the
optimal input obtained by solving Problem (3).
Most SOC approaches select as controlled variables linear

combinations of the input and output variables. In this case, the
vector z that determines the choice of the control structure
includes the coefficients of the linear combinations, and the
controlled variables r nu∈ are given by:

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
r y u d

u
( , )T= (7)

where  n n n( )u y u∈ + × is the linear combination matrix. In this
paper, we will distinguish between classical control structures
and linear combination control structures.
Definition 1 (classical control structure): A classical control

structure is a square control structure that does not include
linear combinations. In classical control structures, the vector z
includes binary variables only, and the columns of matrix are
unit vectors with exactly one element equal to one and the rest of
elements equal to zero, while the rows in are either unit or
zero vectors.
Definition 2 (linear combination control structure): A

linear combination control structure is a (square) control
structure that selects as controlled variable at least one linear
combination of output (and input) variables or fixes at least one
linear combination of input variables. In these control structures,
at least one column of matrix has more than one element
different from zero.
2.3.1. Null Space Method.The null space method30 is a good

method for explaining why linear combinations of output and
input variables are selected as controlled variables in SOC
approaches. For this purpose, the consideration of an uncon-
strained problem will suffice.
The NCO of the unconstrained problem minu J(u,d) is that

the gradient be equal to zero at a solution point; that is,

u d( , ) 0J
u

=∂
∂

. The first-order variation of this condition

evaluated at the nominal optimum reads:

J J
u

u
u d

d 0
n n

2

2

2

δ δ∂
∂

+
∂

∂ ∂
= (8)

Assuming that u*(dn) is a strict local minimum, the Hessian is
non-singular, and we can write:

i
k
jjjjj

y
{
zzzzz

J J
u d K d K

u u d
( ) , with

n n

2

2

1 2

δ δ* = = −
∂
∂

∂
∂ ∂

−

(9)

In turn, the first-order variation of the output variables is given
by:

y
y
u

u
y
d

d
n n

δ δ δ=
∂
∂

+
∂
∂ (10)

Using Problems (9) and (10), we can write:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

y

u
S d S

y
u

K
y
d

K

with n n

δ

δ
δ= =

∂
∂

+
∂
∂ (11)

Let us assume that S n n n( )y u d∈ + × is full column rank, and let

the columns in  n n n( )y u u∈ + × be a set of nu orthonormal
vectors that lie in the left null space of S. Hence, S 0T = , and
from (11), we have:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
r

y

u
S d 0T Tδ

δ

δ
δ= = = (12)

The null space method consists of selecting the combination
matrix = and controlling δr = 0 by means of feedback
controllers.30 Notice that the dimension of the null space of S
should be greater than or equal to nu, which requires ny + nu− nd
≥ nu. This last inequality reduces to ny≥ nd. That is, the number
of measured output variables should be greater than or equal to
the number of disturbances.34 The null space method enforces
local optimality. Indeed, using the first-order variation given by
(10), it can be shown (under mild conditions) that enforcing δr
= 0 results in δu = Kδd at steady state.31

2.3.2. Average Loss Methods. The so-called average loss
methods29,36−38 aim at selecting the controlled variables that
minimize the expected value (or the average value) of the
economic loss for a given disturbance set . The expected loss is
given by:

L z u z d d u d d( ) E J( ( , ), ) J( ( ), )
d

exp *= { − }
∈ (13)

3. STEADY-STATE BACK-OFF APPROACH WITH
AVERAGE COST MINIMIZATION

In this section, we consider two alternative steady-state back-off
problems based on the minimization of the average cost. The
first problem consists in anMINLP formulation that determines
the best classical control structure, while the second problem
computes an optimal linear combination control structure by
solving an NLP.
Remark 1 (expected loss versus expected cost): Let us

consider the expected loss (13) used in the SOC. We have:

u z d d u d d

u z d d u d d

E J( ( , ), ) J( ( ), )

E J( ( , ), ) E J( ( ), )
d

d d

*

*

{ − }

= { } − { }
∈

∈ ∈

(14)

Since the second expectation in the right side is a constant that
does not depend on the control structure, it follows that, for the
purpose of control structure selection, minimizing the expected
loss is equivalent to minimizing the expected cost.

3.1. Selection of the Best Classical Control Structure.
The classical control structure selection problem can be written
(without simplifications or approximations) as follows:

J u d

r z u y u d r z d

y y u d y d

u u u

min E ( , )

s.t. ( , , ( , )) ( ),

( , ) ,

z r d,

sp

L U

L U

sp
{ }

= ∀ ∈

≤ ≤ ∀ ∈

≤ ≤

∈

(15)
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Note that the difference between this problem and the closed-
loop steady-state back-off Problem (5) is that the expected cost
is minimized instead of minimizing the cost for the nominal
disturbance values.
As will be illustrated by means of the case studies in section 5,

in steady-state back-off approaches minimizing the nominal cost
is meaningful and beneficial if the optimal operating point is
located at the intersection of the active constraints. However, if
the solution is not completely determined by the active
constraints, minimizing the nominal cost is of little value for
selecting controlled variables for the unconstrained degrees of
freedom that are left after controlling all the active constraints.
However, minimizing the average cost permits us to select these
additional controlled variables with self-optimizing properties.
In subsections 1.2 and 2.3, we reviewed self-optimizing

control strategies. These methods focus on selecting controlled
variables precisely for the remaining degrees of freedom that are
left after controlling the active constraints. Many of these
methods propose to minimize the average optimality loss in the
presence of disturbances. Remark 1 implies that minimizing the
average cost is similar to minimizing the average loss, which
means that the back-off Problem (15) is also a self-optimizing
control problem. Indeed, if in Problem (15) there are no active
constraints, the problem still selects the control structure that
minimizes the average cost in the presence of disturbances,
which relates it to average-loss self-optimizing control methods.
3.1.1. Formulation as an MINLP. The vector of binary

variables z that determines the control structure, and the vector
of setpoint values rsp for the output and input variables, are
parametrized as follows:
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The binary components with values equal to one in vectors zO

and zI correspond to the selected controlled output variables and
the fixed input variables, respectively. The remaining compo-
nents in zI with values equal to zero correspond to the selected
manipulated variables.
Problem (15) is approximated by considering a finite number

of disturbance values (scenarios). Let ̂ be a representative
discretization of dimension N of the disturbance set ; that is,

d d, ..., N1
̂ = { }. For convenience, we define the following

index sets:

n n

N

1, 2, ..., , 1, 2, ..., ,

1, 2, ...,

u y= { } = { }

= { }

The classical control structure selection problem is formu-
lated as an MINLP as follows:

N
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=
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which is similar to the formulation proposed by Kookos.20 (The
main difference is that Kookos20 considers the presence of
measured and unmeasured disturbances, and the setpoints are
computed as optimal polinomial functions of the measured
disturbances. In Problem (18), the setpoints are constant, which
can be seen as a special case of the formulation by Kookos.20)
The expectation in the objective function is replaced by a
weighted summation over the specified set of disturbance
scenarios, where pk are the weights for each disturbance scenario.
If the disturbance realizations are uniformly distributed in ,
and ̂ is a uniform discretization of , then we take pk N

1= for

k = 1, ..., N. Equation (18b) sets the total number of fixed
variables equal to the number of inputs. The number of binary
variables equal to one in zO defines the dimension of the control
system (number of control loops). Note that the control
problem is always square; that is, the number of manipulated
variables is equal to the number of controlled output variables.
By means of (18c) and (18d), the setpoints for the selected
controlled output variables and fixed inputs are constrained to
be within their boundary values, and if the variables are not
controlled or fixed, their setpoints are set arbitrarily to zero. The
constraints (18e) and (18f) force the controlled outputs and
fixed inputs to match their setpoint values, while the
uncontrolled outputs and manipulated inputs respect their
respective boundary values for all disturbance scenariosdk ∈ ̂ .
Remark 2. The steady-state back-off problem with nominal

cost minimization (5) can be formulated as an MINLP in a
similar way by replacing the average cost in (18a) by the nominal
cost J(un,dn). A similar formulation can be found in Kookos and
Perkins.18

3.1.2. Additional Constraints. 3.1.2.1. Fixed Number of
Control Loops. Problem (18) can be solved for a fixed number
of control loops nq ∈ +, 1 ≤ q ≤ min{ny,nu}, by adding the
following constraint:

n
z n

i

y

i q
1

O∑ =
= (19)

3.1.2.2. Input−Output Pairing Based on the RGAMatrix. In
the context of control structure design, Braccia et al.39 proposed
to bound the relative gains of the relative gain array (RGA) to
ensure that for the selected control structure there exists an
input-output pairing that results in an acceptable degree of
interaction when decentralized control is implemented.
Let G n ny u∈ × be the full input-output gain matrix of the

open-loop system and G z( )s
n nq q∈ × be the square submatrix
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determined by the selected controlled output variables (yi for

which zi
O = 1) and the manipulated variables (uj for which zj

I =

0). The approach aims to evaluate the following constraints:39

G Gz z z( ) ( ) ( )s s
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1
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where Λ(z) is the relative gain array corresponding to control

structure z; Zp n nq q∈ × is a matrix of binary decision variables

that determines the input−output pairing; the matrix

p
n nq qΛ ∈ × contains the elements of Λ selected by Zp and

zeros elsewhere; λp,i,j are the elements of Λp, and zi,j
p are the

elements of Zp. In (20c), the lower and upper bounds on the

relative gains, δL and δU, are design parameters that allow us to

enforce a desired degree of interaction in a decentralized control

structure.
Since Problem (18) uses a nonlinear model of the system, we

propose to apply the constraints (20) by linearizing the model at

the nominal optimum. That is, we selectG
n

y
u

= ∂
∂

as the steady-

state gain matrix computed at the nominal optimum u*(dn). In

general, this does not guarantee that the bounds (20c) will be

satisfied for disturbance values different from the nominal ones

or when we operate far from the nominal optimum due to the

presence of constraint back-offs. In practice, however, evaluating

these bounds at the nominal optimum already permits us to

discard some inappropriate control structures.
Braccia et al.39 proposed a reformulation of (20) as a set of

linear constraints only. Next, we adapt this reformulation so that

the resulting constraints conform to Problem (18). The

reformulation requires introducing the following variables and

parameters:
Continuous variables: inverse closed-loop gain matrix

G n nu ỹ ∈ × with elements g̃j,i; auxiliary matrix B n ny ỹ ∈ × with

elements b̃l,i; auxiliary matrix r n ny uΛ ∈ × with elements λi,j
r .

Binary variables: matrix Z n nIO y u∈ × with elements zi,j
IO.

Parameters: open-loop gain matrix G n ny u∈ × with elements

gi,j; big M values; lower RGA bound δL and upper bound δU.
These additional variables and parameters are included in

Problem (18) together with the following linear constraints:
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As mentioned, Gs(z) is the (square) submatrix of G obtained
for a given control structure z. Let G̃s(z) be the corresponding
submatrix of G̃. Equations (21a) and (21b) set to zero all of the
elements of matrix G̃ except for those corresponding to the
selected submatrix G̃s(z). Consider the square matrix B = GG̃
and let Bs(z) be the submatrix of B corresponding to the selected
controlled output variables zO. Equations (21c) and (21d) are
used to set Gs(z)G̃s(z) = Bs(z) = I. This approach allows us to
obtain the inverse matrix G̃s(z) for any control structure z by
means of linear constraints. Bymeans of eq (21d), we haveGG̃ =
B = B̃ + diag(zO). Equations (21e) and (21f) are used to build
the input-output pairing matrix ZIO. Note that matrix Zp(z) in
(20) is the square submatrix of ZIO corresponding to the control
structure z. In eq (21g), the elements of the RGA matrix are
computed and allocated in the elements λi,j

r of matrixΛr based on
the pairing selection ZIO. These elements are restricted to satisfy
the defined bounds in (21h). Note that Λp in (20) is the square
submatrix ofΛr corresponding to the control structure z and the
pairing ZIO.
A similar formulation for computing the RGA matrix by

means of linear equations was proposed by Kookos and
Perkins.40 A difference with the work of Kookos and Perkins40

is that they determine the input−output pairing and the RGA
matrix for a given set of controlled variables, while our
formulation determines the input−output pairing and the
RGA matrix for any allowed set of controlled variables. The
following example illustrates the implementation of constraints
(21) for a given control structure.
Example 1 (Bounds on RGA Matrix): Let us consider a

system with four inputs (nu = 4) and six measured outputs (ny =
6) and consider the control structure defined by zO = [0 1 0 1 0
0] and zI = [0 1 1 0]. For this control structure of size nq = 2, the
CVs are y2 and y4, and the MVs are u1 and u4. By means of (21a)
and (21b), the matrix G̃ takes the form:
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The matrix multiplication GG̃ = B gives
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with bi,j = gi,1g̃1,j + gi,4g̃4,j. This matrix captures the information on
the selected subprocess multiplication in the elements b2,2, b2,4,
b4,2, and b4,4. To see this, consider the submatrices Gs, G̃s, and Bs
for the selected CVs and MVs:
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Thematrix multiplicationGsG̃s is performed in (21d) with B =
B̃ + diag(zO). The restrictions on B̃ in (21c) imply that:from
where we can see that Bs = I, and thus, G̃s is the inverse of Gs.

The pairing determined by the binary matrix zIO has two
alternatives based on the CS defined by zO and zI:

These two alternatives are generated via eqs (21e) and (21f),
and it means that for Za

IO, for example, the loops proposed are y2
− u1 and y4 − u4. The resulting RGA elements (λi,j

r = gi,jg̃j,i) are
stored in the auxiliary matrix Λr via (21g), and their values are
restricted to satisfy the predefined bounds in (21h). For
example, for the pairing Za

IO, we get:

3.1.3. Solution Strategy. The MINLP Problem (18) can be
solved in GAMS using the available solvers such as BARON or
others. However, the formulation might be difficult to solve for
complex process models. The major limitation of Problem (18)
comes from the nonlinearities and nonconvexities in the model

equations used to compute the mappings J(u,d) and yi(u,d), i =
1, ...,ny. Additionally, the problem becomes cumbersome as the
number of discretization scenarios grows.
Once the optimal CS z* is determined, the next step is to

select the controller interaction and technology, and the
resulting plant-wide control system needs to be validated by
means of stability, controllability and robustness tests, possibly
requiring dynamic simulations. If the resulting CS z* has been
validated, it can be applied to the plant. Conversely, if the
optimal CS is found to be unsuitable, an integer cut is introduced
and Problem (18) is solved again until an appropriate CS is
obtained.
In many cases, the use of a thick disturbance discretization in

the MINLP problem is sufficient to reveal the correct optimal
control structure. However, due to the approximation, the
setpoints obtained might not be suitable. To avoid the risk of
constraint violations for some disturbance scenarios, the
setpoints should be recomputed by fixing the control structure
z in Problem (18) to the optimal structure obtained and then
solving Problem (18) as an NLP using a fine discretization of the
disturbance set .

3.2. Selection of a Linear Combination Control
Structure. The problem of selecting linear combinations of
output and input variables as controlled variables can be
formulated as follows:
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where r nu∈ are the controlled variables,  n n n( )u y u∈ + × is
the linear combination matrix, and r nsp u∈ are the setpoint
values.

3.2.1. Formulation as an NLP. Upon discretization of the
disturbance set , Problem (23) can be approximated as an
NLP:
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The selection of a full matrix will in general lead to infinite
solutions. This can be avoided by imposing a predefined
structure and parametrization of matrix (examples of this will
be seen in Subsections 5.1 and 5.2).
Remark 3: In the context of SOC, Yelchuru and Skogestad41

formulated a mixed-integer optimization problem that finds the
best subset of measurements for the linear combinations. Note
that a similar approach could be implemented in Problem (24),
which would then become an MINLP.

3.2.2. Additional Constraints. Optionally, one can add to
Problem (24) the following constraint:
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where G n ny u∈ × is the input−output gain matrix of the open-
loop system, evaluated at the nominal optimum, and T n nu u∈ ×

is the gain matrix imposed on the controlled process. In the SOC
literature,T has been selected as the identity matrix30,36 or as the
square root of the cost Hessian37,41 (to simplify a particular local
SOC formulation). Tmay also be selected as any permutation of
the identity matrix or in general as any well-conditioned matrix.
The use of constraint (25) will be illustrated in section 5.3.
Notice that the RGA matrix for a linear combination control

structure is given by T⊗[T−1]T. Hence, the choice of an
appropriate pairing between the manipulated variables and the
controlled variables is determined by the choice of matrix T.
The inclusion of the constraint (25) is advantageous for three

reasons: (i) it restricts the search space considerably; (ii) it
enforces invertibility of the controlled process (at least at
nominal conditions), which is linked with steady-state
controllability; and (iii) it does not affect the optimal cost of
Problem (24). This last assertion can be proved as follows. Let
us assume that 1 with setpoints r1

sp is an optimal solution to

Problem (24). Then, for any nonsingular matrix C, CT T
1=

with setpoints rsp =Cr1
sp is also an optimal solution with the same

optimal cost. The gain matrix of the controlled process
B G I;T

1= [ ] should be invertible for steady-state controll-
ability. Hence, if T is also non-singular, one can select the non-
singular matrix C = T(B)−1, such that CB = T.

4. APPROXIMATION AS AN MIQP
One of the major limitations of the MINLP Problem (18) is the
difficulty to find the global optimum for nonconvex problems.
The source of nonlinearities and nonconvexities in this problem
comes from the functions J(u,d) and yi(u,d), i = 1, ...,ny. In this
section, we circumvent this difficulty by approximating Problem
(18) as a convex MIQP problem. Two alternative MIQP
approximations will be proposed next. The first one, which we
denote lugd-MIQP, is local in the inputs u and global in the
disturbances d, whereas the second one, denoted luld-MIQP, is
local in both the inputs and the disturbances.
4.1. Global Disturbance MIQP. For a given disturbance

dk ∈ ̂ , we consider the QP approximation used in successive
quadratic programming (SQP) methods for solving NLP
problems.42,43 The QP approximation of the NLP Problem
(3) at the optimal point u*(dk) is given by:
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∂ are evaluated at the optimal point u*(dk), yi,k

= yi(u*(dk),dk), and Hk is a positive definite approximation of

the Hessian of the Lagrangian function L
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2
∂
∂

, evaluated at

u*(dk). In this formulation, the output constraints are linearized

at u*(dk), and the curvature of the constraints is taken into
account by using the Hessian of the Lagrangian function in the
quadratic term of the objective function. Since theHessian of the
Lagrangian can be indefinite at a Karush−Kuhn−Tucker (KKT)
point, we replace it by a positive semi-definite approximation
matrix Hk to have a convex QP problem.
Several approaches are available for approximating the

Lagrangian Hessian. The approach used in this work is based

on the eigenvalue decomposition of the symmetric matrix L

ku
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∂
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with a diagonal matrix Dk and an orthonormal matrix Uk. Let Dk
+

be the matrix obtained from Dk by replacing the negative entries
of Dk with zeros. The Hessian approximation Hk is obtained as:

H U D Uk k k k
T= +

Based on the convex QP approximation (26), we use the
following approximations for the functions J(u,d) and yi(u,d):
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Note that the zeroth-order term in the cost function in (27a)
has been omitted because it does not affect the optimal solution.
Using these function approximations, the following constraints
should be added to Problem (18):

u u d u( )n n nδ*= + (28a)

k Nu u d u( ) , 1 ,...,k k kδ*= + = (28b)

This way, the lugd-MIQP approximation of Problem (18) is
obtained by implementing the following steps:

(i) For all disturbance scenarios dk, k = 1, ...,N, solve the NLP
Problem (3) to obtain the corresponding optimal inputs
u*(dk), k = 1, ...,N.

(ii) Evaluate yi,k and
y

ku
i∂

∂ for i = 1, ..., ny,
J

ku
∂
∂ , and the Hessian

approximation Hk, at the optimal inputs u*(dk), for all
disturbance scenarios dk, k = 1, ...,N.

(iii) Replace J(uk,dk) and yi(uk,dk) in Problem (18) by the
approximations (27a) and (27b), respectively. Add the
constraints for Problem (28) to Problem (18).

4.2. Local Disturbance MIQP. To avoid the computational
burden of having to solve the NLP Problem (3) for all
disturbance scenarios, and having to evaluate the required
gradient and Hessian information at all the solution points, we
propose to further simplify theMIQP approximation of Problem
(18) by considering the following approximation of the NLP
Problem (3):
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Problem (3), u*(dn), andHn is a positive definite approximation

of the Hessian of the Lagrangian function L

nu

2

2
∂
∂

, evaluated at

u*(dn). Note that Problem (29) is quadratic and convex in
terms of the inputs u (i.e., for δd fixed) and represents a local
approximation of Problem (3) in terms of both the inputs and
the disturbances.
Based on Problem (29), J(̃uk,dk) and ỹi(uk,dk) are given by:
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The luld-MIQP approximation of Problem (18) is obtained
by implementing the following steps:

(i) Solve the NLP Problem (3) for the nominal disturbance
dn to obtain the nominal optimum u*(dn).

(ii) Evaluate the partial derivatives J
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∂
, for i = 1, ...,ny, and the Hessian approximation

Hn, at u*(dn).
(iii) Replace J(uk,dk) and yi(uk,dk) in Problem (18) by the

approximations (30a) and (30b), respectively. Add the
constraints (28) to Problem (18).

4.3. Quality of the Approximation and Implementa-
tion Aspects.TheMIQP approximations presented in sections
4.1 and 4.2 may not lead to the optimal control structure of the
originalMINLP formulation Problem (18). However, in cases in
which Problem (18) becomes computationally intractable, the
MIQP approximations are much easier to solve and permit us to
obtain a suboptimal solution. The quality of the approximation
will depend on the particular application at hand, but in general,
one can expect that the approximations will be locally good, for
small disturbance variations.
In cases in which the set of active constraints changes with the

disturbance values, and the constraints that become active or
inactive are nonlinear, the local disturbance MIQP approx-

imation may be inadequate because, in this local approach, the
Hessian of the Lagrangian function computed at the nominal
optimum is used for all disturbance scenarios. If, for any given
disturbance scenario, the active set changes with respect to the
active set at the nominal optimum, the Hessian of the
Lagrangian may change significantly with respect to the nominal
Hessian (this is not the case if the constraints that become active
or inactive are input bounds or linear constraints because their
Hessian is equal to zero). Hence, in the presence of changes in
the active set we recommend to use the global disturbance
MIQP approximation.

5. CASE STUDIES
5.1. Linear System. We consider a linear system similar to

the one proposed in Marchetti et al.44 The steady-state behavior
of the plant is described by the following system:

A Dy u d y u d( , ) s s s= − −
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which consists of two input variables, u = [u1, u2]
T, three

measured outputs, y = [y1, y2, y3]
T, and three unmeasured

disturbances, d = [d1, d2, d3]
T. The objective is to maximize the

linear function J(u) = 6.85u1 + 2.95u2 subject to constraints on
the output variables. Two optimization problems will be
considered. Problem A includes constraints on the outputs y1
and y2, while Problem B includes constraints on the three
outputs:

u u

y d
y d

u u

u u

u u

Problem A Problem B
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In this example, each disturbance affects independently each
output variable. The nominal disturbance values are zero; that is,
dn = 0. The disturbances are assumed to be uniformly distributed
in the following ranges:−1≤ d1≤ 1,−1≤ d2≤ 1, and−0.1≤ d3
≤ 0.1. The contour maps for Problems A and B are shown in
Figure 1. The colored area corresponds to the feasible region for
the nominal disturbance values for both problems. Point a is the
nominal optimum for both problems; that is, a = u*(dn). Note
that the constraints on y1 and y2 are active at the nominal
optimum. Point b is the solution to the open-loop steady-state
back-off problem. This point corresponds to the optimum for
the worst-case disturbance realization d = [1,−1]T.
For this linear system, Problem (18) and its nominal cost

counterpart become MILPs, and as such, we solve them in
GAMS using the solver CPLEX. Each solution is obtained in less
than a second of CPU time. The N disturbance scenarios are
obtained via a grid discretization of the disturbance set with d1,k
∈ 1: 0.5: 1{− }, d 2 , k ∈ 1: 0.5: 1{− }, a n d d 3 , k ∈

0.1: 0.05: 0.1{− }. In fact, for a linear system, it would be
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sufficient to evaluate the constraints at the extreme values of the
disturbances to guarantee feasibility. Because the disturbance
ranges are centered at the nominal values and the problem is
linear, the back-off problem with average cost minimization
gives the same results as the back-off problem with nominal cost
minimization in this example.
5.1.1. Control Structure Selection for Problem A. In the case

of Problem A, the constraints on y1 and y2 are both active for the
nominal disturbance values and for all possible realizations of the
disturbances d1 and d2. Hence, in this problem, the optimal
operating point is at the intersection of the active constraints,
and the set of active constraints does not change with the
disturbance values. The optimal control structure obtained for
both, the steady-state back-off problems with nominal and
average cost minimization, is to control both active constraints
(the outputs y1 and y2) with zero back-offs, i.e., with setpoints y1

sp

= y2
sp = 0.
5.1.2. Control Structure Selection for Problem B. Problem B

includes constraints on the three output variables, and it
becomes clear from Figure 1 that there are many disturbance
scenarios for which the constraint on y3 becomes active, while
the constraint on y1 becomes inactive. Hence, in this problem,
the optimal operating point is at the intersection of the active
constraints, but the set of active constraints changes depending
on the disturbance values. The optimal control structure
obtained for both, the steady-state back-off problems with
nominal and average cost minimization, which we denote CS1,
is to control the output y2 with zero back-off (y2

sp = 0), and the
output y1 with a significant back-off of 0.427 (y1

sp =−0.427). The
nominal operating point and the operating region for this
control structure are shown in Figure 2. Note that the back-off
on y1 is selected as the smallest back-off such that the constraint
on y3 never becomes violated by controlling y1 and y2.
In this low-dimension problem, there are only ten possible

classical control structures, which are ordered in Table 2
according to their optimal value. The control structure CS5

corresponds to the open-loop solution. Note that the control
structures CS6 to CS9 perform worse than the open-loop
solution, while CS10 is infeasible. The optimal setpoints
obtained via optimization for each control structure are given
in Table 3.
Because many dynamic back-off approaches fix the input

variables that are not selected as manipulated variables at their
nominal optimal values,14,15,17,22 it is interesting to see the effect
this has from the steady-state perspective. Let us consider, for
instance, the control structure CS3 from Table 2, for which the

Figure 1. Contour maps for Problems A and B. Colored area: feasible
region for the nominal disturbances. Thick solid lines: boundaries of the
output constraints for the nominal disturbances. Dashed lines:
boundaries of the output constraints for the extreme values of the
disturbances. Dotted lines: contours of the objective function. Point a:
nominal optimum. Point b: solution to the open-loop steady-state back-
off problem. The arrows indicate the constraint movements produced
by changing the values of disturbances di, i = 1, 2, 3 from 0 to 1.

Figure 2. Contour maps for Problem B. Blue area: operating region for
the optimal control structure CS1. Point b: solution to the open-loop
steady-state back-off problem. Point c: nominal operating point for the
control structure CS1.

Table 2. CSs for the Linear System

zO zI

CS y1 y2 y3 u1 u2 Jn (N = 125) Jav (N = 125)

CS1 1 1 0 0 0 4.750 4.750
CS2 0 1 1 0 0 4.542 4.542
CS3 0 1 0 0 1 4.470 4.470
CS4 0 1 0 1 0 4.470 4.470
CS5 0 0 0 1 1 3.584 3.584
CS6 0 0 1 0 1 3.421 3.421
CS7 1 0 0 0 1 2.787 2.787
CS8 0 0 1 1 0 2.497 2.497
CS9 1 0 0 1 0 1.888 1.888
CS10 1 0 1 0 0 infeasible infeasible

Table 3. Calculated Setpoints for the Linear System

rsp

CS y1 y2 y3 u1 u2

CS1 −0.427 0.000 − − −
CS2 − 0.000 −0.589 − −
CS3 − 0.000 − − 0.610
CS4 − 0.000 − 0.397 −
CS5 − − − 0.389 0.310
CS6 − − −0.589 − 0.310
CS7 0.000 − − − 0.039
CS8 − − −0.805 0.231 −
CS9 −0.461 − − 0.159 −
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operating line and the nominal point s are shown in Figure 3. If,
instead of fixing u2 at the optimal value of 0.61, we fix it at the

nominal value of 0.325, a considerable back-off of size 0.5705 is
required for the controlled variable y2 to maintain feasibility for
all disturbance scenarios. Hence, the nominal point s moves to
point s′ in Figure 3, which is highly suboptimal. Even if this CS
would be feasible in practice, note that the input u1 becomes
saturated for many disturbance values, which means that we lose
control on y2. Because input saturation effects are not
contemplated in Problem (18), this CS will be infeasible for
Problem (18).
5.1.3. Linear Combination Control Structure for Problem B.

The optimal classical control structure is to control y1 and y2
with the setpoints −0.427 and 0, respectively, which gives an
average profit Jav = 4.750. Here, we show how this profit can be
further increased by selecting a linear combination control
structure. In particular, let us consider the control structure
wherein the output y2 is controlled, and a linear combination of
the inputs is fixed; that is, r1 = y2 and r2 = a1u1 + a2u2. Next, we fix
arbitrarily a1 = 1 and find the optimal values of a2 and the
setpoints r1

sp and r2
sp by solving Problem (24). The optimal

setpoint values and the corresponding combinationmatrix are
given in Table 4. The average profit increases to Jav = 5.056.
Figure 4 shows the operating line and the nominal operating
point d for this control structure, which requires a single control
loop, and increases the profit with respect to point c, obtained
for the optimal classical control structure.
5.1.4. Conclusions from Case Study 5.1.

• This case study shows a situation for which the steady-
state back-off problem with nominal cost is equivalent to
the same problem using the average cost. In occurrence,
the equivalence holds because we are considering a linear
system for which the nominal disturbances are equal to
the expected disturbances.

• In Problem A, for which the set of active constraints does
not change, the steady-state back-off problems determine
that it is optimal to control both active constraints with
zero back-off. This corresponds to the well-known
constraint control strategy.45

• In Problem B, for which the set of active constraints
changes with the disturbances, the steady-state back-off
problem determines which variables to control and which
setpoint values to use. Note that even for a simple linear
system this choice is not trivial.

• We have illustrated the importance of computing optimal
values for the inputs that are not selected as manipulated
variables.

• Finally, we show that it is possible to further increase the
operation’s economics by selecting a linear combination
control structure. Note that, in the SOC literature, linear
combination control structures have been used to push
the reduced gradient of the cost function to zero.30,46,47 In
this case study, we showed that linear combination
control structures may also be useful in cases in which the
solution is completely determined by active constraints,
and the set of active constraints changes with the
disturbance values.

5.2. Continuous Stirred Tank Reactor. Our next case
study considers the reactor in the Williams−Otto plant,48 which
consists of an ideal CSTR in which the following reactions take
place:

A B C k e, 1.660 10 T
1

6 6666.7/( 273.15)R+ → = × − +

C B P E k e, 7.212 10 T
2

8 8333.3/( 273.15)R+ → + = × − +

C P G k e, 2.675 10 T
3

12 11111/( 273.15)R+ → = × − +

Figure 3.Contour maps for Problem B. Thick black segment: operating
line for control structure CS3. Thick red segment: operating line for
CS3 with u2 fixed at its nominal optimum value. Point a: nominal
optimum. Point c: nominal operating point for CS1. Point s: nominal
operating point for CS3. Point s′: nominal operating point for CS3 with
u2 = u2*(dn).

Table 4. Selected Linear Combination Control Structure for
Problem B

T

r y1 y2 y3 u1 u2 rsp

r1 0 1 0 0 0 0
r2 0 0 0 1 −1 0.079

Figure 4.Contour maps for Problem B. Thick black segment: operating
line for the control structure in Table 4. Point c: nominal operating
point for the control structure CS1. Point d: nominal operating point
for the control structure in Table 4.
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The reactants A and B are fed with mass flow rates FA and FB,
respectively. The desired products are P and E, C is an
intermediate product, and G is an undesired product. The
reactor is operated isothermally at temperature TR, with a
constant mass holdup of 2105 kg. The dependence of the
reaction rate constants k1, k2, and k3 on the absolute temperature
is given by Arrhenius’ equations. The reader is referred to
Marchetti and Zumoffen34 for the model equations.
For this problem, the input variables are FB and TR; that is, u =

[FB, TR]
T, the measured output variables are the mass fractions

of all species, y = [XA,XB,XC,XP,XG,XE]
T, and the sole disturbance

is d = FA. The objective is to maximize profit at the steady state
subject to input bounds and an upper bound of 0.25 on the mass
fraction of B. The optimization problem reads:

X F X F F F

X

F T

max 1200 80 76 114

s.t. steady state model equations,

0.25,

2, 4 , 70, 100 .

F T,
P E A B

B

B R

B R

+ − −

‐

≤

∈ [ ] ∈ [ ]

(31)

where F = FA + FB. The nominal disturbance value is FA = 1.4
kg/s, and the disturbance range is F 1.2, 1.83A ∈ [ ].
In this problem, the constraint on XB is active at the optimal

solution for all disturbance values. The problem has two inputs
and one active constraint. The solution is, therefore, not
completely determined by the intersection of active constraints.
The effect of the disturbance on the optimal solution is depicted
in Figure 5. The blue line represents the contour line

corresponding to XB = 0.25 at the nominal disturbance, while
the lower and upper blue dashed lines show how this contour
line moves for the extreme values of the disturbance. Point a is
the nominal optimum; that is, a = u*(1.4), and the red line
represents the optimal solution map u*(FA). In addition, the
figure shows the operating lines of the controlled plant using two

particular control structures (black vertical line and black
horizontal line).

5.2.1. Classical Control Structure for the CSTR. For this
problem, there are 28 possible control structures. The seven best
control structures are listed in Table 5 according to their optimal
value. For each control structure, the nominal and average profit
corresponding to the steady-state NLP back-off problems with
nominal and average profit maximization is reported as well as
the profits obtained using the local disturbance QP approx-
imation of both problems, which is described in section 4.2. In all
cases, we use a uniform discretization of the disturbance range
FA ∈ [1.2, 1.83], with a step of 0.01, which gives N = 64
disturbance scenarios. The optimal setpoint values obtained for
the average cost NLP back-off problem for each control
structure are given in Table 6.
Table 5 was constructed by fixing the control structure in

Problem (18) and solving (18) as an NLP.
In the case of the back-off problem with nominal profit, one

can see from Table 5 that all the control structures for which the
active constraint (the mass fraction XB) is selected as a
controlled variable are optimal solutions that share the same
optimal nominal profit. Because we are considering steady-state
back-offs (and not dynamic back-offs), and because the set of
active constraints does not change for any value of the
disturbance, it is optimal in this problem to control the active
constraint XB with zero back-off (i.e., with a setpoint of 0.25).
The profit Jn

NLP associated with these six control structures
corresponds to the profit at the nominal optimum point a in
Figure 5. Clearly, the back-off problemwith nominal profit is not
able to differentiate (or rank) these six control structures.
Figure 5 also shows the operating lines of the controlled plant
using the control structure CS4 (black vertical line) and CS7
(black horizontal line). Note that the operating line of CS4 is
closer to the optimal solution line (red line) than that of CS7,
and it is clear that for many disturbance values the loss associated
with CS7 will be significantly larger than the loss of CS4.
Nevertheless, the steady-state back-off problem with nominal
profit cannot distinguish between both control structures
because it evaluates the profit only at the nominal disturbance
value. This shows that the steady-state back-off problem with
nominal profit maximization is not useful for selecting a
controlled variable for the remaining degree of freedom that is
left after controlling the active constraint.
In contrast, the steady-state back-off problem with average

profit permits us to correctly rank the control structures
according to how well their operating line approximates the
optimal solution line. This only requires maximizing the average
profit (or minimizing the average cost) instead of the nominal
profit (or nominal cost). The unique optimal solution to the
steady-state back-off problem with average profit (18) is the
control structure CS1, which consists in controlling the active
constraint with zero back-off (i.e., the mass fraction XB with a
setpoint of 0.25), and the additional controlled variable XG with
a setpoint of 0.17. The operating line for CS1 is plotted in
Figure 6. By controlling XG, the operating line for CS1
approximates the optimal solution line, which illustrates the
self-optimizing behavior of CS1.

5.2.2. Alternatives Solution Strategies. As mentioned in
section 3.1.3, the selected solution strategy depends on the
complexity of the process model equations. The results obtained
for the CSTR problem using different solvers are given in
Table 7. The global solver BARON arrived to the optimal CS.
However, it experienced difficulties in reducing the cutting

Figure 5.Contour maps for Problem (31). Thick blue line: boundary of
the constraint on XB for the nominal disturbance (FA = 1.4). Blue
dashed lines: boundary of the constraint on XB for the extreme values of
the disturbance FA. Point a: nominal optimum. Thick red line: optimal
solution map. Dotted lines: contours of the profit. Thick vertical line:
operating line for CS4. Thick horizontal line: operating line for CS7.
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criterion gap in acceptable time when the number of disturbance
scenarios grows (in this case, up toN = 64). Thus, the solver was

interrupted when it reached a maximum time without proving
convergence to the global optimum. On the other hand, the
solvers DICOPT and BONMIN showed good performance,
arriving to the optimal CS in an acceptable time. Finally the luld-
MIQP approximation converged to the optimal CS, CS1, in only
0.4 s.

5.2.3. Linear Combination Control Structure for the CSTR.
Marchetti and Zumoffen34 showed that the null space method
(which is a local SOC method) can be applied to this CSTR
problem by controlling the active constrained output XB and
fixing a linear combination of the inputs. The corresponding
control structure (taken from Marchetti and Zumoffen)34 is
given in Table 8. The setpoint values are the values of the
controlled variables evaluated at the nominal optimum u*(1.4).
The corresponding operating line in shown in the left plot of
Figure 7. One can see that the operating line (black line) is
tangent to the optimal solution map (red line) at the nominal
optimum point a.
Next, we apply the global SOC approach given by the NLP

Problem (24). Again, we consider the CS wherein the active
constraint XB is controlled, and a linear combination of the
inputs is fixed; that is, r1 = XB and r2 = aFB + TR. By solving
Problem (24), we find the optimal values of the coefficient a and
the setpoints r1

sp and r2
sp. The solution is given in Table 8, and the

corresponding operating line is shown in the right plot of
Figure 7. By comparing both plots, it can be seen how the
operating line for the global SOC approach globally
approximates the optimal solution map. Nevertheless, the
improvement in profit for the global approach is very small
because for this particular example, the null space method works
very well.

5.2.4. Conclusions from Case Study 5.2.

• This case study clearly shows the limitations of
minimizing the nominal cost in back-off approaches. As
seen from Table 5 and Figure 5, using the nominal cost
does not allow us to distinguish the difference in

Table 5. Best CSs for the CSTR Problema

zO zI

CS XA XB XC XP XG XE FB TR Jn
QP (N = 64) Jav

QP (N = 64) Jn
NLP (N = 64) Jav

NLP (N = 64)

CS1 0 1 0 0 1 0 0 0 215.79 228.92 215.79 225.16
CS2 0 1 1 0 0 0 0 0 215.79 228.90 215.79 225.15
CS3 1 1 0 0 0 0 0 0 215.79 228.90 215.79 225.04
CS4 0 1 0 0 0 0 0 1 215.79 228.54 215.79 224.88
CS5 0 1 0 0 0 1 0 0 215.79 228.80 215.79 224.78
CS6 0 0 1 0 1 0 0 0 215.15 227.56 212.15 222.50
CS7 0 1 0 0 0 0 1 0 215.79 218.29 215.79 212.26

aRanking based on Jav
NLP.

Table 6. CSTR Problem: Calculated Setpoints for the Back-off Problem with Average Profit

rsp

CS XA XB XC XP XG XE FB TR

CS1 − 0.250 − − 0.170 − − −
CS2 − 0.250 0.021 − − − − −
CS3 0.126 0.250 − − − − − −
CS4 − 0.250 − − − − − 86.723
CS5 − 0.250 − − − 0.326 − −
CS6 − − 0.022 − 0.170 − − −
CS7 − 0.250 − − − − 2.561 −

Figure 6. CSTR Problem. Thick black line: operating line for the
optimal classical control structure CS1. Thick red line: optimal solution
map.

Table 7. CSTR Problema

problem solver/subsolvers CS (r) Jav
NLP time (s)

exhaustive
search

CONOPT XB, XG 225.158 343.3

MINLP DICOPT/MINOS,
CPLEX

XB, XC 225.154 5.2

MINLP DICOPT/CONOPT,
CPLEX

XB, XG 225.158 4.1

MINLP BONMIN/IPOPT, B−B XB, XG 225.158 56.8
MINLP BARON/BARON,

CPLEX
XB, XG 225.158 1400(*)

luld-MIQP CPLEX/CONOPT,
CPLEX

XB, XG 225.158 0.4

aResults obtained using different solvers. Computer used: Intel Core,
i5-4440 CPU, 3.10 GHz, 8 GB RAM. Asterisk indicate “interrupted”.
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performance between the control structures CS4 and
CS7.

• The suitability of the local disturbance MIQP approx-
imation has been illustrated. The proposed luld-MIQP
converged to the optimal CS in a reduced time.

• In all cases (MINLP or MIQP approximation with
nominal or average cost), the steady-state back-off
approach determines that it is optimal to control the
active constrained variableXBwith zero back-off (i.e., with
a setpoint of 0.25).

• This case study also illustrates that the steady-state back-
off problems with average cost minimization are global
SOC approaches. The comparison with the null space
method illustrates the difference between a global and a
local SOC method. For this particular case study, the
selected linear combination CSs do not improve (in any
significant way) the profit that can be achieved by the best
classical CS. The advantage of fixing a linear combination
of the inputs in this example might be that a single control
loop is required to achieve the optimal profit.

5.3. Evaporator. Our third case study considers the forced-
circulation evaporator described by Newell and Lee.49 The
liquid feed mixed with recirculating liquor boils inside the
evaporator, which is heated by steam. The generated vapor−
liquid mixture is separated in the separator. Most of the
separated liquid is recirculated, while a small fraction of it is
drawn off as product. The evaporator is illustrated in Figure 8.
The main variables are listed in Table 9 together with their
nominal values. The model equations can be found in Kariwala
et al.29 The evaporator model has three state variables, L2, X2,
and P2, and eight degrees of freedom: the five input variables
P100, F200, F1, F2, and F3 and the three disturbances, X1, T1, and
T200. To stabilize the process, a PI controller is included, which

controls the separator level L2 by manipulating the product flow
rate F2. Therefore, we are going to consider the following
variables for the control structure selection problem:

F P F Fu T
200 100 3 1= [ ]

X F F T T P F T Ty T
2 4 5 2 3 2 100 100 201= [ ]

Table 8. Linear Combination CSs for the CSTR Problem

QT

r XA XB XC XP XG XE FB TR rsp Jav (N = 64)

global r1 0 1 0 0 0 0 0 0 0.250
225.156

SOC r2 0 0 0 0 0 0 −0.321 1 0.434

null r1 0 1 0 0 0 0 0 0 0.250
225.155

space r2 0 0 0 0 0 0 −0.324 0.946 0.407

Figure 7. CSTR Problem. Thick red line: optimal solution map. Point
a: nominal optimum. Thick black lines: operating lines for the linear
combination CSs. Left plot: null space method. Right plot: global SOC.

Figure 8. Evaporator system.

Table 9. Evaporator Main Variables and Their Values at the
Nominal Optimum

variable description value unit

F200 cooling water flow rate 217.74 kg/min
P100 steam pressure 400.00 kPa
F3 circulation flow rate 24.72 kg/min
F1 feed flow rate 9.469 kg/min
X2 product composition 35.50 %
F4 vapor flow rate 8.135 kg/min
F5 condensate flow rate 8.135 kg/min
T2 product temperature 88.4 °C
T3 vapor temperature 81.1 °C
P2 operating pressure 51.41 kPa
F100 steam flow rate 9.434 kg/min
T100 steam temperature 151.5 °C
T201 cooling water outlet temperature 45.55 °C
X1 feed composition 5.00 %
T1 feed temperature 40.0 °C
T200 cooling water inlet temperature 25.0 °C
J profit 582.23 $/h
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X T Td T
1 1 200= [ ]

The nominal values of the disturbance are X1 = 5, T1 = 40, and
T200 = 25, and the disturbance ranges are X 4.75, 5.251 ∈ [ ],
T 32, 481 ∈ [ ], andT 20, 30200 ∈ [ ]. The objective is to maximize
profit at steady state, which is expressed as:

J F F F F F F4800 0.2 600 0.6 1.009( )2 1 100 200 2 3= − − − − +

where the first term is the value of the product, while the last four
terms are operational costs. The optimization problem reads:

J

X
P

P
F
F
F

max

s.t. steady state model equations,
35.5

40 80
400

0 400
0 20
0 100

u

2

2

100

200

1

3

‐
≥
≤ ≤
≤

≤ ≤
≤ ≤
≤ ≤

(32)

In this problem, the constraints onX2 and P100 are active for all
disturbance scenarios, while the constraint on P2 may become
active at its lower or upper bound depending on the disturbance
values.
5.3.1. Classical Control Structure for the Evaporator. The

steady-state back-off Problem (18) with average cost mini-
mization will be solved using a grid discretization of the
disturbance set d1,k ∈ 4.75: 0.125: 5.25{ }, d2,k ∈ 32: 4: 48{ },
and d3,k ∈ 20: 2.5: 30{ }, which gives a total of N = 125
disturbance scenarios. Two cases will be considered. In Case A,
Problem (18) is solved without additional constraints, while in
Case B, the constraints (21) are included with the RGA bounds
δL = 0.5 and δU = 1.5. The optimal control structure and
corresponding setpoint values obtained in both cases are given
in Table 10. The problem with Case A is that the controlled
variables T100 and P100 are linearly dependent (see model
equations in Kariwala et al.),29 and therefore, there is a
remaining degree of freedom that is used by the MINLP
problem to find optimal inputs for each disturbance scenario,
which increases the average profit. This, however, cannot be
realized by a regulatory feedback control system. This unsuitable

CS is avoided in Case B, for which the computation of the RGA
matrix requires inverting the controlled subprocess.
As seen in Table 10 for Case B, the optimal CS consists in

controlling with zero back-off the constrained variables that are
active for all disturbance scenarios. In occurrence, the product
composition X2 is controlled with a setpoint of 35.5, and the
input P100 is fixed at 400 kPa. In addition, the inputs F200 and F3
are fixed at their computed optimal values.

5.3.2. Alternatives Solution Strategies. The MINLP
problem was solved in GAMS using different local and global
solvers. The results are showed in Table 11. The local solver
DICOPT converged quickly to a feasible suboptimal solution
that is quite close to the optimal one. This CS is defined by the
controlled outputs are X2 and T201, the fixed inputs are P100 and
F3, and the pairings areX2−F1 andT201−F200. On the other hand,
the local solver BONMIN, which implements a branch and
bound strategy, converged to the optimal CS but in a much
higher computational time. The global solver BARON guided us
to the optimal solution in around 1896 s, but the computation
was interrupted after 50 000 s because it was not possible to
close the stopping criterion gap (remaining 29%). The global
disturbance MIQP approximation described in section 4.1 was
also applied and converged to the same suboptimal solution as
the MINLP using DICOPT in a reduced time.

5.3.3. Linear Combination Control Structure for the
Evaporator. Next, we find an optimal linear combination
control structure by solving the NLP Problem (24) using the
same discretization of the disturbance set as in section 5.3.1.
Because the constraints on X2 and P100 are active for all
disturbance scenarios, we select r1 = X2 and r2 = P100. The
remaining controlled variables r3 and r4 will be selected as
optimal linear combinations of the variables X2, F5, P2, F100, T201,
F200, P100, F3, and F1. In addition, the constraint (25) is included
with the following matrix T:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

T

X
F

X
P

X
F

X
F

0 1 0 0
1 0 0 0
0 0 1 0

n n n n

2

200

2

100

2

3

2

1

=

∂
∂

∂
∂

∂
∂

∂
∂

Table 10. Optimal CS for the Evaporator

X2 F4 F5 T2 T3 P2 F100 T100 T201 F200 P100 F3 F1

Case A z 1 0 0 0 0 0 0 1 1 0 1 0 0
zsp 35.5 0 0 0 0 0 0 151.52 46.95 0 400 0 0

Case B z 1 0 0 0 0 0 0 0 0 1 1 1 0
zsp 35.5 0 0 0 0 0 0 0 0 218.24 400 24.75 0

Table 11. Evaporator Results Using Different Solution Strategiesa

problem solver/subsolvers CS (r) Jav time (s)

exhaustive search CONOPT X2,F200,P100,F3 584.89 12 271.1
MINLP BONMIN/IPOPT,B−B X2,F200,P100,F3 584.89 3519.1
MINLP BARON/BARON,CPLEX X2,F200,P100,F3 584.89 50 000(*)

MINLP DICOPT/MINOS,CPLEX X2,T201,P100,F3 581.16 9.8
MINLP DICOPT/CONOPT,CPLEX X2,T201,P100,F3 581.16 8.5
lugd-MIQP CPLEX/CONOPT,CPLEX X2,T201,P100,F3 581.16 5.6

aComputer used: Intel(R) Core(TM), i5-4440 CPU, 3.10 GHz, 8 GB RAM. Asterisks indicate interrupted.
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As a consequence of selecting r1 =X2, the first row ofT is equal to
the first row of the gain matrix G.
It is recommended to solve the NLP problem using different

solvers and starting points as one can easily fall in local optima.
For this example, the best known solution was found with the
solver CONOPT, starting from the nominal optimum. The
corresponding combination matrix and optimal setpoint
values are given in Table 12. The average profit for the N = 125
disturbance scenarios is Jav = 609.18. Recall that the average
profit for the best classical control structure was Jav = 584.89.
5.3.4. Conclusions from Case Study 5.3.

• This case study shows that the steady-state back-off
formulation from Problem (18) may lead to a CS that is
not steady-state controllable. By selecting controlled
variables that are linearly dependent, the controlled
process is not invertible, and the values of themanipulated
variables are not uniquely determined. These additional
degrees of freedom are exploited by the MINLP problem
by finding optimal values for the manipulated variables for
each disturbance scenario. This, however, cannot be
realized by feedback controllers. Although not specifically
designed to avoid this problem, the additional constraints
of (21) avoid this unsuitable CS as the computation of the
RGA matrix requires inverting the controlled subprocess.

• The suitability of the global disturbance MIQP
approximation has been illustrated. The lugd-MIQP
converged to the same nearly optimal solution found for
the MINLP problem using DICOPT.

• The problem of finding a linear combination control
structure was illustrated by using a combination matrix
with a predefined structure and including the constraint
(25) with an appropriate choice of matrix T.

6. FINAL CONCLUSIONS
This paper studied steady-state back-off approaches for CS
selection based on economics and their link with self-optimizing
control. In the literature, back-off approaches typically proceed
by minimizing either the nominal cost or the average cost for a
given set of disturbance scenarios. A steady-state back-off
approach that minimizes the nominal cost is not a SOC
approach since it is of little use for selecting controlled variables
for the remaining degrees of freedom that are left after
controlling all the active constraints.
In contrast, we have shown that the steady-state back-off

approach that selects controlled variables and optimal setpoint
values by minimizing the average cost is also a SOC approach.
Two different formulations of this back-off problem have been
studied: (i) the formulation given by the MINLP Problem (18)
that selects the optimal classical control structure, and (ii) the
formulation given by the NLP Problem (24) that selects an
optimal linear combination control structure. Both formulations
are global SOC strategies since they are both based on
minimizing the average cost in the presence of disturbances.

Notice that, the use of linear combination control structures is
not a distinctive feature between back-off and SOC methods. It
is simply an alternative choice of the controlled variables that
allows us to increase the economic performance in many cases.
With respect to the formulation (i), it has been shown that,

without additional safeguards, MINLP Problem (18) may lead
to unsuitable control structures if the selected controlled
variables are linearly dependent. Additional constraints have
been added to this formulation to ensure that there exists an
input-output pairing that results in an acceptable degree of
interaction when decentralized controllers are implemented.
The illustrative case studies show thatMINLP Problem (18) can
be applied regardless of whether or not the set of active
constraints changes with the disturbance values. When there are
constraints that are active for all disturbance scenarios, the
MINLP problem selects to control these active constraints with
zero back-offs (which corresponds to the standard constraint
control approach) and selects self-optimizing controlled
variables for the remaining degrees of freedom. The assumption
that the set of active constraints does not change with the
disturbance values, which is a standard assumption in local SOC
methods, can be viewed as a special case of the back-off approach
for which no steady-state back-offs are needed.
On the other hand, the formulation (ii) given by NLP

Problem (24) (together with the constraint (25)) represents a
general global SOC formulation for selecting optimal linear
combinations of output and input variables as CVs, and the
corresponding optimal setpoint values. In fact, several recently
proposed SOC approaches36−38 can be viewed as approxima-
tions and special cases of NLP Problem (24). In these
approaches, the recourse to approximations, such as the use of
local loss expressions, responds in part to the attempt to
minimize the average loss instead of the average cost. The local
and global MIQP approximations were applied to Case Studies
5.2 and 5.3, respectively, showing in both cases their suitability
as approximations to the original MINLP formulations.
Based on our findings, we provide the following recom-

mendations for back-off and SOC approaches for CS selection:

• It is recommended tominimize the average cost instead of
the nominal cost in back-off approaches. It has been
shown that the minimization of the nominal cost may lead
to CSs with poor economic performance for disturbance
values different from the nominal ones.

• It is recommended tominimize the average cost instead of
the average loss in back-off and SOC approaches for CS
selection. Evaluating the loss with respect to optimal
operation is more involved than evaluating the cost, and it
is also unnecessary in view of Remark 1. Once the optimal
CS is determined, the associated loss can be evaluated.

• In order to guarantee feasibility for all disturbance
scenarios, find optimal setpoint values for all the
controlled variables and for all the input variables that
are not selected as manipulated variables. Fixing input

Table 12. Optimal Linear Combination CS for the Evaporator

T

r X2 F4 F5 T2 T3 P2 F100 T100 T201 F200 P100 F3 F1 rsp

r1 1 0 0 0 0 0 0 0 0 0 0 0 0 35.5
r2 0 0 0 0 0 0 0 0 0 0 1 0 0 400
r3 −57.31 0 1131 0 0 14.13 87.67 0 −38.01 −0.816 1.080 13.38 −1240 −4171
r4 −9.326 0 172.7 0 0 5.266 17.56 0 −10.94 −0.515 0.044 1.589 −209.6 −1028
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variables at their nominal optimal values may rule out
important control structures as infeasible or economically
unattractive.

Finally, this paper has focused on steady-state back-off
approaches. Dynamic back-off approaches are a different story.
However, because dynamic back-off approaches should also pay
attention to feasibility and economic performance at steady
state, we believe that many of the things we have learned for
steady-state back-off approaches can be applied to dynamic
back-off approaches as well. For instance, several dynamic back-
off approaches fix the inputs that are not selected as manipulated
variables at their nominal optimal values, which, as we have seen,
may lead to suboptimality or infeasibility issues.
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