
Automatic Dwelling Segmentation of Buenos Aires Province for

the 2010 Argentinian Census

February 4, 2013

Abstract

One of the logistical challenges in planning a population census is determining which

dwellings each enumerator must visit within a census tract. This is known as the dwelling

segmentation problem, which generally includes a set of constraints on the enumerators’

assigned routes and various criteria regarding the homogeneity and uniformity of the

segmentation solutions. In this work, we present a computational approach for this prob-

lem, which represents an improvement over manual methods and existing software. The

resulting method was successfully applied to the Province of Buenos Aires in the 2010

Argentinian census.

Keywords: population census, segmentation.

Introduction

A population census is a procedure for acquiring demographic information on a geographical

area, generally an entire country. The information gathered typically includes data on the

population, housing, educational and employment characteristics of the area’s inhabitants.

A census usually takes place on a single day, the actual collection of the information being

carried out by census enumerators who visit each dwelling in the area covered.

To ensure the smooth and successful completion of such a major logistical operation in

a few short hours, the planning for a census usually commences several years in advance.

1



Determining which dwelling units each enumerator must visit is crucial, and this task is

called the dwelling segmentation problem. The dwelling segmentation problem consists of

partitioning a set of dwellings into subsets that satisfy certain constraints. In its full generality,

the dwelling segmentation problem generalizes the set partitioning problem, hence it is NP-

complete.

A relatively high-level partition, as with the redistribution of electoral divisions, gives rise

to the redistricting problem. There is a considerable literature devoted to this issue [2, 3, 6, 9,

10, 11, 12] and various software packages carry out redistricting either automatically or semi-

automatically. In [4], for example, the authors present an open source tool implemented in the

R statistical environment. But since the constraints arising in electoral redistricting generally

differ from those imposed by dwelling segmentation problems, the latter require their own

specifically designed algorithms. Dwelling segmentation also involves certain homogeneity and

uniformity criteria that must be satisfied by the solutions, as will be detailed in Description of

the problem. This was almost impossible to achieve with the previously-used manual solution

methods, which consisted of human operators constructing segmentations in a greedy fashion,

with no pre-specified rules or “algorithmic instructions” given beforehand to them. Within

such a scheme, an operator could find by chance a good segmentation, but could fail if his/her

first decisions led to a poor final result.

The present study analyzes the dwelling segmentation problem as it arose in the Province

of Buenos Aires in the 2010 Argentine census, and reports on the development of a compu-

tational approach for solving it that we applied during the census planning process. Based

on the experience from the previous census, the Province’s statistical authority (Dirección

Provincial de Estad́ıstica) decided to tackle the dwelling segmentation problem automati-

cally with operations research techniques, and contacted the University of Buenos Aires in

order to explore this issue. The present study is the result of such collaboration. We are

not aware of any other studies in the operations research literature that have investigated

dwelling segmentation in a census context.

The remainder of this paper is organized as follows. In Description of the problem we

review the relevant characteristics of the 2010 census and we discuss the dwelling segmentation

2



problem to be addressed. In The segmentation algorithm we propose a solution algorithm and

the main difficulties encountered during its implementation are discussed. In Computational

results we set out the results obtained with this tool, and Conclusions contains some final

remarks. The appendix sets out the algorithm and its parameters in detail.

Description of the problem

Argentina is divided into 23 provinces in addition to the Autonomous City of Buenos Aires

(formerly known as the Federal Capital) which enjoys special administrative status. The

Province of Buenos Aires (see Figure 1) is Argentina’s largest province geographically (304,907

km2) and the most highly populated, with some 15.6 million inhabitants, corresponding to

the 39% of the total population in the country. It excludes the Autonomous City of Buenos

Aires but does include Greater Buenos Aires, the outer belt of suburbs surrounding the

Autonomous City that is home to about 9 million people. Together the two areas form a

single large population nucleus. With the exception of Greater Buenos Aires, the Province is

predominantly rural and agricultural, though some areas are dependent primarily on tourism

(the Atlantic coast), mining (the south) or steelmaking (the northeast along the Parana

River). By contrast, Greater Buenos Aires is primarily urban and industrial.

All of the provinces are subdivided into partidos or departamentos. In the case of Buenos

Aires Province there are 134 of these divisions, which are further subdivided for census pur-

poses into 19,577 radios censales or census tracts. Each census tract contains about 300

dwellings distributed across a set of contiguous blocks that may number anywhere from 1 to

50, depending on the population density. There are 16,216 census tracts located in urban

areas, the focus of the present study. The remaining census tracts are divided into 2,886 rural

tracts and 475 intermediate tracts. The rural and intermediate tracts are sparsely populated,

involve long distances (the census takers cover these tracts by car), and the corresponding

maps are not fully updated. The geographical information systems team considered that an

automatic solution was not suitable for these tracts, as it would involve a lot of manual pre-

processing. Due to these facts, the rural and intermediate tracts are not part of the present

study.

3



Figure 1: The Province of Buenos Aires is Argentina’s largest province and the most highly

populated (15.6 million inhabitants).

For any given census tract, the segmentation problem involves partitioning the constituent

blocks into disjoint sets of dwellings, known as segments, each of which is assigned to a single

census enumerator. As will be seen later in more detail, the sides of a block may under

certain conditions be split across different segments. The blocks in Argentinian urban centers

typically have four sides, although other block morphologies are not infrequent.

A principal requirement for the feasibility of a segment is that its various blocks or block

sides must be contiguous. According to criteria set by the Dirección Provincial de Estad́ıstica,

every block or side must either directly face another block or side, or, in the case of a side

only, must continue directly on from a side in an immediately adjacent block. Thus, a

segment cannot “cross” from one block to another diagonally. The segment examples in

Figure 2 illustrate these restrictions. The segments in panels (a), (c) and (e) are composed

4



by contiguous blocks or sides, whereas the segments in (b), (d) and (f) have non-contiguous

ones.

The 2010 census rulebook defined a further set of constraints for a feasible segmentation

of a census tract as follows:

• Each dwelling in a tract must belong to a single segment, and the complete set of

segments created by the segmentation process must include all of the tract’s dwellings.

• The number of dwellings contained in each segment must be within a prespecified range,

and the bounds of this range depend on the census tract. For 90% of the segments,

where the basic census form is utilized, each segment must contain between 32 and

40 dwellings. On the remaining census tracts, where a more detailed census form is

utilized, the rulebook specifies the range [10, 16] instead. Furthermore, some particular

census tracts admit different values for these parameters.

• A side of a block containing no dwellings must also be contained within a segment in

order to be assigned to an enumerator, since the dwellings database may be out of date,

and new dwellings may be present in such a block side. If such a block side does contain

dwellings then the generated segment may conflict with the upper bound for the number

of dwellings per segment but, unfortunately, there is no available information in order

to avoid this situation.

• The length of the route to be covered by any enumerator must not exceed an upper

bound L that will depend on the population density of their assigned tract.

• Enumerators must not be required to cross major thoroughfares, railway lines or water-

courses.

• Every segment must be wholly contained within a single tract.

The last of these constraints is particularly significant for our purposes. Since a segment

cannot include dwellings from more than one tract, the segmentation problem addressed in

this work is reduced to 16,216 separate instances, one for each urban tract.

5



Figure 2: Feasible segments must contain contiguous block sides and cannot cross from one

block to another diagonally. Segments (a), (c) and (e) are feasible since the blocks or sides

marked in bold are contiguous; whereas segments (b), (d) and (f) are infeasible since their

blocks or sides are not contiguous.

6



Figure 3: After enumerating block b, preference should be given to the block sides marked

with a 0, then block sides marked with a 1 and, finally, block sides marked with a 2.

Although there is no a priori objective function for the segmentation problem, the segmen-

tations which meet certain adjacency and compactness criteria are preferred. These criteria

apply to each individual segment. The following adjacency preferences are the most impor-

tant ones and relate to the routes followed by the enumerators. Upon arriving at either corner

of one side of a block (say, side b in Figure 3), the enumerator, rather than crossing a street

to continue, should preferably either proceed from that corner along the connecting side of

the same block or cross over to the side of the adjacent block directly facing. These options

are marked with a 0 in the figure. If this is not possible, the enumerator should continue in

the same direction (the same side of the street) to the next block (one of the sides marked 1

in the figure). If this, too, is impossible, the enumerator should then proceed to one of the

sides marked with a 2 in the adjacent blocks. The numbers 0, 1 and 2 thus define the levels

of adjacency, which in turn determine the order of the preferences just described.

Additionally, the following compactness preferences, in order of importance, should be

considered in a segmentation:

1. Preference should be given to segments consisting only of whole blocks.

2. Segments should contain complete sides and should be as “compact” as possible. This

criterion is defined informally and refers to the breadth of a segment across the various

blocks it contains (see Figure 4). For example, a segment consisting only of whole blocks

is considered to be compact whereas one that has various blocks at least one but not

all of whose sides belong(s) to some other segment is not. The reason for attempting

7



Figure 4: Segments should be as “compact” as possible. Segment (a) is considered to be

compact whereas segment (b) is not, since it involves just one block side per block.

to define segments that are as compact as possible is that they tend to minimize the

chance of enumerator route errors.

3. If the segmentation cannot be completed using entire block sides, some of the block sides

can be divided between two or more segments. This situation may arise if the block

side contains a number of dwellings exceeding the maximum allowed per segment, or

contains less than the corresponding lower bound but the combination with any adjacent

side exceeds the upper bound, thus violating the feasibility constraints. Typically this

occurs when a block contains one or more apartment buildings, in which case preference

should be given to segments that include all of the apartments in any single apartment

building so that it can be covered by one enumerator.

4. If the apartments in a single building cannot all be kept together (e.g., if the building

contains more dwellings than the maximum number of dwellings per segment), pref-

erence should be given to segments that do not split up the apartments of a single

floor. In other words, each floor should where possible be covered by a single enumer-

ator. Please note that apartments spanning more than one floor typically have their

address allocated to a single floor, and are considered as a single dwelling for the census

purposes.

8



The segmentation algorithm

In order to tackle the dwelling segmentation problem in each individual census tract, we

developed an algorithm that tries to find a feasible segmentation. The full details of the

algorithm are set out in the appendix.

The algorithm iteratively considers sets of candidate segments. At each iteration, the

algorithmm generates a set of feasible segments and tries to find a complete segmentation

involving segments from this set. To this end, we solve an integer programming model which

takes as input the set of candidate segments, and seeks a feasible segmentation maximizing the

global compactness. If such a segmentation exists (i.e., if the integer programming model is

feasible) then the algorithm stops and returns the segmentation found by the model solution.

On the other hand, if the model is infeasible, then the algorithm moves on to the next iteration,

where a new (usually larger) set of candidate segments is generated and the procedure is

repeated.

The first iterations consider feasible segments whose block sides are joined by the ad-

jacencies marked with 0 in Figure 3. At the i-th iteration, all feasible segments involving

adjacencies marked with 0 in Figure 3 and at most i blocks are generated, and the model

takes such set of segments as input. If all these iterations fail to find a feasible segmenta-

tion, then the adjacencies marked with 1 in Figure 3 are also considered and the process is

repeated. If this procedure again fails, then all feasible adjacencies from Figure 3 are taken

into account when generating the set of candidate segments and the process is repeated.

If the above procedure does not find a feasible solution, we activate the option of dividing

block sides into parts. To this end, we introduce a parameter that sets the maximum number

of dwellings a block side can have, with all sides exceeding this number then being divided

into two or more parts. The block side division algorithm (not shown here) greedily generates

two or more parts from each block side, each having no more than the number of dwellings

specified by the parameter. Once the block sides have been divided we repeat the overall above

procedure, which now takes as input the generated parts instead of the original block sides.

As long as this procedure fails to find a complete segmentation, we decrease this parameter

9



–so each (divided) block side will have a smaller number of dwellings– and repeat the above

procedure.

In the preliminary testing and adjustment stages, this algorithm solved a large number of

the highly urban census tracts but had serious difficulties segmenting tracts with relatively low

population densities. An example is the tract in the city of Olavarria in Figure 5, for which the

algorithm did not find a feasible solution. The main obstacle in these cases is the presence of

many blocks with few if any dwellings, meaning the algorithm must execute a large number

of iterations to generate enough feasible segments to cover the whole tract. Furthermore,

with few dwellings per block the number of feasible segments is very high. For the tract in

Figure 5, the candidate set after 7 iterations has more than 100,000 such segments, resulting

in excessively high segment generation and solutions times. In order to tackle this situation,

we (a) treat blocks with few dwellings as a single segment and (b) arbitrarily combine side

blocks with few dwellings. The details and related parameters are described in Improvements

for low-density census tracts in the appendix.

Figure 5: Medium-density tracts such as this one from Olavarria City are difficult for the

algorithm to solve. The numbers indicate how many dwellings are on each block side.

10



Computational results

Given the number of different parameters and their significance for the algorithm’s execution

time, we conducted preliminary experiments with various test census tracts to identify the

best set of parameter values for different tract types. In light of the results, we grouped tracts

by population density into three categories: high-density (up to 10 blocks), medium-density

(11 to 30 blocks) and low-density (more than 30 blocks) tracts.

We coded the algorithms in C++ and solved the integer programming models using

CPLEX 12.1. The data on blocks, sides and dwellings were drawn from the geographical

database maintained by the Province of Buenos Aires. We implemented the necessary in-

terfaces in a geographic information system to export the data and import and view the

segmentations generated by our algorithm.

Execution times for generation of the segments were relatively short, the worst case being

about 2 minutes using the parameters specified in the appendix. More than 99% of the integer

programming models for the various tracts were solved in a few seconds implying that the

linear relaxation is very tight and the first feasible solution found by CPLEX was usually

optimal. In a few cases the execution time reached the imposed time limit (we refer to the

appendix for the actual value of this parameter depending on the tract density).

The largest number of segments for each solved census tract (i.e., the number of feasi-

ble segments in the last integer programming model in the execution of the segmentation

algorithm) is on average 1,305 segments for high-density tracts (with a standard deviation of

σ = 4, 424). For medium-density tracts the average number of segments in the largest integer

programming model is 3,826 (σ = 8, 709), and for low-density tracts the average number of

segments is 10,314 (σ = 11, 265).

By way of comparison, the segmentation of the province for the previous (2001) census

was done manually and required 25 employees working full time over 30 days (i.e., 6,000

person-hours). In this work we deal with urban tracts, and these tracts corresponded to 80%

of the segmentation time for the 2001 census. For the 2010 count, automated computer tools

perfomed the dwelling segmentation for the first time. The algorithm presented here delivered

satisfactory results for 96% of the urban census tracts in about 320 CPU hours running on a

11



Figure 6: The segmentation algorithm could not find a feasible solution for this medium-

density tract, due to the combination of sparsely-populated areas and denser blocks.

computer with a 2.4 GHz Intel Celeron c© processor and 2 GB of RAM (the equivalent of less

than one day on a cluster of 15 computers).

For approximately 600 census tracts (4% of the total urban tracts) the algorithm did

not find a feasible solution automatically. In these cases, the segmentation problem was

solved either using the tool but with slightly relaxed constraints or manually. As an example,

consider the medium-density tract in Figure 6. The pre-processing stage combined the blocks

with few dwellings to form indivisible groups, as described in the previous section. There are

three contiguous blocks in the tract with 14, 13 and 14 dwellings, respectively (see bottom of

figure), that are surrounded by very thinly populated blocks which in this case were combined

in a single group and which “isolate” the aforementioned three. The latter have a total 41

dwellings, which due to the upper bound on the number of dwellings per segment meant they

could not be put into a single segment, nor could two segments be constructed from them

due to the lower bound on the number of dwellings per segment. This tract was solved in a

few seconds by relaxing the upper bound by one unit.

Many of the census tracts not solved by the algorithm had characteristics similar to those

in Figure 6. In other words, they were for the most part thinly populated but with denser

areas along their boundaries (usually bordering more heavily populated tracts). When faced

to these results, planning staff at the census authority asserted that the boundaries of these

12



Figure 7: Segmentations generated by the procedure proposed in this work satisfy all con-

straints and tend to have more compact segments than manually-generated segmentations.

The left figure shows the manual segmentation for a census tract in Azul City for the previous

census in 2001, whereas the right figure shows the segmentation obtained by our computa-

tional procedure for the same input data.

tracts were poorly drawn in the sense that the inclusion of areas of widely varying densities

should be avoided. These cases were ultimately the result of population growth.

A comparison with available data from the 2001 census shows that the manually-generated

segmentations quite frequently violated the lower and upper bounds for the number of dwellings

assigned to each census enumerator, a situation which did not hold for any of the automatically-

solved census tracts in the 2010 census (i.e., 96 % of the census tracts). Furthermore, segments

in automatically-generated segmentations tend to be more compact than those in manual seg-

mentations. For example, Figure 7 shows both the manual segmentation for a census tract

in Azul City in the 2001 census and a segmentation obtained with the tools described in this

work. The automatically-generated segmentation contains much more complete blocks and

satisfies all the constraints. This is a consequence of the greedy nature of the method em-

ployed by the manual operators, which tend to complete the “current segment” by including

adjacent block sides without revising the previous decisions. In this sense, the lower and up-

13



per bounds on the number of dwellings per segment greatly constrain the operator’s freedom

to choose compact segments –even though they were frequently violated–, a situation that is

better handled by the procedure proposed in this work.

Conclusions

We presented a computational tool that was used in the 2010 Argentinian Census to address

the dwelling segmentation problem for the Province of Buenos Aires. We managed to complete

the implementation in time to meet the two-month deadline established by the census planning

process. Unlike the previous census, in which there were no rules or algorithmic instructions

provided to the manual operators –hence different operators could generate very different

segmentations for the same census tract–, the algorithm’s automatic procedure generated

uniform results for the entire province, thus ensuring similar workloads could be assigned to

all census enumerators. Finally, processing times were also considerably reduced compared

to the manual method.

The algorithm’s performance proved to be very sensitive to the values chosen for its

parameters. With the values presented in the appendix, the algorithm could arrive at solutions

in a matter of seconds whereas poorly chosen values risked diminishing the feasibility of

the model or leading to the generation of hundreds of thousands of segments, extending

execution times to various hours. The categorization of the census tracts by population

density greatly facilitated the identification of suitable parameter levels. The incorporation

of a sequential procedure in the proposed algorithm was fundamental in guaranteeing the

preferences regarding desirable segment characteristics were also met.

Despite these highly satisfactory results, it should be noted that the implemented algo-

rithms provide a heuristic solution. An interesting task for future research would therefore

be to explore an integrated integer programming model addressing all the problem character-

istics. A natural generalization of the model presented in the appendix will contain a huge

number of variables, hence a column generation approach should be considered. The ma-

jor challenge involved in developing this approach would be to solve the column generation

subproblem.

14



From a theoretical point of view, it would be interesting to explore the computational

complexity of the segmentation problem for particular classes of instances. If the streets may

define an arbitrary graph then the problem is NP-complete, but its computational complexity

for more regular morphologies is, to the best of out knowledge, open.

Since the census tracts contained about 300 dwelling units and each enumerator had to

be assigned a number of dwellings within a prespecified range, the quantity of enumerators

per tract varied very little (from 8 to 10 approximately). The objective of minimizing their

number would have therefore had little purpose and was not pursued. This issue was explored

in [8], where indeed it was shown that by minimizing the number of enumerators just a 2%

improvement could have been attained for high-density tracts, and a 5% improvement could

have been attained for low-density tracts.

As regards the views of the segmentation algorithm’s ultimate users, Mr. Fernando Aliaga,

head of geographical information systems for the 2010 Census in the Province of Buenos Aires,

stated that the “use of this computer tool allowed us to produce a homogeneous segmentation

with uniform compactness criteria, unlike the manual segmentation method which depends

in large measure on operator decisions”[1]. The census itself was conducted on October 27,

2010 and was pronounced an organizational success by the provincial authorities [13].

Acknowledgements

The authors would like to thank the Dirección de Estad́ıstica from the Province of Buenos

Aires for the initiative of carrying out the dwelling segmentation with automatic techniques.

The authors are also grateful to Mr. Fernando Aliaga, head of geographical information

systems for the 2010 Census in the Province of Buenos Aires, and to his team for their

collaboration in various key aspects of this study. The authors gratefully acknowledge Rodrigo

Sotelo, Andrés Weintraub, Kenneth Rivkin, and Jaime Miranda for their insightful remarks on

this paper. Finally, the authors would like to thank the annonymous reviewers, the Associate

Editor, and the Editor-in-Chief for their constructive comments, which greatly helped to

improve this work.

This project was partially funded by the Ministerio de Economı́a de la Provincia de Buenos

15



Aires. Partial funding was also provided by ANPCyT PICT-2007-00518, CONICET PIP 112-

200901-00178, and UBACyT 20020090300094 and 20020100100980 (Argentina), as well as by

FONDECyT 1110797 and the Millennium Science Institute “Complex Engineering Systems”

(Chile).

Appendix: The segmentation algorithm

In this appendix we provide the full details of the algorithm for the dwelling segmentation

problem in an individual census tract. We say that a segment is exceeded if it has more

dwellings than the maximum allowed number of dwellings per segment or is longer than the

upper bound L. The algorithm uses non-exceeded segments, but these may or may not be

feasible depending on whether or not they satisfy the minimum number of dwellings per

segment. When trying to construct a feasible solution only feasible segments are considered.

By defining adjacency type δ ∈ {0, 1, 2} as in Figure 3, a segment is said to be δ-connected if

it is connected by adjacencies of levels up to δ.

We set out the proposed segmentation procedure in Algorithm 1. The procedure uses

geographical data on the census tract as inputs, and the value of δ ∈ {0, 1, 2} as a parameter.

Denote as Si the set of non-exceeded (though not necessarily feasible) segments that have

no more than i blocks, i ≥ 1. At the i-th iteration, Algorithm 1 tries to find a feasible

segmentation using the subset S′i of feasible segments from Si. To this end, we solve an

integer programming model trying to maximize the global compactness; we describe this

model in the following section. The algorithm iterates until either a feasible solution is found

or Si does not vary with respect to Si−1, or until a previously specified iteration limit MI

is reached. As soon as it finds a feasible solution for the model for the given subset S′i of

segments, the algorithm terminates and returns the solution obtained.

We now describe the construction of the set Si of non-exceeded feasible segments that

have no more than i blocks. In lines 2–4, the algorithm generates a base set of segments Sb

using complete block sides. For each block, all possible non-exceeded segments Sb contained

within it are generated. If the integer programming procedure cannot find a solution with

the feasible segments from Sb (i.e., the segments from Sb satisfying the lower bound on the

16



Algorithm 1 Segmentation algorithm for δ-connected segments.
1: Sb ← {} // base set

2: for each block q do

3: Sb ← Sb∪ { non-exceeded segments contained in q }

4: end (for)

5: i← 1

6: Si ← Sb

7: repeat

8: Run ILP segmentation model with all segments from Si satisfying the constraint which imposes a

minimum number of dwellings per segment (i.e., feasible segments)

9: if solution found then

10: End (with solution)

11: end (if)

12: Si+1 ← Si

13: for each (si, sb) ∈ Si × Sb do

14: if si ∪ sb is a non-exceeded δ-connected segment then

15: Si+1 ← Si+1 ∪ {(si ∪ sb)}

16: end (if)

17: end (for)

18: if Si+1 = Si then

19: End (without solution)

20: end (if)

21: i← i+ 1

22: until i > MI

23: End (without solution)

number of dwellings per segment), then in lines 12–17 we add new segments to the current

set, constructing Si+1. In these lines, each existing segment s ∈ Si is connected with each

base segment t ∈ Sb from a neighbouring block, such that the resulting segment s ∪ t is

a non-exceeded δ-connected segment. After line 17, the set Si+1 contains all non-exceeded

δ-connected segments involving at most i+ 1 blocks.

Since there is no formal objective function attached to the dwelling segmentation problem,

the solution provided by Algorithm 1 may not be a good solution. However, the sequential

procedure readily incorporates the compactness preferences of the selected segments, thus

17



Figure 8: When there are divided block sides, a census enumerator can only cross a street at

the end of a block side.

increasing the likelihood that the preferred solutions will be found first.

To find solutions with the most compact segments possible, we sequentially run Algo-

rithm 1 for δ = 0, 1, 2 and we interrupt the procedure as soon as the first feasible solution is

found.

If the above process does not find a feasible solution, we activate the option of dividing

block sides into parts. In this setting, the parameter P specifies the maximum number of

dwellings a block side can have, with all sides exceeding this number then being divided into

two or more parts. Each such part can have at most P dwellings. The block side division

algorithm employs a greedy strategy, and attempts to keep all apartments in a single building

together in the same part. Starting from one of the corners of the block side to be divided, this

procedure constructs a part by advancing along that side until either an apartment building

is encountered or P dwellings have been counted. In either case, construction of the block

part is completed and a new one is started, the procedure being repeated until the algorithm

obtains an entire set of parts for the divided side. The division algorithm also considers

apartments included in buildings, by greedily trying to keep together apartments in the same

floor. Finally, we specify new adjacencies for the divided sides as in Figure 8.

Note that the smaller is P , the greater will be both the number of block side parts in the

tract and the size of the base set Sb.

Once the block sides have been divided as just described, we execute Algorithm 1 again for

18



δ = 0, 1, 2 to find a feasible solution. If still no solution is found, the value of P is lowered and

the process repeated. We set out the entire procedure in Algorithm 2. A list PL inputted to

the algorithm contains the values for P , and the algorithm employs these values successively

in order of decreasing size given that the greater is P , the less divided will be the solutions. If

upon completion the procedure has not found a solution, it terminates and informs the user

that no segmentation could be identified. Note that P is initially set at less than or equal to

the maximum allowed number of dwellings per segment, but the parameter value will depend

on the population density of the census tract to be segmented.

Algorithm 2 Segmentation algorithm

1: for each P ∈ PL do

2: Divide sides with number of dwellings greater than P .

3: for δ = 0 to 2 do

4: Run Algorithm 1 for δ

5: if Algorithm 1 found a solution then

6: Return solution and end

7: end (if)

8: end (for)

9: end (for)

10: End (without solution)

Improvements for low-density census tracts

As mentioned in The segmentation algorithm, the algorithm must be enhanced in order to

successfully tackle low-density tracts. The difficulties can be sidestepped by modifying Algo-

rithm 1 as follows:

• We treat blocks with few dwellings as a single non-exceeded segment for purposes of

adding segments to the base set Sb (line 3). To this end, we add a parameter MP that

sets the minimum number of dwellings a block must have before it can generate more

than one base segment. If a block falls short of this number, only one segment for the

19



Param. High-density Medium-density Low-density

Maximum no. of iterations for generating

segments

MI 4 7 9

Minimum no. of dwellings for dividing a

block

MP 1 2 10

Minimum no. of dwellings in base segments

(segments below minimum are grouped to

form new ones)

MH 0 1 5

Maximum no. of dwellings per block side

part

PL [32, 16, 10] [32, 16] [40, 32, 20]

Execution time limit for ILP model (sec) MT 60 60 120

Table 1: Algorithm parameter values by type of census tract.

complete block is added to Sb. This considerably reduces the size of Sb for low-density

tracts.

• Once the base segments Sb are generated, if any of them have few dwellings they are

arbitrarily combined with an adjacent segment to form a single base segment. To

accomplish this, we add a parameter MH to set the minimum number of dwellings a

segment must have to be added to Sb. We insert this treatment of Sb in Algorithm 1

following line 4.

The values of the various parameters for low-density tracts must be identified with partic-

ular care, as inappropriate choices may increase execution times (if P is very low, for example)

or reduce the model’s feasibility (if values MP and MH are too high). Table 1 gives the pa-

rameters values for each category. Recall that the categories are given by population density:

high-density tracts involve up to 10 blocks, medium-density tracts involve 11 to 30 blocks,

and low-density tracts involve more than 30 blocks.

The integer programming model

We now formulate an integer linear programming model for selecting a set of segments covering

all the dwellings within a census tract. Let R be the census tract to be segmented and let S

20



be the (input) set of feasible segments to be considered. For each segment s ∈ S, introduce

the binary variable xs such that xs = 1 if and only if segment s is included in the solution.

To maximize the compactness of the segments selected by the model, we specify the

following objective function. Given a segment s ∈ S, we define its compactness to be

comp(s) = sides(s)
blocks(s)

, where sides(s) and blocks(s) are the number of sides and blocks, respec-

tively, in segment s. Thus, a segment consisting of a single complete rectangular block will

have a compactness of 4, while a segment containing four sides that are each from a different

block will have a compactness of 1. On this definition, however, a segment comprised of one

complete block will have the same compactness as a combination of two segments each made

up of a half block (i.e., two sides of a block) or four segments each consisting of a quarter

block (a single side). Clearly, the first of these three possibilities is the most desirable. To

priorize segments that are compact in this desirable sense and avoid undesirable ones, define

the valuation of a segment s as val(s) = kcomp(s). Any value k ≥ 3 is a reasonable choice for

k. In this particular application k = 10 was chosen and provided good results, although in [8]

it was shown a posteriori that k = 3 would have given better results for some census tracts.

Now let V be the set of dwellings in R, and let L0 be the set of block sides without

dwellings in R. For each v ∈ V denote as Sv ⊆ S the set of feasible segments that include

dwelling v, and for each l ∈ L0 denote as Ll ⊆ S the set of feasible segments that include

side l. With these definitions, we can formulate a simple integer linear programming model

for the segmentation problem:

max
∑
s∈S

val(s) · xs

∑
s∈Sv

xs = 1 ∀v ∈ V (1)

∑
s∈Ll

xs = 1 ∀l ∈ L0 (2)

xs ∈ {0, 1} ∀s ∈ S (3)

As regards the constraints, (1) ensure that each dwelling is covered by exactly one segment

while (2) guarantee that block sides with no dwellings are also covered by exactly one segment,

21



since sides with no dwellings must be visited by an enumerator. Recall that the model includes

no preferences regarding adjacency levels for segments that cross streets (that is, that extend

beyond a single block), which are addressed within the global procedure.

References

[1] Aliaga F (2010) Personal communication. Buenos Aires, Argentina (November 5, 2010).

[2] Altman M (1997) Is Automation the Answer: The Computational Complexity of Auto-

mated Redistricting. Rutgers Computer and Law Technology Journal 23(1):81–141.

[3] Altman M, MacDonald K, McDonald MP (2005) From Crayons to Computers: The

Evolution of Computer Use in Redistricting. Social Science Computer Review 23(3):334–

346.

[4] Altman, M. and McDonald, M.P. (2009) Bard: Better Automated Redistricting. Journal

of Statistical Software 42(4):1-28.

[5] Barnhart C, Johnson EL, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-

Price: Column Generation for Solving Huge Integer Programs. Operations Research

46(1):316–329.

[6] Bozkaya B, Erkut E, Laporte G (2003) A tabu search heuristic and adaptive memory

procedure for political districting. European Journal of Operational Research 144(1):12–

26.

[7] IBM ILOG (2009) User’s Manual for CPLEX.

[8] Fernández Slezak F (2012) Programación matemática para distribución eficiente de cen-

sistas en censos nacionales: el censo 2010 de la Provincia de Buenos Aires como caso

de estudio (in Spanish). Degree Thesis in Mathematics, University of Buenos Aires, Ar-

gentina.

[9] Fleischmann B, Paraschis JN (1988) Solving a large scale districting problem: a case

report. Comput. Oper. Res. 15(6):521–533.

22



[10] Garfinkel RS, Nemhauser G (1970) Optimal Political Districting by Implicit Enumeration

Techniques. Management Science 16(8):B495–B508.

[11] Helbig RE, Orr PK, Roediger RR (1972) Political redistricting by computer.

Comm. ACM 15(8):735–741.

[12] Hess SW, Weaver JB, Siegfeldt HJ, Whelan JN, Zitlau PA (1965) Nonpartisan Political

Redistricting by Computer. Operations Research 13(6):998–1006.

[13] La voz de Tandil (2010). Se censó más del 95% de las viviendas en la provincia. Retrieved

November 15th, 2010.

http://www.lavozdetandil.com.ar/ampliar nota.php?id n=20090.

23


