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Abstract: We use the natural invariant density of the map and the Perron–Frobenius operator to
analytically evaluate the statistical properties for chaotic intermittency. This study can be understood
as an improvement of the previous ones because it does not introduce assumptions about the
reinjection probability density function in the laminar interval or the map density at pre-reinjection
points. To validate the new theoretical equations, we study a symmetric map and a non-symmetric
one. The cusp map has symmetry about x = 0, but the Manneville map has no symmetry. We
carry out several comparisons between the theoretical equations here presented, the M function
methodology, the classical theory of intermittency, and numerical data. The new theoretical equations
show more accuracy than those calculated with other techniques.

Keywords: chaotic intermittency; maps; reinjection probability density function; invariant density

1. Introduction

In chaotic intermittency, the solutions of the dynamical systems exhibit the alternation
between chaotic and laminar behaviors. The laminar phases, also called regular phases,
are related to pseudo-equilibrium regions or pseudo-periodic solutions. The bursts corre-
spond to chaotic behavior [1–4]. Intermittency has been observed in engineering, physics,
medicine, chemistry, and economy [5–14]. In addition, intermittency has been associated
with the symmetry breaking in chaotic and stochastic systems [15,16]. Therefore, a more
complete and accurate description of the intermittency phenomenon would be applied in
several subjects. In the classic theory, intermittency was classified into three types, I, II and
III, and later, other types were introduced [17–23].

One-dimensional maps are widely used to study chaotic intermittency [1–4]. These
maps have a mechanism to reinject the trajectories from the chaotic region to the laminar
one, which determines the reinjection probability density (RPD) function [1,3]. The RPD
function describes the probability of the trajectories to be reinjected at each point of the
laminar interval. Usually, once the RPD is calculated, other statistical functions can be
obtained as the probability density of the laminar lengths (PDLLs), the characteristic
relation, etc. The reinjection process can be very complex as indicated in [24]. Accordingly,
an accurate calculation of the RPD function and other statistical properties is essential to
explain the intermittency phenomenon.

We note that there was not a general methodology to obtain the RPD, and distinct
schemes were utilized. The classical theory of intermittency considers a uniform RPD
function. This assumption generates the classic characteristic relations, which establish how
the average laminar length tends to infinity as a control parameter tends to zero [1,2,25].
A more general RPD has been introduced in the last few years. Accordingly, the char-
acteristic relations were generalized too. To calculate this general RPD, the M function
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methodology was developed, which has worked accurately for maps with types I, II, III
and V intermittencies without and with noise. The M function methodology uses a less
restrictive assumption of a constant density at points that govern the reinjection process,
i.e., pre-reinjection points [3,26–35].

In this paper, we introduce a new methodology to evaluate the RPD function, φ(x),
and other statistical properties. We call it the density technique. To develop this technique,
we use the Perron–Frobenius operator and the invariant density of the map. This study
does not introduce assumptions about the RPD in the laminar interval, as does the classical
theory, or the map density at pre-reinjection points, as does the M function methodology,
because it uses the invariant density of the map. To validate the new theoretical equations,
we analyze the cusp map [36,37] and the classical Manneville map [4,38]. The cusp map
is symmetric about the axis x = 0, and the Manneville map has no geometric symmetry.
Therefore, we study the new methodology in symmetric and non-symmetric maps. We
carry out several comparisons between the theoretical results here presented, the classical
theory of intermittency, the M function methodology, and numerical data.

2. The Perron–Frobenius Operator

The Perron–Frobenius operator is used here to transform random variables. Therefore,
we briefly describe this operator. A more complete explanation about the Perron–Frobenius
operator can be found in [37,39].

Let us study a family of evolution operators Ft(x) : D→ D, such as F0 = identity and
Ft1+t2 = Ft1 ◦ Ft2 , where D is a compact manifold, x ∈ D, and t is the evolution variable. If t
takes only discrete values, the operator Ft(x) is a map. There are, at least, two formulations
to describe the behavior of Ft(x). One formulation corresponds to study the evolution of
individual trajectories, the other one considers the evolution of the trajectories’ density.

For Ft(x) : R → R, the Perron–Frobenius operator evaluates the evolution of the
trajectories’ density. We analyze a map y = F(x), which transforms some interval ∆0 ⊂ R
in another interval ∆ ⊂ R. Then, x ∈ ∆0 and y ∈ ∆. In ∆0, the density of trajectories
is ρ0(x), while in ∆ the trajectories’ density is ρ(y). The Perron–Frobenius operator, L,
evaluates the density ρ from ρ0, and we write ρ = L ◦ ρ0. If ∆ = [a, y], where y is variable,
the Perron–Frobenius operator calculates the density ρ(y)

ρ(y) =
d

dy

∫
F−1[a,y]

ρ0(x) dx = ρ0(F−1(y))
∣∣∣∣dF−1(y)

dy

∣∣∣∣ . (1)

Note that Equation (1) supposes that F(x) is differentiable and invertible with con-

tinuous d F−1(x)
d x [39]. On the other hand, the theoretical formulation of the M function

methodology requires that d F(x)
d x exists [3,30].

Let us now introduce a map y = F(x), which is piecewise differentiable and satisfies
|F′(x)| 6= 0, except in a finite number of critical points. Suppose that ∆ is an interval con-
taining no critical values, and suppose that F−1(∆) is the union of finitely many intervals,
Ij, each of which is mapped monotonically onto ∆, then the Perron-Frobenius operator
allows us to evaluate the density evolution:

ρ(y) = ∑
y=F(x)|Ij

ρ0(x)∣∣∣ dF(x)
dx

∣∣∣
∣∣∣∣∣∣∣

Ij

, with j = 1, ..., z (2)

where z is the number of intervals.

3. Evaluation of Statistical Properties

In this section, we calculate several functions and parameters to describe chaotic
intermittency. First, we study the RPD function, then we analyze other statistical properties:
the PDLL function, the characteristic relation, the intermittency factor, the number of
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iterations in the laminar and non-laminar phases, and the number of times that a trajectory
crosses the boundary between laminar and non-laminar zones.

3.1. Evaluation of the RPD

The probability measure in an interval S can be written as

P(S) = lim
N→∞

1
N

N

∑
n=0

JS(xn) , (3)

where JS(x) is the characteristic function of the interval S

JS(x) =
{

1, if x ∈ S
0, if x 6∈ S .

(4)

Therefore, the probability measure shows the frequency that the trajectory reaches the
interval. We can relate the invariant density, ρ(x), with the probability measure, P(S), by

P(S) =
∫

S
ρ(x)dx . (5)

Now, we divide the whole data series into three subsets

{xn} = {xn′} ∪ {xn′′} ∪ {xn′′′} . (6)

First, we select xn′+1 ∈ S and in the preceding iteration it has already been there, that
is JS(xn′+1) = 1 and JS(xn′) = 1. For the next one, we have xn′′+1 ∈ S but in the preceding
period it has not been there, that is JS(xn′′+1) = 1 and JS(xn′′) = 0. Finally, xn′′′ 6∈ S. Note
that there is no intersection between them.

{xn′} ∩ {xn′′} = {xn′′} ∩ {xn′′′} = {xn′′′} ∩ {xn′} = ∅ . (7)

Therefore, the probability measure P(S) can be written as

P(S) = lim
N→∞

1
N

N

∑
n′=0

JS(xn′) + lim
N→∞

1
N

N

∑
n′′=0

JS(xn′′) . (8)

The first term in the RHS is the probability for the trajectory to be in S when in the
previous iteration it has been there. If S = IL (where IL is the laminar interval), then, only
the second term in the RHS determines the RPD function, φ(x), through the relation

lim
N→∞

1
N

N

∑
n=0

JIL(xn′′) = w
∫

IL

φ(x)dx . (9)

The weight w is included because it is current to normalize the RPD function over the
laminar interval IL as

∫
IL

φ(x)dx = 1. Therefore, to obtain the RPD function, the sum in
Equation (2) must exclude the contributions that do not generate reinjection in the laminar
zone [3,40]

φ(x) = w
n

∑
j 6=l

∣∣∣∣∣ dF−1
j (x)

dx

∣∣∣∣∣ρ(F−1
j (x)) , (10)

where l indicates the intervals that do not generate reinjection and ρ(F−1
j (x)) is the den-

sity in the preceding iteration to reinjection. The weight w can be calculated from the
normalization condition:∫

IL

φ(x) dx =
n

∑
j 6=l

∫
I−1
L

ρ(F−1
j (x)) dx = 1 . (11)
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We can organize the intervals Ij following{
xn′−1 ∈ Ij, with j = 1, ...h
xn′′−1 ∈ Ik, with k = h + 1, ...z .

(12)

Therefore, Equation (2) can be written as

ρ(y) = ∑ y=F(x)|Ij
ρ0(x)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣

Ij

+ ∑ y=F(x)|Ik
ρ0(x)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣

Ik

with j = 1, ..., h, and k = h + 1, ..., z .

(13)

If the map F(x) has an invariant density, ρ, it verifies ρ = L ◦ ρ. Then, Equation (13)
becomes

ρ(y) = ∑ y=F(x)|Ij
ρ(x)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣

Ij

+ ∑ y=F(x)|Ik
ρ(x)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣

Ik

with j = 1, ..., h, and k = h + 1, ..., z .

(14)

Using Equations (10) and (14), the RPD function can be calculated by two alternative
equations. The first one is

φ(y) = w ∑
y=F(x)|Ik

ρ(x)∣∣∣ dF(x)
dx

∣∣∣
∣∣∣∣∣∣

Ik

with k = h + 1, ..., z , (15)

and the second one results

φ(y) = w

ρ(y)− ∑
y=F(x)|Ij

ρ(x)∣∣∣ dF(x)
dx

∣∣∣
∣∣∣∣∣∣∣

Ij

 with j = 1, ..., h . (16)

Equation (15) calculates the RPD from points outside the laminar interval that are
reinjected inside it, i.e., points xn′′ that verify JS(xn′′+1) = 1 and JS(xn′′) = 0. In contrast,
Equation (16) evaluates the RPD function by subtracting from the invariant density points
that were in the laminar interval at the previous iteration and that remain in it, i.e., points
xn′ that verify JS(xn′+1) = 1 and JS(xn′) = 1. Finally, the RPD function must satisfy the
normalization condition given by Equation (11).

We emphasize that Equations (15) and (16) establish new analytical relationships
between the invariant density, ρ, and the RPD function, φ, for chaotic intermittency.

3.2. Evaluation of Other Statistical Properties

For each reinjected point x, there is a laminar length l(x), which determines the
number of iterations that the trajectory needs to move from x to the boundary of the
laminar interval c. Thus, the PDLL function establishes the probability of finding laminar
intervals of length l. Usually, the PDLL function is obtained from the RPD function as
follows [1,3]

ψ(l, c) = φ(y(l))
∣∣∣∣dy(l)

dl

∣∣∣∣ . (17)

Here, we evaluate the PDLL function using the invariant density of the map without
calculating previously the RPD function. If we introduce Equation (15) in Equation (17),
we obtain

ψ(l, c) = w ∑
y=F(x)|Ik

ρ(x(l))
∣∣∣∣dx(l)

dl

∣∣∣∣
∣∣∣∣∣∣

Ik

with k = h + 1, ..., z , (18)
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where x represents the pre-reinjection points, y = F(x) and y ∈ IL. From the last equation,
we calculate the probability density of the laminar lengths directly from the invariant
density of the map.

In addition, the characteristic relation, L = L(ε), can be calculated from the invari-
ant density

L =
∫

l∈IL

ψ(l, c) l dl = w
∫

F−1(IL)
∑

y=F(x)|Ik

l(x) ρ(x)

∣∣∣∣∣∣
Ik

dx with k = h + 1, ..., z , (19)

where L is the average laminar length.
Directly from the invariant density, we can determine the “time” that the trajectory

spends in laminar and non-laminar behaviors. Let us consider a process with Nt = Nl + Nc
iterations. Where Nl and Nc are the numbers of iterations inside and outside of the laminar
interval, respectively,

Nl =
∫

IL

ρ(x) dx , Nc =
∫

IC

ρ(x) dx , (20)

IT = IL ∪ IC is the interval where the map is defined, and there is no intersection between
IL and IC: IL ∩ IC = ∅. The relation between them is

σ =

∫
IL

ρ(x) dx∫
IC

ρ(x) dx
. (21)

Note that σ = σ(ε), where ε is the parameter controlling the route from regular to
chaotic behavior.

From the previous relation, we can obtain the average non-laminar length, C

C =
L
σ

, (22)

where the average laminar length, L, is given by Equation (19).
The intermittency factor, γ, determines the probability that a trajectory is outside the

laminar interval. It can be calculated from the invariant density as

γ =

∫
IC

ρ(x) dx∫
IT

ρ(x) dx
=
∫

IC

ρ(x) dx . (23)

Finally, the number of times a trajectory crosses the boundary between the laminar
and non-laminar interval results

Nlc =
Nt

L
(

1
σ + 1

) . (24)

Note that γ and Nlc also depend on ε.
For a map with intermittency, Equations (18)–(24) allow us to directly calculate the

probability density of the laminar lengths, the average laminar and non-laminar lengths,
the characteristic relation, the number of iterations in laminar and non-laminar phases,
the intermittency factor, and the number of crosses between the laminar and non-laminar
zones without the evaluation of the reinjection probability density function.

4. Application to the Cusp Map

Let us introduce the following map:

F(x) = 1 + ε− 2
√
|x| . (25)
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Note that for ε = 0, the cusp map is recovering [36,37]. For ε = 0, the map has a fixed
point at x0 = −1, which disappears for ε > 0, and for 0 < ε � 1 type-I intermittency
occurs. Figure 1 shows the map given by Equation (25) for ε = 0.0001. Note that the cusp
map given by Equation (25) has symmetry about x = 0.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 1. Cusp map for ε = 0.0001.

The cusp map has an invariant density ρ(x) [37]

ρ(x) =
1− x

2
. (26)

For the map (25), the number of intervals is z = 2, and j = 1, k = 2. In accordance
with Equation (15), the RPD function results

φ(y) = w
ρ(x)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣∣

I2

, (27)

and using Equation (16), the RPD function can be calculated as

φ(y) = w

ρ(y)− ρ(x)∣∣∣ dF(x)
dx

∣∣∣
∣∣∣∣∣∣

I1

 , (28)

if y = 1− 2
√
|x|, I1 is defined as

x1 = F−1
1 (y) = −

(
1− y

2

)2
, x1 ∈ I1 = [−1, 0) , (29)

and I2

x2 = F−1
2 (y) =

(
1− y

2

)2
, x2 ∈ I2 = (0, 1] . (30)

The derivative |d F(x)/dx|x1,x2
is∣∣∣∣d F(x)
dx

∣∣∣∣
x1,x2

=
2

1− x
. (31)
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Then, from Equations (26), (27) or (28) and (31), the RPD can be obtained

φ(x) = w
(

1− x
2

(
1
2
− (1− x)2

8

))
, (32)

where w is calculated from the normalization condition, Equation (11)

∫ F−1
2 (x0+c)

F−1
2 (x0)

ρ(F−1
2 (x)) dx =

∫ x0+c

x0

φ(x) dx = 1 , (33)

x0 is the fixed point, and c is the semi-amplitude of the laminar interval, IL = [x0, x0 + c].

Results

To validate the previous theoretical equations, we perform the comparison between the
RPD function given by Equation (32) with those calculated by the M function methodology,
the classical theory, and with numerical data. A detailed explanation of the M function
methodology can be found in Refs. [3,29–35]. The RPD calculated using the M function
methodology results

φ(x) =
α + 1
cα+1 (x− x0)

α . (34)

To evaluate the Equation (34), we use the function M(x) defined as

M(x) =


∫ x

xs τ φ(τ) dτ∫ x
xs φ(τ) dτ

if
∫ x

xs
φ(τ)dτ 6= 0

0 if
∫ x

xs
φ(τ)dτ = 0,

(35)

where xs < x for all reinjected points x. Note that the function M(x) can be calculated as
the average of reinjection points in the interval [xs, x], then, if we arrange the reinjections
following the relation xj < xj+1, a very simple evaluation of the function M(x) can
be obtained

M(xr) ≈
∑r

j=1 xj

r
. (36)

We emphasize that Equation (36) does not need to know the function φ(x). For the
RPD given by Equation (34), M(x) is a linear function

M(x) = m (x− x0) x > x0 (37)

where α in Equation (34) is obtained from the slope m

α =
2 m− 1
1−m

. (38)

On the other hand, the classical theory of intermittency assumes uniform reinjection,
φ(x) = constant. Note that the classical theory is only a particular case of Equation (34) for
α = 0 (m = 1/2).

We emphasize that, to obtain Equation (34), the assumption of constant density at
pre-reinjection points was introduced (see [3,30]).

To calculate the numerical data, we generate an iterative process for the map given by
Equation (25); also, we divide the laminar interval into Ns sub-intervals, then we calculate
the histogram of reinjections and the numerical RPD function. To obtain the histogram, we
consider at least 50 Ns reinjections, which implies millions of iterations.

We develop several numerical tests for a different number of reinjected points N,
and we split the laminar interval into Ns sub-intervals where the RPD functions are
evaluated. To study the convergence process of the theoretical RPD functions given by



Symmetry 2021, 13, 935 8 of 18

Equations (32) and (34) and the classical theory of intermittency regarding the numerical
data, we evaluate

Er =
∑

j=Ns
j=1

|φt(j)−φn(j)|
φt(j)

Ns
, Dr =

√√√√∑
j=Ns
j=1

(φt(j)−φn(j))2

(φt(j))2

N2
s

, (39)

where φt(j) and φn(j) are the theoretical and numerical values of the RPD in the sub-
interval j.

We study two sets of tests. For the first one, we consider the following parameters
Ns = 500, ε = 0.0001, and c = 0.2. Figure 2a,b show ln(Dr) and ln(Er) respectively, for
different numbers of reinjected points, N from 100,000 to 2,500,000. We emphasize that
as the number of reinjected points increases, the accuracy of the density technique and
the M function methodology increases too. In addition, we note that the errors generated
by Equation (32) are lower than those obtained from Equation (34). On the other hand,
the M function methodology obtains α ≈ 0.9056. Theoretical and numerical RPDs are
shown in Figure 3, the black points are the numerical data, the blue, green, and red lines are
the RPD functions given by Equations (32) and (34) and the classical theory, respectively.
From Figures 2a,b and 3, we can observe the convergence and accuracy of the theoretical
formulation here presented.

0 1 2

10 6

-7

-6

-5

-4

-3

(a) Dr.

0 1 2

10 6

-4

-3

-2

-1

(b) Er.

Figure 2. ln(Dr) and ln(Er) vs. N for ε = 0.0001, c = 0.2, and Ns = 500. Blue line: density technique.
Green line: M function methodology. Red line: classical theory.

-1 -0.95 -0.9 -0.85 -0.8
0

2

4

6

8

10

Figure 3. RPD function for ε = 0.0001, c = 0.2, Ns = 500, and N = 2,500,000. Blue line: density tech-
nique. Green line: M function methodology. Red line: classical theory. Black points: numerical data.
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To calculate the rate of convergence of the results, we utilize the sequence { 1
Np }∞

N=1
that tends to zero when N tends to infinite, and we must verify

|Dr| ≤ Kd
1

Npd
, |Er| ≤ Ke

1
Npe

, (40)

where Kd, Ke, pd and pe are positive real numbers. Then, we can say that {Dr}∞
N=1 and

{Er}∞
N=1 converge to zero with rate, or order, of convergence O( 1

Npd ) and O( 1
Npe ), respec-

tively [41]. For this test, we find that pd ≈ 0.45 and pe ≈ 0.5. Therefore, Dr and Er converge
to zero when N tends to infinity.

The second set of tests uses the following parameters Ns = 500, ε = 0.001, and
c = 0.5. Figure 4a,b show ln(Dr) and ln(Er), respectively, for N = 100,000–2,500,000.
Similar to the previous tests, as the number of reinjected points increases the accuracy of
RPD calculated by the M function and the new theoretical formulation increases too. Again,
the classical theory has the worst behavior. Additionally, we note that the errors generated
by Equation (32) are lower than those obtained from Equation (34). As in the previous
set of tests, the M function methodology obtains α ≈ 0.9056. Theoretical and numerical
RPDs are shown in Figure 5, the black points are the numerical data, the blue, green, and
red lines are the RPD functions given by Equations (32) and (34) and the classical theory,
respectively.

0 1 2

10 6

-7

-6

-5

-4

(a) Dr.

0 1 2

10 6

-4

-3

-2

-1

(b) Er.
Figure 4. ln(Dr) and ln(Er) vs. N for ε = 0.001, c = 0.5, and Ns = 500. Blue line: density technique.
Green line: M function methodology. Red line: classical theory.

-1 -0.9 -0.8 -0.7 -0.6
0

1

2

3

4

Figure 5. RPD function for ε = 0.001, c = 0.5, Ns = 500, and N = 2,500,000. Blue line: density tech-
nique. Green line: M function methodology. Red line: classical theory. Black points: numerical data.

If we apply Equation (40) for the density technique, we obtain pd ≈ pe ≈ 0.5, then Dr
and Er converge to zero for N → ∞.
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5. Application to the Manneville Map

The following map

F(x) = (1 + ε) x + (1− ε) x2 (mod 1) (41)

is the classical map introduced by Manneville [4]. For this map, x0 = 0 is a stable fixed point
for −2 < ε < 0, and for 0 < ε � 1, the point loses its stability and type II intermittency
occurs. The map is shown in Figure 6 for ε = 0.001. We highlight that the Manneville map
given by Equation (41) has no geometric symmetry.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 6. Manneville map for ε = 0.001.

The invariant density for this map was deduced in [42]

ρ(x) = K
(

1
ε + (1− ε) x

+
1

1 + (1− ε) x

)
, x ∈ [0, 1) , (42)

we have introduced K to normalize the density inside the interval [0, 1)∫ 1

0
ρ(x) dx = 1 ⇒ K =

1− ε

ln(2− ε)− ln(ε)
. (43)

The number of intervals is z = 2, with j = 1, and k = 2. From Equation (15), the RPD
function can be obtained as:

φ(y) = w
ρ(x2)∣∣∣ dF(x)

dx

∣∣∣
∣∣∣∣∣∣

I2

. (44)

The points x2 inside the interval I2 are

x2(y) = F−1
2 (y) =

1 + ε− (5 + ε2 + 4y− 2ε(1 + 2y))0.5

2(ε− 1)
, (45)

where x2 ∈ I2 = [xm, 1) and y = F2(x) = (1 + ε) x + (1− ε) x2 − 1.
The density ρ(x2) is written in function of y as

ρ(x2(y)) =
(−1 + ε)

√
5 + ε2 + 4y− 2ε(1 + 2y)

(−1 + (−1 + ε)y)(ln(2− ε)− ln(ε))
, (46)

and ∣∣∣∣dF(x)
dx

∣∣∣∣
x2

=
√
|5 + ε2 + 4y− 2ε(1 + 2y)| . (47)
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From these last equations and the normalization condition, we obtain

φ(y) =
(1− ε)

((1− ε)y + 1) ln(1 + c(1− ε))
. (48)

Results

We present some numerical and theoretical results for the Manneville map
(Equation (41)). We study two sets of tests with different parameters. The first set uses
ε = 0.001, c = 0.1, N = 100,000–2,500,000 and Ns = 500. The results are shown in
Figures 7a,b and 8. Figure 7a,b show the evolution of ln(Dr) and ln(Er) vs. N. The results
evaluated by the density technique are the dashed blue line, the green line corresponds to
the M function methodology, and the red line to the classical theory. From these figures,
we observe that the density technique approximates more accurately the RPD than the
M function methodology and the classical theory. Figure 8 shows the RPD functions, the
blue line is the RPD calculated by the density technique (Equation (48)), the green line is
the RPD obtained by M function methodology (Equation (34)), the red line represents the
classical RPD, and the black points are the numerical data. We note that the theoretical
RPD calculated by Equation (48) captures accurately the numerical data. In addition, we
emphasize that the RPD is approximately constant.

To evaluate the rate of convergence of these results, we use the Equation (40). For this
set of tests, we obtain pd ≈ 0.45 and pe ≈ 0.4. Then, Dr and Er converge to zero when N
tends to infinity with a rate of convergence O( 1

N0.45 ) and O( 1
N0.4 ), respectively.
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(a) Dr.
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(b) Er.
Figure 7. Manneville map. ln(Dr) and ln(Er) vs. N for ε = 0.001, c = 0.1, and Ns = 500. Blue line:
density technique. Green line: M function methodology. Red line: classical theory.
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Figure 8. Manneville map. RPD functions for ε = 0.001, c = 0.1, Ns = 500, and N = 2,500,000. Blue
line: density technique. Green line: M function methodology. Red line: classical theory. Black points:
numerical data.
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For this test, with Nt = 500,000,000, we also calculate Nl , Nc, σ, C, γ, and Nlc. The
comparison between numerical and theoretical results is shown in Table 1. The first file
has the theoretical values calculated using Equations (18)–(24), the second file shows the
numerical data, and the third one contains the percentage error

E =
Vt −Vn

Vn
100 . (49)

where Vt and Vn are the theoretical and numerical values, respectively.

Table 1. Test 1: ε = 0.001 and c = 0.1. Comparison between numerical and theoretical values for Nl ,
Nc, σ, L, C, γ, and Nlc.

Nl Nc σ L C γ Nlc

Theoretical 0.620 0.380 1.629 47.97 29.448 0.380 6,458,394
Numerical 0.622 0.378 1.645 49.23 29.076 0.378 6,218,278
Error (E) −0.32% 0.529% −0.97% −2.55% 1.278% 0.529% 3.86%

From Table 1, good accuracy can be observed between theoretical results and numeri-
cal data.

Using Equation (19), we calculate the characteristic relation for c = 0.1. Figure 9 shows
the numerical (red points) and theoretical (blue points) results. Note that the characteristic
relation can be written as

L = l0 + A ln(ε) , (50)

The dashed red and blue lines are the linear interpolation for the numerical and
theoretical data with A = −10.24 and A = −10.38, respectively. Note that A ∼= −1/c.
Therefore, the characteristic relation verifies L ∝ ln(ε).

-15 -10 -5
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40

60

80

100

120

140

Figure 9. Manneville map. Characteristic relation for c = 0.1. Blue points: density technique. Red
points: numerical data. Blue dashed line: linear interpolation for theoretical data, A = −10.38. Red
dashed line: linear interpolation for numerical data, A = −10.24.

Note that for c� 1, Equation (48) can be approximated in the laminar interval [0, c)
by a constant function

φ(x) ≈ 1/c . (51)

For an RPD that satisfies the last equation, the characteristic relation is given by
Equation (50) with A = −1/c (see Ref. [38]).
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For the second set, we use the following parameters, ε = 0.0001, c = 0.05, N = 100,000–
2,500,000 and Ns = 350. Figures 10a,b and 11 show the results. The evolution of ln(Dr)
and ln(Er) for different N is shown in Figure 10a,b. The blue, green, and red lines cor-
respond to the density technique, the M function methodology, and the classical theory,
respectively. The best results are obtained for the density technique. Figure 11 shows
the RPD functions, the blue, green and, red lines are the RPDs calculated by the density
technique (Equation (48)), the M function methodology (Equation (34)), and the classical
theory, respectively, the black points are the numerical data. The theoretical RPD calculated
by density technique captures accurately the numerical data.

The rate of convergence of these results is evaluated by Equation (40). We obtain
pd ≈ pe ≈ 0.45. Accordingly, Dr, Er → 0 for N → ∞ with a rate of convergence O( 1

N0.45 ).

0 1 2
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(a) Dr.
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(b) Er.

Figure 10. Manneville map. ln(Dr) and ln(Er) vs. N for ε = 0.0001, c = 0.05, and Ns = 350. Blue
line: density technique. Green line: M function methodology. Red line: classical theory.
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18
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Figure 11. Manneville map. RPD functions for ε = 0.0001, c = 0.05, Ns = 350, and N = 2,500,000.
Blue line: density technique. Green line: M function methodology. Red line: classical theory. Black
points: numerical data.

We observe that the better results are calculated using the density technique here
introduced.

In addition, we calculate with Nt = 500,000,000 the following variables: Nl , Nc, σ, C, γ,
and Nlc. The comparison between numerical and theoretical results is shown in Table 2. The
first, second, and third files show the theoretical values calculated using Equations (18)–(24),
the numerical data, and the percentage error given by Equation (49), respectively.
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Table 2. Test 2: ε = 0.0001 and c = 0.05. Comparison between numerical and theoretical values for
Nl , Nc, σ, L, C, γ, and Nlc.

Nl Nc σ L C γ Nlc

Theoretical 0.6326 0.3674 1.722 126.89 73.68 0.3674 2,492,860
Numerical 0.632 0.368 1.717 128.16 74.64 0.368 2,468,143
Error (E) 0.095% −0.16% 0.29% −0.99% −1.28% −0.16% 1%

From Table 2, high accuracy can be observed between calculated numerical and
theoretical results.

We evaluate, using Equation (19), the characteristic relation for c = 0.05. Figure 12
shows the numerical (red points) and theoretical (blue points) results. The red and blue
dashed lines are the linear interpolations of the numerical and theoretical data, respectively.
The characteristic relation calculated by the numerical data can be approximated by (red
dashed line)

L = −19.99 ln(ε)− 55.43 (52)

and the characteristic relation evaluated using theoretical results is (blue dashed line)

L = −20.14 ln(ε)− 57.7 (53)

Note that both equations verify the characteristic relation given by Equation (50) with
A ∼= −1/c.

-15 -10 -5

50

100

150

200

Figure 12. Manneville map. Characteristic relation for c = 0.05. Blue points: density technique. Red
points: numerical data. Blue dashed line: linear approximation for theoretical data, A = −20.14. Red
dashed line: linear approximation for numerical data, A = −19.99.

The relation between the number of iterations in laminar and non-laminar phases, σ,
can be calculated. Figure 13 shows this relation. We observe that σ has a linear variation
with ln(ε). Remember that σ = L/C, where L has a linear dependence on ln(ε), and
L + C = constant; therefore, C is also a linear function of ln(ε), which implies that σ is a
linear function with ln(ε). σ increases as ε decreases, that is, the trajectory spends more
time in the laminar zone for lower ε. From the figure, we note high accuracy between the
numerical and theoretical results.
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Figure 13. Manneville map. σ(ε) for c = 0.05. Blue points: density technique. Red points: numerical
data. Blue dashed line: linear interpolation of the theoretical results. Red dashed line: linear
interpolation of the numerical data.

Finally, we calculate the number of crosses between the laminar and non-laminar
phases by the total number of iterations for several values of the control parameter ε

Nlc
Nt

=
σ

L (σ + 1)
, (54)

Figure 14 shows the comparison between numerical and theoretical results. The red
points and the red dashed line are the numerical data, blue points and the dashed blue
line the theoretical ones. We observe good accuracy between them. As ε grows, so does
Nlc. This behavior mainly occurs because the average laminar length, L, decreases for
increasing ε.
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Figure 14. Manneville map. Number of crosses between the laminar and non-laminar phases for
c = 0.05. Blue points and line: density technique. Red points and line: numerical data.

6. Conclusions

We presented a new methodology to evaluate the reinjection probability density, the
probability density of the laminar lengths, the characteristic relation, the number of iter-
ations in laminar and non-laminar phases, the intermittency factor, and the number of
crosses between the laminar and non-laminar zones in chaotic intermittency. This method-
ology is obtained using the Perron–Frobenius operator to transform random variables, and
we called it the density technique because it uses the invariant density of the maps. We
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introduced and applied this technique to calculate the statistical properties in two maps,
the cusp map (Equation (25)) and the classical Manneville map (Equation (41)). The cusp
map given by Equation (25) has symmetry about the axis x = 0; however, the Manneville
map has no symmetry. Accordingly, we applied the new methodology in symmetric and
non-symmetric maps.

The classical studies about intermittency assume uniform RPD (see [1,2] and references
therein). In the last few years, it has been found that the reinjection process is more complex,
where uniform reinjection is only a case. This more complex process generates different
characteristic relations that depend on the RPD function (see [3]). Therefore, an accurate
evaluation of the RPD function is very important to calculate other statistical variables
and to describe correctly the intermittency phenomenon. Recent research considers a less
restrictive assumption of a constant density at points that govern the reinjection process,
i.e., pre-reinjection points [3,30,40]. This assumption allows for obtaining exponential RPD
functions (see Equation (34)).

The new methodology described in this paper does not introduce any assumption
about the density at pre-reinjection points; it uses the invariant density of the map to calcu-
late the RPD function and the other statistical properties (see Equations (15), (16), (18)–(24)).
Additionally, Equations (15), (16), (18)–(24) determine explicitly the relationship between
the statistical properties in chaotic intermittency and the map invariant density. Since
the density technique does not introduce any hypothesis about density at pre-reinjection
points, the new RPD functions are more accurate than those calculated with M function
methodology and the classical theory (constant RPDs).

We carried out several comparisons of the theoretical results obtained by the density
technique with those calculated by the M function methodology, by the classical theory
of intermittency, and with numerical data. For all tests, the best results were obtained
by the density technique. The results of the density technique are more accurate than
those of the M function methodology and the classical theory. We emphasize that the
RPD functions calculated with the density technique have broader behavior than the one
expected by uniform reinjection, as can be seen in Equations (32) and (48) moving away
from constant RPD.

To evaluate the convergence rate, we used two different error measures, Er and Dr,
given by Equation (39). For both studied maps, we have performed several tests with
different values of the parameter ε, the length of laminar interval c, and the number of
sub-intervals Ns. In all these tests, for the density technique, the error measures, Dr and
Er, decrease as the number of reinjected points increases, showing that the new theoretical
evaluation approximates more accurately the random values of the numerical RPD as the
number of reinjected points grows. We have calculated the rate of convergence of Dr and
Er, and we have found that the process is convergent with the rate of convergence O( 1

Np )
with 0.4 / p / 0.5. In addition, we emphasize that the density technique works better than
classical theory and obtains RPDs with more accuracy than the M function methodology.

We have evaluated the characteristic relation, the number of iterations in laminar
and non-laminar phases, the intermittency factor, and the number of crosses between
the laminar and non-laminar phases (see Figures 12–14, and Tables 1 and 2). In all cases,
we have found high accuracy between the new theoretical results and the numerical
data. Additionally, the new methodology has shown accuracy for maps with and without
symmetry. Therefore, the reinjection process is independent of the map symmetry.

To predict theoretical RPD functions, the density technique has the advantage that
does not need to use numerical or experimental data. However, it has the drawback that we
have to know the invariant density of the map. We can conclude that the density technique
is a useful tool to calculate the statistical properties of the intermittency phenomenon.

Author Contributions: Conceptualization, S.E. and E.d.R.; methodology, S.E.; software, S.E.; valida-
tion, S.E., D.L.; formal analysis, S.E. and E.d.R.; investigation, S.E. and E.d.R.; resources, S.E., E.d.R.
and D.L.; writing—original draft preparation, S.E.; writing—review and editing, S.E. and E.d.R.;



Symmetry 2021, 13, 935 17 of 18

visualization, S.E. and D.L.; supervision, E.d.R.; project administration, S.E.; funding acquisition, S.E.
and E.d.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by SECyT of Universidad Nacional de Córdoba, and the Spanish
Ministry of Science and Innovation under grant no. RTI2018-094409-B-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to SECyT and FCEFyN of Universidad Nacional de
Córdoba, to ETSIAE of Universidad Politécnica de Madrid, and to the Spanish Ministry of Science
and Innovation (Project RTI2018-094409-B-I00).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PDLL Probability density of the laminar lengths
RHS Right-hand side
RPD Reinjection probability density function

References
1. Schuster, H.; Just, W. Deterministic Chaos; Wiley VCH: Mörlenbach, Germany, 2005.
2. Nayfeh, A.; Balachandran, B. Applied Nonlinear Dynamics; Wiley: New York, NY, USA, 1995.
3. Elaskar, S.; del Rio, E. New Advances on Chaotic Intermittency and Its Applications; Springer: Cham, Switzerland, 2017.
4. Manneville, P. Intermittency, self-similarity and 1/ f spectrum in dissipative dynamical systems. J. Phys. 1980, 41, 1235–1243.

[CrossRef]
5. Dubois, M.; Rubio, M.; Berge, P. Experimental evidence of intermittencies associated with a subharmonic bifurcation. Phys. Rev.

Lett. 1983, 16, 1446–1449. [CrossRef]
6. Stavrinides, S.; Miliou, A.; Laopoulos, T.; Anagnostopoulos, A. The intermittency route to chaos of an electronic digital oscillator.

Int. J. Bifurc. Chaos 2008, 18, 1561–1566. [CrossRef]
7. Krause, G.; Elaskar, S.; del Rio, E. Type I intermittency with discontinuous reinjection probability density in a truncation model of

the derivative nonlinear Schrödinger equation. Nonlinear Dynam. 2014, 77, 455–466. [CrossRef]
8. Sanchez-Arriaga, G.; Sanmartin, J.; Elaskar, S. Damping models in the truncated derivative nonlinear Schrödinger equation. Phys.

Plasmas 2007, 14, 082108. [CrossRef]
9. Nishiura, Y.; Ueyama, D.; Yanagita, T. Chaotic pulses for discrete reaction diffusion systems. SIAM J. App. Dyn. Syst. 2005, 4,

723–754. [CrossRef]
10. De Anna, P.; Le Borgne, T.; Dentz, M.; Tartakovsky, A.; Bolster, D.; Davy, P. Flow intermittency, dispersion and correlated

continuous time random walks in porous media. Phys. Rev. Lett. 2013, 110, 184502. [CrossRef] [PubMed]
11. Stan, C.; Cristescu, C.; Dimitriu, D. Analysis of the intermittency behavior in a low-temperature discharge plasma by recurrence

plot quantification. Phys. Plasmas 2010, 17, 042115. [CrossRef]
12. Chian, A. Complex System Approach to Economic Dynamics. Lecture Notes in Economics and Mathematical Systems; Springer: Berlin,

Germany, 2007.
13. Zebrowski, J.; Baranowski, R. Type I intermittency in nonstationary systems: Models and human heart-rate variability. Physica A

2004, 336, 74–86. [CrossRef]
14. Paradisi, P.; Allegrini, P.; Gemignani, A.; Laurino, M.; Menicucci, D.; Piarulli, A. Scaling and intermittency of brains events as a

manifestation of consciousness. AIP Conf. Proc. 2012, 1510, 151–161.
15. Fujisaka, H; Kamifukumito, H.; Inoue, M. Intermittency associated with the breakdown of the chaos symmetry. Prog. Theor. Phys.

1983, 69, 333–337. [CrossRef]
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