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On restricted diagonalization

Eduardo Chiumiento and Pedro Massey

Abstract

Let H be a separable infinite-dimensional complex Hilbert space, B(H) the alge-
bra of bounded linear operators acting on H and J a proper two-sided ideal of B(H).
Denote by UJ (H) the group of all unitary operators of the form I + J . Recall that
an operator A ∈ B(H) is diagonalizable if there exists a unitary operator U such that
UAU∗ is diagonal with respect to some orthonormal basis. A more restrictive no-
tion of diagonalization can be formulated with respect to a fixed orthonormal basis
e = {en}n≥1 and a proper operator ideal J as follows: A ∈ B(H) is called restricted
diagonalizable if there exists U ∈ UJ (H) such that UAU∗ is diagonal with respect to e.
In this work we give necessary and sufficient conditions for a diagonalizable operator
to be restricted diagonalizable. Our conditions become a characterization of those di-
agonalizable operators which are restricted diagonalizable when the ideal is arithmetic
mean closed. Then we obtain results on the structure of the set of all restricted diag-
onalizable operators. In this way we answer several open problems recently raised by
Beltiţă, Patnaik and Weiss.

2010 MSC: 22E65, 47B10, 47A53
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1 Introduction

Let H be a separable infinite-dimensional complex Hilbert space. An operator ideal J is
a two-sided ideal of the algebra of bounded linear operators B(H). Each operator ideal
has associated a subgroup of the unitary operators defined by UJ (H) := U(H) ∩ (I + J ),
where U(H) denotes the unitary group of H. Throughout, we fix an orthonormal basis
e = {en}n≥1 of H and we let D denote the corresponding algebra of diagonal operators.
We call an operator A ∈ B(H) diagonalizable if there exists a unitary U ∈ U(H) such that
UAU∗ ∈ D. In their study of Lie theoretic properties of operator ideals, Beltiţă, Patnaik
and Weiss introduced in [10] the notion of UJ (H)-diagonalizable operators with respect to e,
or simply, restricted diagonalizable operators, which refers to those diagonalizable operators
that can be diagonalized by a unitary U ∈ UJ (H). Furthermore, given two operator ideals
I, J , they offered the following versions of restricted diagonalization defined by the sets:

DJ ,I := {UDU∗ : D ∈ D ∩ I, U ∈ UJ (H)} ⊂ I.

For short, we write DJ := DJ ,J . In particular, the set of all restricted diagonalizable
operators is given by DJ ,B(H). In contrast to the notion of diagonalization, which is indepen-
dent of the orthonormal basis, we point out that when the operator ideal J is proper (i.e.
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{0} 6= J 6= B(H)), the choice of the orthonormal basis e plays a central role to determine
whether an operator is restricted diagonalizable.

The aim of this paper is twofold. On the one hand, we give necessary and sufficient
conditions for an arbitrary diagonalizable operator to be UJ (H)-diagonalizable with respect
to e (for a detailed description of these conditions see Eq. (1) below). On the other hand, we
study the structure of the self-adjoint part of DJ and the way it sits inside the self-adjoint
part of the ideal J . These results allow us to answer open problems stated in [10].

In order to put our results in perspective, we describe some of the contexts in which
restricted diagonalization has been considered. As a general framework, we mention the
theory of Banach-Lie groups, which deals with infinite dimensional Lie groups modeled on
Banach spaces. These groups have been useful to encode, in geometrical terms, several
structures arising in operator theory and its applications, and this has led to a fruitful
interaction between functional analytic and geometric techniques. The groups UJ (H) are
indeed Banach-Lie groups, whenever the operator ideal J admits a complete norm stronger
than the operator norm (see, e.g. [8, 32]). For instance, the well-known Schatten idealsSp(H)
(1 ≤ p ≤ ∞) satisfy this condition. The book [23] by P. de la Harpe is a standard reference
on these types of groups. Other references about Banach-Lie groups associated to operator
ideals and their homogeneous spaces are related to structure and representation theory of
Banach-Lie groups [9, 10, 31, 32], Banach Lie-Poisson spaces [11], infinite dimensional Khäler
geometry [36] and metric geometry of homogeneous spaces [3, 4, 21]. We also refer to the
books [8, 37] and the references therein for more information.

Motivated by the role of Cartan subalgebras in the structure theory of finite dimensional
Lie algebras, the authors in [10] studied these subalgebras in the setting of operator ideals on
an infinite dimensional separable Hilbert space. Cartan subalgebras were introduced there
as maximal abelian self-adjoint subalgebras of operator ideals. When the operator ideal J is
proper, the action of the group UJ (H) on the set of Cartan subalgebras defines smaller orbits
than the orbits provided by the full unitary group U(H). Among other results, they showed
that the action of UJ (H) on Cartan subalgebras has uncountable many distinct orbits. The
notion of restricted diagonalization was introduced there, and used in deriving this and other
results.

Additionally, we remark that restricted diagonalization had previously appeared in the
literature in some specific cases; see Hinkkanen [28] for a sufficient condition to belong to
DS2(H) (Hilbert-Schmidt operators case), and also the results about unitary equivalence
of projections contained in the works by Brown, Douglas and Fillmore [13], Strătilă and
Voiculescu [35], Carey [15], and Kaftal and Loreaux [25]. They respectively treated the cases
of when two orthogonal projections are unitary equivalent by means of a unitary in UJ (H)
for the ideals J = K(H) (compact operators), J = S2(H) (Hilbert-Schmidt operators), J
a symmetrically-normed ideal, and an arbitrary proper operator ideal. We point out that
these results rely on the notion of essential codimension of projections (see also [1, 7]), and
more recently, were reinterpreted in the light of restricted diagonalization by Loreaux [22] to
give a characterization of UJ (H)-diagonalization of projections.

This, in turn, allowed the characterization of those finite spectrum normal operators
that are UJ (H)-diagonalizable provided by Loreaux in the same work [22]. It is interesting
to notice that the motivations for this characterization are related with Arveson’s index
obstruction [5, 25] satisfied by the diagonals of certain normal operators with finite spectrum,
which is well known to be a generalization of Kadison’s integer condition [24] for the diagonals
of self-adjoint projections (for related work on diagonals of operators and index obstructions
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see [6, 12, 26, 29, 30]). Moreover, following the line of previous research on these topics,
Loreaux showed the deep relations between the study of several questions raised in [10] and
the work [13] on unitary equivalence modulo compact operators.

The contents of this paper are as follows. In Section 2 we present the necessary back-
ground on operator ideals on Hilbert spaces, essential codimension of projections and re-
stricted diagonalization.

In Section 3, we give necessary and sufficient conditions for an arbitrary (normal) di-
agonalizable operator A to be UJ (H)-diagonalizable with respect the orthonormal basis e
(Theorem 3.2). Let {Pn}Nn=1 (N ∈ N or N = ∞) denote the spectral projections of A
associated to its point spectrum (eigenvalues). Then our sufficient condition for restricted
diagonalization can be stated as follows: there exists a family {En}Nn=1 of projections in the
diagonal algebra D such that

N
∑

n=1

(I − En)Pn ∈ J and

N
∑

n=1

En(I − Pn) ∈ J , (1)

where both series are assumed to converge in the weak operator topology when N = ∞.
We observe that this condition is not merely analytic, it is also geometric in nature.

Indeed, it allows us to define part of the unitary operator that diagonalizes the operator
A by using a technique to construct local cross sections in many examples of homogeneous
spaces of unitary groups (see, e.g. [2, 3, 17]). Usually this technique is adapted to each
specific example of homogeneous space, though it is based on the well-known fact (which
goes back at least to [33]) that two orthogonal projections lying at distance less than one
must be unitary equivalent. We also remark here that an extension of previous work [16]
on UJ (H)-orbits of partial isometries and the essential codimension plays a key role in the
proof of our sufficient condition.

In case N ∈ N the condition in Eq. (1) is also necessary, so it complements Loreaux’s
characterization for UJ (H)-diagonalization of finite spectrum operators (see Theorem 3.1).
Furthermore, we show that under the assumption that J is an arithmetic mean closed ideal
(see [19, 27]), the condition in Eq. (1) turns out to be also a necessary condition for restricted
diagonalization, when N = ∞. In particular, Eq. (1) gives a complete characterization of
those diagonalizable operators which are UJ (H)-diagonalizable for an arbitrary arithmetic
mean closed operator ideal J . We conclude the section with some miscellaneous remarks
and consequences.

In Section 4 we obtain two results related with the way that the self-adjoint part of DJ

sits inside the self-adjoint part of J (Theorems 4.1 and 4.3). By using previous results on
restricted diagonalization, we further obtain a characterization of all the possible UJ (H)-
diagonalizations of arbitrary UJ (H)-diagonalizable operators (Theorem 4.5).

2 Preliminaries

Let H be a separable infinite-dimensional complex Hilbert space and let B(H) be the algebra
of bounded operators acting on H. For an arbitrary operator A ∈ B(H), we denote by R(A)
and N(A) the range and nullspace of A, respectively.

Operator ideals on Hilbert spaces. Our main references here are the classic book by
Gohberg and Krein [20], and the more recent approach in the work by Dykema, Figiel, Weiss,
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and Wodzicki [19]. By an operator ideal we mean a two-sided ideal J of B(H). We say that
the ideal is proper when {0} 6= J 6= B(H). A result that goes back to Calkin [14] states the
inclusions F(H) ⊆ J ⊆ K(H) for a proper operator ideal J , where F(H) and K(H) denote
the ideals of finite-rank operators and compact operators on H, respectively.

Let c↓0 = (c0(N)
+)↓ denote the set of non-negative, non-increasing sequences in c0 =

c0(N). A characteristic set Σ is a positive cone of c↓0, which is hereditary and invariant by
ampliations. The latter means that given {αn}n≥1 ∈ Σ, the sequence {(Dmα)n}n≥1 defined
by

(Dmα)n = αk if (k − 1)m+ 1 ≤ n ≤ km, k ≥ 1;

also satisfies {(Dmα)n}n≥1 ∈ Σ for all m ≥ 1. It is well known that there is a lattice
isomorphism between characteristic sets and proper operator ideals (see, e.g. [19, Thm. 4.2]).
Recall that the singular values of an operator A ∈ K(H) are the eigenvalues of |A| = (A∗A)1/2,
counting multiplicities and arranged in a non-increasing sequence s(A) := {sn(A)}n≥1. Then
one can assign to each characteristic set Σ the proper operator ideal

J (Σ) = {A ∈ K(H) : s(A) ∈ Σ}.

Conversely, the inverse maps a proper operator ideal J to the characteristic set defined by
Σ(J ) = {s(A) ∈ c↓0 : A ∈ J }.

There are several properties of operator ideals that can be described in terms of its
associated characteristic sets. An example of this situation is the notion of arithmetic mean
closed operator ideal that we now recall for later use. Given a sequence α = {αn}n≥1 ∈ c↓0,
the associated arithmetic mean sequence αa = {(αa)n}n≥1 ∈ c↓0 is defined by

(αa)n =
1

n
(α1 + . . .+ αn), n ≥ 1 .

Given two sequences α = {αn}n≥1 ∈ c↓0, β = {βn}n≥1 ∈ c↓0, we write α = O(β) when
αn ≤ Mβn for some constant M > 0 and all n ≥ 1. Then for a proper operator ideal
J ⊂ B(H), we consider the arithmetic mean closure of J , which is denoted by J −am, and
is defined as the proper operator ideal given by

J −am = {A ∈ K(H) : ∃α ∈ Σ(J ) , s(A)a = O(αa)} .

A proper operator ideal J is called arithmetic mean closed if J −am = J . This notion
becomes relevant due to the remarkable characterization of commutator spaces of operator
ideals in terms of arithmetic means [19]. We also refer to [27] for a thorough investigation
of arithmetic mean closed operator ideals.

For instance, note that the ideal of finite-rank operators F(H) is not arithmetic mean
closed. Furthermore, it is not difficult to check that F(H)−am = S1(H), where S1(H)
denotes the ideal of trace class operators.

Examples 2.1. We list some examples of arithmetic mean closed operator ideals. Let c00 =
c00(N) be the real vector space consisting of all sequences with a finite number of nonzero
terms. A symmetric norming function is a norm Φ : c00 → R satisfying the following prop-
erties: Φ(1, 0, 0, . . .) = 1 and Φ(a1, a2, . . . , an, 0, 0, . . .) = Φ(|aσ(1)|, |aσ(2)|, . . . , |aσ(n)|, 0, 0, . . .),
where σ is any permutation of the integers 1, 2, . . . , n and n ≥ 1. Then, using the singular
values of any compact operator A one can define:

‖A‖Φ := sup
k≥1

Φ(s1(A), s2(A), . . . , sk(A), 0, 0, . . .) ∈ [0,∞].
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It turns out that
SΦ(H) := {A ∈ K(H) : ‖A‖Φ < ∞}

is an arithmetic mean closed operator ideal as a consequence of the dominance property
for singular values (see [20, p.82]). This includes the Schatten ideals Sp(H) (1 ≤ p ≤ ∞)
if one takes Φp = ‖ · ‖ℓp; in particular S∞(H) = K(H) are the compact operators and
Φ∞ = ‖ · ‖ℓ∞ . Other examples of arithmetic mean closed operator ideals are given by
particular classes of Lorentz ideals, Marcinkiewicz ideals and Orlicz ideals; see [19, Section
4.7] for their definitions in terms of characteristic sets and the precise statements about when
they are arithmetic mean closed.

Let P = {Pn}Nn=1 (N ∈ N or N = ∞) be a sequence of mutually orthogonal (self-adjoint)
projections. The pinching operator induced by P of an operator A ∈ B(H) is given by

CP(A) =
N
∑

n=1

PnAPn .

In the case in which N = ∞, the above series is convergent in the strong operator topology
(SOT).

Remark 2.2. Pinching operators have the following properties:

i) If A ∈ K(H), then CP(A) ∈ K(H). Furthermore, in this case, the series defining CP(A)
converges in the operator norm and

k
∑

n=1

sn(CP(A)) ≤
k
∑

n=1

sn(A),

for all k ≥ 1 (see [20, Thm. 5.2]). In particular, s(CP(A))a = O(s(A)a). Therefore, if
J is a proper operator ideal and A ∈ J , then CP(A) ∈ J −am.

ii) Suppose now that the projections in P = {Pn}n≥1 satisfy rank(Pn) = 1, for all n ≥ 1,
and

∑∞
n=1 Pn = I. Then an operator ideal J is arithmetic mean closed if and only if

CP(J ) ⊂ J ([27, Thm. 4.5]).

Essential codimension. Let P,Q ∈ B(H) be two (orthogonal) projections such that
P − Q ∈ K(H). Under this assumption, the essential codimension [P : Q] of P and Q was
introduced by Brown, Douglas and Fillmore [13] as the integer given by

[P : Q] =

{

Tr(P )− Tr(Q) Tr(P ) < ∞, Tr(Q) < ∞;

Ind(V ∗W ) Tr(P ) = Tr(Q) = ∞,WW ∗ = P, V V ∗ = Q, V ∗V = W ∗W = I.

One can check that the operator V ∗W is Fredholm, and its index does not depend on
the isometries W,V such that WW ∗ = P and V V ∗ = Q. Notice that the assumption
P−Q ∈ K(H) implies that the operator QP |R(P ) : R(P ) → R(Q) is Fredholm. Furthermore,
the essential codimension can be also computed as its Fredholm index

[P : Q] = Ind(QP |R(P ) : R(P ) → R(Q)) (2)

= dim(N(Q) ∩ R(P ))− dim(R(Q) ∩N(P )).

5



Avron, Seiler and Simon [7] defined the notion of index of a pair of projections (P,Q) as the
previous index, whenever the operator QP |R(P ) : R(P ) → R(Q) is Fredholm. In this case,
the pair of projections (P,Q) is said to be a Fredholm pair. Simpler proofs of their results on
the index of a pair of projections can be found in [1]. We observe that the notion of index
of a Fredholm pair of projections does not require the difference of the projections being
compact, which makes it more general than the notion of essential codimension.

From now on, we write [P : Q] for the index in Eq. (2) of a Fredholm pair of projections
(P,Q), and we shall call it the essential codimension of P and Q, even when P −Q /∈ K(H).

Remark 2.3. We collect here some facts on the essential codimension. The first two items
follow easily, and the third one is proved in [7, Thm. 3.4].

i) [P : Q] = −[Q : P ].

ii) Let (Pi, Qi), i = 1, 2, be two Fredholm pairs of projections. If P1P2 = 0 and Q1Q2 = 0,
then (P1+P2, Q1+Q2) is a Fredholm pair and [P1+P2 : Q1+Q2] = [P1 : Q1]+[P2 : Q2].

iii) If (P,Q) and (P,R) are Fredholm pairs, and either Q−R or P −Q are compact, then
(P,R) is a Fredholm pair and [P : R] = [P : Q] + [Q : R].

Restricted diagonalization. In this work, we fix e = {en}n≥1 an orthonormal basis of H.
An operator A is diagonal (with respect to the fixed basis e) if 〈Aen, em〉 = δnmλn, for some
bounded sequence of complex numbers {λn}n≥1. The algebra of diagonal operators is then
given by

D = {A ∈ B(H) : A is a diagonal operator} .
More generally, we say that an operator A is diagonalizable if there exists a unitary U
such that UAU∗ ∈ D. Notice that this notion does not depend on our choice of the fixed
orthonormal basis e.

Given A ∈ B(H), we denote by σ(A) (resp. σp(A)) the spectrum of A (resp. point
spectrum of A). Notice that a diagonalizable operator must be normal. Conversely, a
normal operator A acting on the separable Hilbert space H, which has a spectral measure
E, turns out to be diagonalizable if and only if E(σ(A) \ σp(A)) = 0. One can also check

that σ(A) = σp(A), for every diagonalizable operator.
Associated to each diagonalizable operator A, there is a family {λn}Nn=1 (N ∈ N or

N = ∞), consisting of its distinct eigenvalues, and the corresponding spectral projections
{Pn}Nn=1, which are defined by Pn = E({λn}). By applying the spectral theorem for normal
operators, we see that the family {Pn}Nn=1 is a decomposition of the identity, i.e. P ∗

n = Pn,
PnPm = δnmPn and

∑N
n=1 Pn = I, where the series converges in the SOT when N = ∞.

Also, the operator A can be expressed as

A =
N
∑

n=1

λn Pn ,

where the above series is convergent in the SOT when N = ∞.

We denote by U(H) the full unitary group of the Hilbert space H. Given an operator
ideal J , we consider the group defined by

UJ (H) := {U ∈ U(H) : U − I ∈ J }.
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These types of groups are non trivial and strictly smaller subgroups of the full unitary group
if J is a proper operator ideal. They can be studied from a geometrical viewpoint for many
operator ideals. For instance, if the operator ideal J admits a complete norm ‖ · ‖J stronger
than the operator norm, then UJ (H) turns out to be a real Banach-Lie group in the topology
defined by ‖ · ‖J (see [8, Prop. 9.28]). For example, this condition is satisfied by the Schatten
ideals Sp(H) (1 ≤ p ≤ ∞).

The following notion was introduced by Beltiţă, Patnaik and Weiss [10]:

Definition 2.4. Let J be an operator ideal. An operator A is called UJ (H)-diagonalizable
(with respect to e), or simply, restricted diagonalizable, if there exists a unitary U ∈ UJ (H)
such that UAU∗ ∈ D.

Let I, J be two operator ideals. It will be useful to consider as in [10] the set of all
UJ (H)-diagonalizable operators belonging to I, i.e.

DJ ,I := {UDU∗ : D ∈ D ∩ I, U ∈ UJ (H)} =
⋃

U∈UJ (H)

U(D ∩ I)U∗ ⊆ I.

In particular, we putDJ := DJ ,J , and note thatDJ ,B(H) is the set of all UJ (H)-diagonalizable
operators.

The following result will play a key role in restricted diagonalization. It is actually a
reformulation of a recent result by Kaftal and Loreaux [25, Prop. 2.7] (see also [22, Prop.
2.3]).

Proposition 2.5. Let P , Q be orthogonal projections and let J be a proper operator ideal.
Then P − Q ∈ J and [P : Q] = 0 if and only if there is an unitary operator U ∈ UJ (H)
such that Q = UPU∗.

It is worth mentioning that this result was first obtained for the ideal J = K(H) in [13],
and also for the Hilbert-Schmidt operators J = S2(H) in [35]. Later on was generalized
for the class of symmetrically-normed ideals in [15]; see [20, p. 70] for the definition of
these ideals. In particular, we observe that the ideals SΦ(H) defined in Examples 2.1 are
symmetrically-normed ideals.

Remark 2.6. More recently, using the properties of the essential codimension stated in Re-
mark 2.3, Loreaux showed that Proposition 2.5 can be reformulated as a result on restricted
diagonalization of projections. He showed in [22, Corol. 3.1] that an (orthogonal) projection
P is UJ (H)-diagonalizable if and only if there exists a diagonal projection E ∈ D such that
P −E ∈ J .

The above remark was used by Loreaux to prove the following characterization of re-
stricted diagonalization of finite spectrum normal operators in terms of spectral projections
(see [22, Thm. 3.4]).

Theorem 2.7. Let J be a proper operator ideal. A finite spectrum normal operator is
UJ (H)-diagonalizable if and only if each of its spectral projections differs from a diagonal
projection by an element of J .

The next result from [10, Prop. 3.5] will be useful in what follows.

Proposition 2.8. Let e = {en}n≥1, f = {fn}n≥1 be two orthonormal bases in H. Suppose
that there exists δ > 0 such that ‖en − γ fm‖ ≥ δ, for all m, n ≥ 1 and |γ| = 1. Then, for
every operator X which is diagonal with respect to e and with spectral multiplicities one, and
for every W ∈ UK(H)(H), we have that WXW ∗ is not a diagonal operator with respect to f.
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3 Restricted diagonalization

We present our results on restricted diagonalization of operators with finite and infinite
spectrum separately. First, we consider the case of finite spectrum normal operators, which
can be seen as a reformulation of Loreaux’s result. Second, we consider in our main result
the case of (normal) diagonalizable operators with infinite point spectrum.

Theorem 3.1 (Finite spectrum). Let J be a proper operator ideal and let A ∈ B(H) be
a finite spectrum normal operator with spectral projections {Pn}Nn=1. Then the following
conditions are equivalent

i) A is UJ (H)-diagonalizable;

ii) There exist diagonal projections En ∈ D such that En − Pn ∈ J , 1 ≤ n ≤ N ;

iii) There exist diagonal projections En ∈ D, 1 ≤ n ≤ N , such that

N
∑

n=1

(I −En)Pn ∈ J and
N
∑

n=1

En(I − Pn) ∈ J . (3)

Proof. The equivalence of items i) and ii) is due to Loreaux as we have already stated in
Theorem 2.7. Assume that item ii) holds, that is, there are diagonal projections En ∈ D
such that Pn − En ∈ J , for all n = 1, . . . , N . Then, (I − En)Pn = (Pn − En)Pn ∈ J and
En(I − Pn) = En(En − Pn) ∈ J . These facts clearly imply that both conditions in Eq. (3)
are satisfied. To prove the reverse direction, we use that

∑N
n=1 Pn = I, and note that

N
∑

n=1

En =
N
∑

n=1

En(I − Pn)−
N
∑

n=1

(I − En)Pn + I = I +K,

for some operator K ∈ J . Since {En}Nn=1 are commuting projections, we have for k 6= m,

EkEm

N
∑

n=1

En = 2EkEm +
∑

n 6=k,m

EkEmEn = EkEm +K ′

for K ′ = EkEmK ∈ J . This implies that 0 ≤ EkEm ≤ K ′, and since K ′ is compact,
the projection EkEm must have finite rank. Following the same argument given in [22] we
construct a family of mutually orthogonal projections {E ′

n}Nn=1 as follows: set E ′
1 = E1 and

E ′
n = En−En(E

′
1+ . . . E ′

n−1), where n = 1, . . . , N . Using that EkEm, k 6= m, has finite rank,
we get that E ′

n and En differ by a finite rank operator for each n = 1, . . . , N . Therefore the
conditions in Eq. (3) still hold if we replace the family {En}Nn=1 by {E ′

n}Nn=1. This allows us
to multiply by E ′

n and Pn in Eq. (3) to find that E ′
n(I − Pn) ∈ J and (I − E ′

n)Pn ∈ J for
all n = 1, . . . , N . Hence, Pn − E ′

n = Pn(I − E ′
n) − (I − Pn)E

′
n ∈ J , which is equivalent to

have Pn − En ∈ J .

Actually, the above reformulation of Loreaux’s condition in Eq. (3) might be seen as a
motivation to state the next case of diagonalizable operators with infinite point spectrum. We
just let N → ∞ in Eq. (3), and assume that the limits still belong to a proper operator ideal
J , where the limits can be taken in the weak operator topology. The resulting conditions
are stated as follows.
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Theorem 3.2 (Infinite point spectrum). Let J be a proper operator ideal. Let A ∈ B(H)
be a diagonalizable operator with infinite point spectrum and spectral projections {Pn}n≥1.
Assume that there is a family {En}n≥1 of diagonal projections such that

∑

n≥1

(I − En)Pn ∈ J and
∑

n≥1

En(I − Pn) ∈ J , (4)

where both series are assumed to converge in the WOT. Then A is UJ (H)-diagonalizable.
Conversely, if A is UJ (H)-diagonalizable and we assume further that J is arithmetic

mean closed, then there is a family {En}n≥1 of diagonal projections such that the conditions
in Eq. (4) hold.

Proof. See Section 3.1.

Remark 3.3. We point out that Theorem 3.2 provides with a complete characterization of
those normal diagonalizable operators that are UJ (H)-diagonalizable for a proper arithmetic
mean closed operator ideal J . In Examples 2.1 we give a list of some of these ideals. Finally,
we observe here that the assumption that J is arithmetic mean closed cannot be removed
in the reverse implication (see Example 3.12).

Remark 3.4. Since compact normal operators are diagonalizable, the sufficient conditions
in Eq. (4) give an answer to [10, Problem 6.4], which asked for sufficient conditions for a
normal operator in an proper operator ideal J to belong to DJ .

On the other hand, let I and J be two operator ideals and assume further that J is a
proper ideal. Notice that Theorem 3.2 also allow us to derive results related with

DJ ,I := {UDU∗ : D ∈ D ∩ I, U ∈ UJ (H)} ⊆ I .

For example, if J is a proper arithmetic mean closed ideal and A ∈ B(H) is a diagonalizable
operator with infinite point spectrum and spectral projections {Pn}n≥1, then we have that
A ∈ DJ ,I if and only if s(A) ∈ Σ(I) and there exists a family {En}n≥1 of diagonal projections
such that the conditions in Eq. (4) hold.

3.1 Proof of Theorem 3.2

The proof of the forward direction of Theorem 3.2 is broken into the following lemmas and
propositions.

Lemma 3.5. Let {En}n≥1 be a sequence of diagonal projections such that
∑

n≥1En = I+K,
for some compact operator K. Then there exists an integer n0 ≥ 1 satisfying the following
conditions:

i) EnEm = δnmEn, for all m,n > n0;

ii) EnEm is a finite-rank projection, for all 1 ≤ m,n ≤ n0, m 6= n;

iii) For each N ≥ n0, E
(N) =

∑

n>N En is a diagonal projection, and E(N)En = 0, for all
n = 1, . . . , N .

9



Proof. i) The proof consists in a slight modification of the argument given in the proof of
Theorem 3.1. We include the details for completeness. Consider the diagonal projections
Qn :=

∑n
i=1 ei ⊗ ei, n ≥ 1, where ei ⊗ ei denotes the rank-one projection onto span{ei}.

Using that K is a compact operator, it follows that there is an integer n1 ≥ 1 such that
‖(I − Qn1

)K(I − Qn1
)‖ < 1. Next we observe that there exists an integer n0 ≥ 1 such that

R(En) ⊆ N(Qn1
), for all n ≥ n0. In fact, this follows immediately using ‖∑n≥1En‖ < ∞.

We now prove that EnEm = δnmEn, for all m,n > n0. Notice that this is equivalent
to R(En) ∩ R(Em) = {0}, for all m,n > n0, n 6= m. We proceed by way of contradiction
and assume that there is a vector x ∈ R(En) ∩ R(Em), ‖x‖ = 1. Consider the operator
C = (I−Qn1

)(
∑

k 6=n,mEk)(I−Qn1
) ≥ 0. From the assumption

∑

n≥1En = I+K, and since
R(En) ⊆ N(Qn1

) and R(Em) ⊆ N(Qn1
), we get that

(En + Em) + C = (I −Qn1
) + (I −Qn1

)K(I −Qn1
).

Thus, we have a contradiction

2 = 〈(En + Em)x, x〉 ≤ 〈(En + Em + C)x, x〉
= 〈(I −Qn1

+ (I −Qn1
)K(I −Qn1

))x, x〉 < 2,

and this finishes the proof.

ii) The same argument given in the proof of Theorem 3.1 can be repeated in this context.

iii) Similar arguments to that of the first item also work in this item.

Lemma 3.6. Let J be a proper operator ideal and let {Pn}n≥1 be a decomposition of the
identity. Suppose that there is a family of diagonal projections {En}n≥1 such that

∑

n≥1

(I − En)Pn ∈ J and
∑

n≥1

En(I − Pn) ∈ J , (5)

where both series are assumed to converge in the WOT. Then Pn −En ∈ J , for all n ≥ 1.

Proof. Set K =
∑

n≥1(I − En)Pn ∈ J and L =
∑

n≥1En(I − Pn) ∈ J . Since
∑

n≥1 Pn = I,
the series S :=

∑∞
n=1EnPn converges weakly, and S = I −K. Therefore,

∑

n≥1

En = L+ S = I + L−K,

where L −K ∈ J is a compact operator. Applying Lemma 3.5, we find an integer n0 ≥ 1
such that EnEm = δnmEn, for all m,n > n0, and E(N) =

∑

n>N En is a diagonal projection
such that E(N)En = 0, for all n = 1, . . . , N , N ≥ n0. We can multiply the series in Eq. (5)
by the projections P (N) =

∑

n>N Pn and E(N) to obtain

N
∑

n=1

(I − En)Pn ∈ J and

N
∑

n=1

En(I − Pn) ∈ J . (6)

We recall the argument from [22] to construct mutually orthogonal diagonal projections: let
E ′

1 = E1 and inductively define E ′
n = En −En(E

′
1 + . . .+E ′

n−1), for all n = 2, . . . , N . Then,
E ′

1, . . . , E
′
N are mutually orthogonal diagonal projections. Again by Lemma 3.5 (items i) and
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ii)) EnEm is a finite-rank projection, for n 6= m; hence, we see that E ′
n = En + Rn, where

Rn is a finite-rank operator, n = 1, . . . , N . From this fact and Eq. (6), it follows that

N
∑

n=1

(I −E ′
n)Pn ∈ J and

N
∑

n=1

E ′
n(I − Pn) ∈ J .

Now we can multiply by Pn and E ′
n to get that E ′

n(I − Pn) ∈ J and (I − E ′
n)Pn ∈ J for

n = 1, . . . , N . Hence,

Pn −E ′
n = Pn(I −E ′

n)− (I − Pn)E
′
n ∈ J .

Recall that E ′
n and En differ by a finite-rank operator. Thus, we obtain Pn − En ∈ J , for

n = 1, . . . , N , where N ≥ n0 is arbitrary. The proof is completed.

Remark 3.7. Consider the notation in Lemma 3.6. Then, the diagonal projections {En}n≥1

satisfying the conditions in Eq. (5) can be replaced by other diagonal projections {E ′
n}n≥1

which also satisfy the conditions in Eq. (5) and are mutually orthogonal. To this end, take
E ′

1, . . . , E
′
N the mutually orthogonal diagonal projections defined in the proof of Lemma 3.6,

where N is fixed, N ≥ n0. According to the property stated in Lemma 3.5 iii) we can set
E ′

n = En for n > N . Taking into account that En and E ′
n differ by a finite-rank operator

for n = 1, . . . , N , we get that {E ′
n}n≥1 is a sequence of mutually orthogonal projections such

that
∑

n≥1

(I −E ′
n)Pn ∈ J and

∑

n≥1

E ′
n(I − Pn) ∈ J ,

where both series converge weakly.

Our next result is a generalization of [16, Thm. 2.3] to an arbitrary proper operator
ideal. This result was proved in the aforementioned work for separable symmetrically-normed
ideals, based on work by Carey [15] and by Serban and Turcu [34]. Our approach is an
adaption of the arguments of [16]; we will need the following result which is [34, Thm. 2.2].

Lemma 3.8. Let H and K be separable, infinite dimensional Hilbert spaces. Let H1 and H2

be infinite dimensional subspaces of H and let Pi denote the orthogonal projection onto Hi,
i = 1, 2. The following statements are equivalent:

1. There exist isometries V1, V2 ∈ B(K,H) with ranges H1 and H2 such that V1 − V2 is
compact.

2. P1 − P2 is compact and [P1 : P2] = 0.

Proposition 3.9. Let V1, V2 be partial isometries and let J be a proper operator ideal. Then
there exists U ∈ UJ (H) such that UV1 = V2 if and only if V1 − V2 ∈ J and N(V1) = N(V2).

Proof. If there exists U ∈ UJ (H) such that UV1 = V2, then it is clear that N(V1) = N(V2),
and V1 − V2 = V1 − UV1 = (I − U)V1 ∈ J .

Conversely, assume that V1, V2 are partial isometries such that V1−V2 ∈ J and N(V1) =
N(V2). We consider the following two cases. Assume first that dimR(V1) = ∞. Since
R(V ∗

1 ) = N(V1)
⊥ = N(V2)

⊥, then U1 = V2V
∗
1 : R(V1) → R(V2) is a surjective isometry.

Hence, dimR(V2) = ∞ and V1|N(V1)⊥, V2|N(V1)⊥ ∈ B(N(V1)
⊥,H) are isometries such that

V1|N(V1)⊥ − V2|N(V1)⊥ is compact. Then, by Lemma 3.8 we see that P1 − P2 is compact and
also [P1 : P2] = 0, where Pi = ViV

∗
i is the orthogonal projection onto R(Vi) = R(Vi|N(V1)⊥),
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for i = 1, 2. Moreover, since V1 − V2 ∈ J , then P1 − P2 = V1V
∗
1 − V2V

∗
2 = V1(V

∗
1 −

V ∗
2 ) + (V1 − V2)V

∗
2 ∈ J . By Proposition 2.5 we conclude that there exists U2 ∈ UJ (H)

such that U2P1U
∗
2 = P2, so then U2(I − P1)U

∗
2 = I − P2. In this case, the restriction

U2|R(V1)⊥ : R(V1)
⊥ → R(V2)

⊥ is a surjective isometry. We now set U = U1⊕U2|R(V1)⊥ ∈ U(H).
Then, by construction UV1 = V2. On the other hand, (U − I)P1 = (V2 − V1)V

∗
1 ∈ J and

(U − I)(I − P1) = (U2 − I)(I − P1) ∈ J which show that U − I ∈ J so U ∈ UJ (H).
Assume now that dimR(V1) = k < ∞. As before, we can define the surjective isometry

U1 = V2V
∗
1 : R(V1) → R(V2) so that dimR(V2) = k < ∞. Hence, dim(R(V1)

⊥∩R(V2)
⊥) = ∞

and we can choose an orthonormal basis {fn}n≥1 of R(V1)
⊥ ∩ R(V2)

⊥. Let {gn}n≥1 be an
orthonormal basis of H such that the first k vectors form an orthonormal basis of N(V1)

⊥ =
N(V2)

⊥. Set

Ṽ1 gn =

{

V1 gn , 1 ≤ n ≤ k ,

fn−k , n > k ,
and Ṽ2 gn =

{

V2 gn , 1 ≤ n ≤ k ,

fn−k , n > k .

By construction, Ṽ1, Ṽ2 are isometries such that dimR(Ṽ1) = ∞ and Ṽ1 − Ṽ2 ∈ J , since it is
a finite rank operator. Then, by the previous case, we conclude that there exists U ∈ UJ (H)
such that UṼ1 = Ṽ2; this last fact clearly implies that UV1 = V2.

We observe that Proposition 3.9 may be considered as a version of Proposition 2.5 for
partial isometries instead of projections. Here the action of the group UJ (H) on the set of
partial isometries moves the final space of the partial isometries (see [16, Thm. 2.4] for an
analogous result about the action moving both the initial and final space). As we shall see,
the characterization in Proposition 3.9 is key to our next result.

Proposition 3.10. Under the same assumptions of Lemma 3.6, then there exist an integer
n1 ≥ 1 and a partial isometry V ∈ B(H) with initial projection P :=

∑

n>n1
Pn and final

projection E :=
∑

n>n1
En such that

V PnV
∗ = En for all n > n1 ,

V − P ∈ J , E − P ∈ J and [E : P ] = 0.

Proof. We consider the operators K,L ∈ J and the integer n0 ≥ 1 defined in the proof of
Lemma 3.6, that is, n0 satisfies the conditions i), ii) and iii) from Lemma 3.5,

K =
∑

n≥1

(I − En)Pn ∈ J and L =
∑

n≥1

En(I − Pn) ∈ J .

We claim that there is an integer n1 ≥ n0 satisfying the following conditions:

1. ‖∑n>n1
Pn(I − En)Pn‖ < 1;

2. ‖∑n>n1
En(I − Pn)En‖ < 1.

To see this, note that the first item follows by using that the series
∑∞

n=1 Pn(I − En)Pn =
∑∞

n=1 PnKPn is convergent in the operator norm (see Remark 2.2). For the second item, note
that {En}n>n0

is a sequence of mutually orthogonal projections and
∑n0

n=1En(I − Pn) ∈ J
by Eq. (6) with N = n0. Therefore, L′ =

∑

n>n0
En(I − Pn) ∈ J . Thus we can apply the

same argument of the first item because the series
∑

n>n0
En(I −Pn)En =

∑

n>n0
EnL

′En is
also norm convergent. This proves our claim.
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Now we set
P =

∑

n>n1

Pn ; E =
∑

n>n1

En ; S =
∑

n>n1

EnPn ;

where all the series converge strongly. Indeed, in order to see that the third series converges
strongly notice that if m > n1 then

∥

∥

∥

∥

∥

∑

n≥m

EnPnx

∥

∥

∥

∥

∥

2

=
∑

n≥m

‖EnPnx‖2 ≤
∑

n≥m

‖Pnx‖2 −−−→
m→∞

0 ,

where we have used that {En}n>n1
and {Pn}n>n1

are families of mutually orthogonal projec-
tions. Observe that, by construction, ESP = S. On the other hand, using that convergence
in the SOT implies convergence in the WOT and that the involution is WOT-continuous we
see that S∗ =

∑

n>n1
PnEn, where the convergence is in the WOT. Arguing as before, we see

that the last series actually converges in the SOT. Now notice that the sequence of partial
sums Sk :=

∑k
n=n1+1EnPn, k ≥ n1 + 1, is norm bounded. Indeed, for x ∈ H, we have

‖Skx‖2 =
k
∑

n=n1+1

‖EnPnx‖2 ≤
k
∑

n=n1+1

‖Pnx‖2 = ‖x‖2 .

Thus, ‖Sk‖ ≤ 1, k ≥ n1 + 1. Since multiplication is jointly SOT continuous on bounded
sets of B(H) we find that S∗S =

∑

n>n1
PnEnPn and SS∗ =

∑

n>n1
EnPnEn converge in the

SOT.
Notice that by the first inequality in item 1 above,

∥

∥|S|2 − P
∥

∥ =

∥

∥

∥

∥

∥

∑

n>n1

Pn(I − En)Pn

∥

∥

∥

∥

∥

< 1,

which gives that |S||R(P ) : R(P ) → R(P ) is an invertible operator. A similar computation
with |S∗|2 and E in place of |S|2 and P (based on item 2. above) allows us to conclude that
|S∗||R(E) : R(E) → R(E) is invertible. Therefore S|R(P ) : R(P ) → R(E) is also invertible.
Notice that V := S|S|† is a partial isometry with initial projection P and final projection E,
where |S|† denotes the Moore-Penrose inverse of |S|. Now note that

S − P = −
∑

n>n1

(I −En)Pn = −KP ∈ J .

Since S − P ∈ J , then a direct computation shows that |S|2 − P = S∗S − P ∗P := K ′ ∈ J .
Then, we get |S| −P = (|S|+P )†K ′ ∈ J , and consequently, |S|† −P ∈ J . This leads us to
conclude V − P = (S − P )|S|† + |S|† − P ∈ J .

We now show that V PnV
∗ = En for all n > n1. Hence, we fix n > n1 and note that

SPn = EnPn = EnS, which gives Pn|S|2 = |S|2Pn. This implies that Pn|S| = |S|Pn and
Pn|S|† = |S|†Pn. Hence

V PnV
∗ = S|S|†Pn|S|†S∗ = SPn(|S|†)2S∗ = EnS(|S|†)2S∗ = EnE = En .

Finally, we note that V and P are two partial isometries such that N(V ) = N(P ) and
V −P ∈ J . Therefore we can apply Proposition 3.9 to conclude that there exists U ∈ UJ (H)
such that UV = P . Thus, UEU∗ = UV V ∗U∗ = P , which shows that P − E ∈ J and
[P : E] = 0 by Proposition 2.5.
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Now we can prove our main result.

Proof of Theorem 3.2. We begin by showing the forward direction. Notice that we can apply
Proposition 3.10 and obtain n1 ≥ 1, a partial isometry V ∈ B(H) with initial projection
P :=

∑

n>n1
Pn and final projection E :=

∑

n>n1
En such that V PnV

∗ = En, for all n > n1,
and such that V − P ∈ J , P − E ∈ J and [P : E] = 0. According to Lemma 3.6, we
have Pn − En ∈ J for n = 1, . . . , n1. Furthermore, as we have observed in Remark 3.7, by
replacing the initial projections E1, . . . , En1

(since n0 ≤ n1) we can assume that the diagonal
projections {En}n≥1 are mutually orthogonal. We further replace En1

by

En1
:= I −

∑

n 6=n1

En = I −
(

n1−1
∑

n=1

En + E

)

.

In this case, using that {Pn}n≥1 is a decomposition of the identity,

Pn1
− En1

= I −
(

n1−1
∑

n=1

Pn + P

)

−
(

I −
(

n1−1
∑

n=1

En + E

))

=

n1−1
∑

n=1

En − Pn + E − P ∈ J .

In this way, we can further assume that {En}n≥1 is a decomposition of the identity in D.
Now, we set E0 = E, P0 = P , and consider the finite families of projections

E = {E0, E1, . . . , En1
} and P = {P0, P1, . . . , Pn1

} .

Notice that P and E are (finite) decompositions of the identity, and then by Remark 2.3, it
follows that

n1
∑

n=0

[Pn : En] = [I : I] = 0 .

Hence, by applying [22, Lemma 3.3] to P and E we obtain a family E ′ = {E ′
n}n1

n=0 such that
E ′

n−Pn ∈ J and [Pn : E ′
n] = 0, for 0 ≤ n ≤ n1. By inspection of the proof of that result, we

further see that E ′
0 = E, since [P0 : E0] = [P : E] = 0. By [22, Lemma 3.2], we get that there

exists U0 ∈ UJ (H) such that U0PnU
∗
0 = E ′

n, for 0 ≤ n ≤ n1. Consider the partial isometry
V⊥ = U0(I − P0). Since U0 ∈ UJ (H), we see that V⊥ − (I − P0) ∈ J , and by construction,
V⊥Pn V

∗
⊥ = E ′

n for 1 ≤ n ≤ n1.
We set U = V + V⊥ ∈ U(H). Notice that

U − I = (V − P0) + (V⊥ − (I − P0)) ∈ J ,

UPn U
∗ = E ′

n ∈ D for 1 ≤ n ≤ n1, and UPn U
∗ = En ∈ D, for n > n1. Hence,

UAU∗ =
∑

n≥1

λn UPn U
∗ ∈ D,

that is, A is UJ (H)-diagonalizable.

We now show the reverse implication. Thus, we assume further that J is an arithmetic
mean closed operator ideal and that there exists U ∈ UJ (H) such that B = UAU∗ ∈ D.
Therefore, En := UPnU

∗ ∈ D, for n ≥ 1, since these are spectral projections of B ∈ D.
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Notice that in this case we get that {En}n≥1 is a decomposition of the identity. Moreover,
we have that

∑

n≥1

(I − En)Pn =
∑

n≥1

(I − En)(U
∗ − I)EnU

= (U∗ − I)
∑

n≥1

EnU −
(

∑

n≥1

En (U
∗ − I)En

)

U

= (U∗ − I)U −
(

∑

n≥1

En(U
∗ − I)En

)

U ∈ J , (7)

where we use that U∗ − I ∈ J and that, in the second term, pinching operators preserve
arithmetic mean closed ideals (see Remark 2.2). Notice that the convergence of the first
term is indeed in the operator norm. This is a consequence of the well-known fact that
multiplication by a compact operator of a strong convergent sequence turns the resulting
sequence into a norm convergent one. Also note that the second term corresponding to the
pinching of U∗−I ∈ J actually converges in the operator norm again by Remark 2.2. Hence,
we conclude that the first series in Eq. (4) is norm convergent to an operator belonging to
J . The second series in Eq. (4) can be treated analogously.

3.2 Remarks and consequences

Some remarks on Theorem 3.2 are in order.

Remark 3.11. i) For a diagonalizable operator A with infinite point spectrum and spectral
projections {Pn}n≥1, one might ask whether the existence of diagonal projections {En}n≥1

satisfying Pn − En ∈ J for all n ≥ 1, implies that A is UJ (H)-diagonalizable. That is, a
generalization for the case of infinite point spectrum of the second condition in Theorem 3.1.
The following simple example shows that the answer is in the negative. Take f = {fn}n≥1

an orthonormal basis. Consider the rank-one projections defined by Pn = fn ⊗ fn and
En = en ⊗ en. Thus, Pn − En ∈ F(H) ⊆ J , n ≥ 1. Suppose that A is any diagonalizable
operator with simple spectrum (i.e. spectral multiplicities one) and spectral projections
{Pn}n≥1. Assume further that the orthonormal basis f satisfies that ‖fn − αen‖ ≥ δ, for
some δ > 0 and all α ∈ T, n ≥ 1 (we can always construct such f, see [10, Prop. 3.6]). Then,
according to Proposition 2.8, there is no unitary U ∈ UK(H)(H) such that UAU∗ ∈ D. If J
is a proper operator ideal then J ⊆ K(H) and hence A cannot be UJ (H)-diagonalizable.

ii) On the other hand, we remark that the condition Pn −En ∈ J for all n ≥ 1 was derived
from the conditions in Eq. (4) in Lemma 3.6. Hence by Theorem 3.2 one can also deduce
the existence of diagonal projections {En}n≥1 such that Pn−En ∈ J for all n ≥ 1, whenever
A is UJ (H)-diagonalizable with spectral projections {Pn}n≥1 and J is a proper arithmetic
mean closed operator ideal.

iii) The series in Eq. (4) are supposed to converge weakly. Of course, this is weaker than
convergence in the operator norm, and thus leads to an easier criterion to verify. However,
an inspection of the proof of Theorem 3.2, in particular the convergence in (7), reveals that
if both series satisfy (4) with weak convergence, then it turns out that they must converge
in the operator norm.
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iv) Let J be an (arbitrary) proper operator ideal, let A ∈ B(H) with infinite point spec-
trum and assume that there exists U ∈ UJ (H) such that UAU∗ ∈ D, i.e. A is UJ (H)-
diagonalizable. Let {Pn}n≥1 denote the spectral projections of A and let En = UPnU

∗ ∈ D,
for n ≥ 1. Then, an inspection of Eq. (7) together with Remark 2.2 show that, in general,
∑

n≥1(I − En)Pn ∈ J −am ⊆ K(H), where J −am denotes the arithmetic mean closure of J
(see Section 2); in particular, we get that the previous series determines a compact operator.
A similarly argument shows that

∑

n≥1En(I − Pn) ∈ J −am.

Next, we show that the assumption that J is an arithmetic mean closed ideal cannot be
removed in the second assertion of Theorem 3.2.

Example 3.12. Let F := F(H) be the ideal of finite rank operators, whose arithmetic mean
closure is F−am = S1(H), the ideal of trace class operators. Recall that e = {en}n≥1 is our
fixed orthonormal basis. Take X = f ⊗ f , where ‖f‖ = 1 and 〈f, en〉 6= 0, for n ≥ 1. Now
consider U = eiX = I + (ei − 1)X ∈ UF (H) and let {Pn}n≥1 be the sequence of projections
defined by Pn = U(en ⊗ en)U

∗, for n ≥ 1. Let {λn}n≥1 be a bounded sequence of complex
numbers such that λn 6= λm, for n 6= m, and let

A =
∑

n≥1

λn Pn ∈ DF ,B(H) .

Assume that there exists a sequence {En}n≥1 of diagonal projections such that

∑

n≥1

(I − En)Pn ∈ F and
∑

n≥1

En(I − Pn) ∈ F , (8)

where we assume that the convergence is in the operator norm (see Remark 3.11 iii)). In
particular, we see that

‖Pn − En‖ ≤ ‖(I − En)Pn‖+ ‖En(I − Pn)‖ −−−→
n→∞

0 .

Let n0 ≥ 1 be such that ‖Pn − En‖ < 1/2 and |〈f, en〉| < 1/2 for n ≥ n0. Then, we have
that En = en ⊗ en, for n ≥ n0. Indeed, assume that en /∈ R(En). In this case Enen = 0, and
since Uen ∈ R(Pn) is a unit vector, we get that

1/2 > ‖Pn − En‖ ≥ ‖Uen −EnUen‖
= ‖en + (ei − 1)〈en, f〉(f − Enf)‖ ≥ 1− |〈en, f〉| > 1/2,

where we have used that |(ei − 1)| ‖(f −Enf)‖ ≤ 1. The previous contradiction proves that
en ∈ R(En). On the other hand, if em ∈ R(En) for some m 6= n, then

1/2 > ‖Pn −En‖ ≥ ‖Pnem − em‖
= ‖(ei − 1)〈en, f〉〈em, f〉Uen − em‖ ≥ 1− |〈en, f〉| > 1/2

where we have used that ‖(ei − 1)〈em, f〉 Uen‖ ≤ 1.
Recall that by Lemma 3.6 we know that En − Pn ∈ F for n ≥ 1. Since Pn is a rank-one

projection and En − Pn is a finite rank operator, we see that En is a finite rank projection.
These facts show that we can replace the initial projections En by en⊗ en for 1 ≤ n ≤ n0−1
and the resulting sequence (that we still denote by) {En = en ⊗ en}n≥1 is a decomposition
of the identity that also verifies the conditions in Eq. (8).
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Notice that the pinching CE(X) of X with respect to E = {En}n≥1 is given by

CE(X) =
∑

n≥1

EnXEn =
∑

n≥1

| 〈f, en〉 |2En.

Observe that CE(X) ∈ S1(H) \ F , so then CE(U − I) /∈ F . Next we note that

En(I − Pn) = En(En − Pn) = −En((U − I)EnU
∗ + En(U

∗ − I)),

which implies

∑

n≥1

En(I − Pn) = −CE(U − I)U∗ + U∗ − I = −(CE(U − I) + (ei − 1)X)U∗ /∈ F .

This last fact contradicts Eq. (8). We can proceed similarly with the other series.

We end this section with some consequences of Theorem 3.2: we obtain a characterization
of operators A ∈ B(H) that are UJ (H)-diagonalizable for proper arithmetic mean closed
operator ideals J with some further properties and a characterization of the existence of
U ∈ UJ (H) that conjugate two given decompositions of the identity. We remark that in case
A is a finite spectrum operator or in case the decompositions of the identity are finite, then
these results follow directly from Theorem 2.7. Hence, we consider their respective infinite
cases.

Recall that given an operator ideal J , then J 2 := Span{AB : A,B ∈ J } is also an
operator ideal.

Corollary 3.13. Let J be a proper operator ideal such that J 2 is arithmetic mean closed. Let
A be a diagonalizable operator with infinite spectrum and with spectral projections {Pn}n≥1.
The following conditions are equivalent:

i) A is UJ (H)-diagonalizable.

ii) There is a sequence {En}n≥1 of diagonal projections such that

∑

n≥1

(Pn − En)
2 ∈ J 2 , (9)

where the series is assumed to converge in the WOT.

Proof. Notice that under our present assumptions, J is also a proper arithmetic mean closed
operator ideal. Assume that A is UJ (H)-diagonalizable and let U ∈ UJ (H) be such that
UAU∗ = B ∈ D. If we let K = U − I ∈ J and En = UPnU

∗ ∈ D, for n ∈ N, then

Pn − En = Pn −KPnU
∗ − PnK

∗ − Pn = −KPnU
∗ − PnK

∗ = −UPnK
∗ −KPn ,

where we used that Pn −En is self-adjoint. Hence,

∑

n≥1

(Pn − En)
2 =

∑

n≥1

(KPnU
∗ + PnK

∗)(UPnK
∗ +KPn)

= KK∗ +K
∑

n≥1

PnU
∗KPn +

(

∑

n≥1

PnK
∗UPn

)

K∗ +
∑

n≥1

PnK
∗KPn ∈ J 2
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where each series converges in the operator norm by the same arguments as in Eq. (7), and
where we have used that J and J 2 are arithmetic mean closed (see Remark 2.2). Thus,
∑

n≥1(Pn − En)
2 ∈ J 2.

Conversely, note that
∑

n≥1

(Pn −En)
2 =

∑

n≥1

(I −En)Pn(I − En) +
∑

n≥1

En(I − Pn)En

≥
∑

n≥1

(I − En)Pn(I − En),

which implies that the last series belongs to J 2 since operator ideals are hereditary. Then,
using that {Pn}n≥1 are mutually orthogonal, we get that |∑n≥1 Pn(I −En)|2 ∈ J 2. By the
polar decomposition, this implies that

∑

n≥1 Pn(I − En) ∈ J . Using that the involution is
WOT-continuous, we get

∑

n≥1(I − En)Pn ∈ J . Since J 2 ⊆ J , and

∑

n≥1

(Pn − En)
2 =

∑

n≥1

Pn(I −En) +
∑

n≥1

En(I − Pn),

we obtain
∑

n≥1En(I − Pn) ∈ J . The result now follows by Theorem 3.2.

Example 3.14. In the particular case J = S2(H), then J 2 = S1(H), which is a proper arith-
metic mean closed ideal. Hence, given a (normal) diagonalizable operator A with spectral
projections {Pn}Nn=1 (N ∈ N or N = ∞): A is US2(H)(H)-diagonalizable if and only if there
exist diagonal projections {En}Nn=1 such that

Tr

(

N
∑

n=1

(Pn − En)
2

)

=

N
∑

n=1

‖Pn −En‖2S2(H) < ∞ .

Indeed, if N ∈ N, then this follows from Loreaux’s Theorem 2.7; and if N = ∞, then it
follows from Corollary 3.13.

Corollary 3.15. Let J be a proper arithmetic mean closed operator ideal and let {En}n≥1

and {Pn}n≥1 be two (infinite) decompositions of the identity. Then there exists U ∈ UJ (H)
such that U PnU

∗ = En, for all n ∈ N, if and only if [Pn : En] = 0 for n ∈ N, and the
conditions in Eq. (4) hold, where both series always converge weakly in B(H).

Proof. Assume first that there exists U ∈ UJ (H) such that U PnU
∗ = En, for n ∈ N. Then,

by Proposition 2.5 we have that [Pn : En] = 0, for n ∈ N. On the other hand, we can argue
as in the proof of the second assertion in Theorem 3.2 and conclude that the conditions in
Eq. (4) hold.

Conversely, assume that the conditions in Eq. (4) hold. We can choose the orthonormal
basis e = {en}n≥1 in such a way that the family {En}n≥1 lies in its associated diagonal
algebra D. Now we can argue as in the proof of the first assertion in Theorem 3.2. If we
follow that argument, we see that the family {E ′

n}n1

n=0 actually coincides with {En}n1

n=0 with
E0 =

∑

n>n1
En. From this last fact, we now see that there exists U ∈ UJ (H) such that

U PnU
∗ = En, for all n ∈ N, as desired.

Let J be an operator ideal in B(H) and let e = {en}n≥1 f = {fn}n≥1 be two orthonormal
bases of H. According to [10, Remark 4.5] these bases are J -equivalent if there exists
W ∈ UJ (H) such that Wfn = en, for n ∈ N.
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Remark 3.16. Let e = {en}n≥1 f = {fn}n≥1 be two orthonormal bases of H. In [10, Problem
6.3] the authors ask for necessary or sufficient conditions for the J -equivalence of e and f.
Notice that Corollary 3.15 provides with a projective solution to this problem, in case J
is an arithmetic mean closed ideal. Indeed, given e and f as before, we can consider the
associated decompositions of the identity En = en ⊗ en and Pn = fn ⊗ fn, for n ∈ N. Then,
Corollary 3.15 characterizes the existence of U ∈ UJ (H) such that UPnU

∗ = En, i.e. such
that Ufn = αn en for some αn ∈ C with |αn| = 1, for n ∈ N. Nevertheless, this result does
not seem to be satisfactory.

We now obtain necessary and sufficient conditions for J -equivalence between orthonormal
bases for an arbitrary proper operator ideal J . In order to do this, we first notice the
following: if e = {en}n≥1, f = {fn}n≥1 and g = {gn}n≥1 are orthonormal bases of H then
there exists a (unique) well defined T ∈ B(H) such that T (gn) = en − fn, for n ∈ N (this
last fact is equivalent to the assertion that {en − fn}n≥1 is a Bessel sequence in H, see [18]).
Indeed, notice that the unitary operators U1, U2 ∈ U(H) given by U1(gn) = en, U2(gn) = fn,
for n ∈ N, are such that T = U1 − U2.

Corollary 3.17. Let J be a proper operator ideal and let e = {en}n≥1, f = {fn}n≥1 be two
orthonormal bases in H. Then, e and f are J -equivalent if and only if for every (equivalently,
some) orthonormal basis g = {gn}n≥1 of H the operator T ∈ B(H) given by T (gn) = en− fn,
for n ∈ N, verifies that T ∈ J .

Proof. Let e, f and g be orthonormal bases. Consider the unitary operators U1, U2 ∈ U(H)
given by U1(gn) = en, U2(gn) = fn, for n ∈ N; in this case we have that T = U1−U2 ∈ B(H).
Notice that e and f are J -equivalent if and only if there exists W ∈ UJ (H) such that WU2 =
U1. Since U1 and U2 are, in particular, partial isometries such that N(U1) = N(U2) = {0}
then, Proposition 3.9 together with the previous remark show that e and f are J -equivalent
if and only if U1 − U2 = T ∈ J .

Examples 3.18. Let e = {en}n≥1, f = {fn}n≥1 be two orthonormal bases of H.

i). Let J = S2(H), and notice that if g = {gn}n≥1 is an orthonormal basis of H and
T ∈ B(H) is such that T (gn) = en − fn, for n ∈ N, then T ∈ S2(H) if and only if
∑

n≥1 ‖Tgn‖2 =
∑

n≥1 ‖en − fn‖2 < ∞. Hence, we recover from Corollary 3.17 the following
well-known fact: e and f are S2(H)-equivalent if and only if

∑

n≥1 ‖en − fn‖2 < ∞.

ii). Let J = K(H) and g = {gn}n≥1 be an orthonormal basis of H, and let T ∈ B(H) be such
that T (gn) = en − fn, for n ∈ N. For each N ∈ N, let QN denote the orthogonal projection
onto Span{gn}Nn=1. Then, T ∈ K(H) if and only if limN→∞ ‖T−TQN‖ = 0. Hence, Corollary
3.17 shows that e and f are K(H)-equivalent if and only if for every ε > 0, there exists N ∈ N

such that for all α = (αn)n≥1 ∈ ℓ2(N) we have that

∥

∥

∥

∥

∥

∑

n>N

αn (en − fn)

∥

∥

∥

∥

∥

≤ ε ‖α‖ℓ2 .

4 On the structure of the set Dsa
J

This section is devoted to study the way that the self-adjoint part of DJ sits inside the self-
adjoint part of an operator ideal J . In particular, we answer some questions raised in [10]
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on the structure of restricted unitary orbits. Let J sa be the self-adjoint part of the operator
ideal J . The self-adjoint part of DJ is given by

Dsa
J := DJ ∩ J sa = { V DV ∗ : D = D∗ ∈ D ∩ J , V ∈ UJ (H) }.

As it is shown in [10], the inclusion Dsa
J ( J sa is proper in the general situation. The authors

of that work also describe an example in which Dsa
J is not a linear subspace, but the linear

span satisfies
SpanR(Dsa

J ) = J sa.

In fact, their example is the ideal J = B(H). This naturally led them to consider (see [10,
Question 3.3]) if the set Dsa

J is a proper subset of J sa for every operator ideal J ; similarly,
they asked about the relation between J sa and the real linear span of Dsa

J for proper operator
ideals. Now we show that in the case which J 6= F(H) is a proper operator ideal, then Dsa

J

is not a linear space. Moreover, if we assume further that J 6= J 2, then we prove that
SpanR(Dsa

J ) 6= J sa.

Theorem 4.1. Let J 6= F(H) be a proper operator ideal. Then, Dsa
J is not a linear space.

Proof. Our proof is based on the construction of two operatorsX, Y ∈ Dsa
J such thatX+Y /∈

Dsa
J . The construction has a block-diagonal structure with blocks of size 2; hence we begin

with some computations related with 2× 2 matrices.
Consider the 2× 2 (real) unitary matrix

U(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, θ ∈ [0, π/2] .

Then, the eigenvalues of this normal matrix are ei θ, e−i θ. Hence, we can write

U(θ) = I2 + (U(θ)− I2), s(U(θ)− I2) = (|1− ei θ| , |1− e−i θ|) .

Here I2 denotes the 2×2 identity matrix. Notice that in this case, given 0 < t <
√

2− 2/
√
2,

then there exists a unique 0 < θ < π/4 such that

|1− ei θ| = |1− e−i θ| = t, given by θ = arccos

(

2− t2

2

)

.

Now, consider two vectors x, y ∈ C2 such that ‖x‖ = ‖y‖ = 1 and 0 < 〈x , y〉 < 1. The
positive definite 2 × 2 matrix xx∗ + yy∗ has two different eigenvalues 1 + 〈x , y〉 > 0 and
1− 〈x , y〉 > 0, such that

v1 =
x+ y

‖x+ y‖
is a (well defined) unit norm eigenvector associated with the eigenvalue 1 + 〈x , y〉. Finally,
notice that if we consider the (real) unitaries U(θ) and U(−θ) for some θ ∈ (0, π/4) and the
canonical basis of C2 given by {f1, f2} then, if we set

xθ = U(θ) f1 =

(

cos(θ)
sin(θ)

)

and yθ = U(−θ) f2 =

(

sin(θ)
cos(θ)

)
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we have that ‖xθ‖ = ‖yθ‖ = 1 and 0 < 〈xθ , yθ〉 = sin(2θ) < 1. Hence, the previous
computations show that the positive semidefinite 2 × 2 matrix xθ x

∗
θ + yθ y

∗
θ has distinct

eigenvalues given by 1 + sin(2θ) and 1− sin(2θ), and unit norm eigenvectors,

v =
xθ + yθ
‖xθ + yθ‖

=
f1 + f2√

2
and w =

f1 − f2√
2

.

Notice that once we have computed the vector v, we can take w to be any unit norm vector
that is orthogonal to v, since the matrix is positive semi-definite.

We now go back to the separable infinite dimensional Hilbert space H together with
its orthonormal basis e = {en}n≥1. Consider J 6= B(H) and J 6= F(H). Then, the
characteristic set Σ(J ) ⊂ c0 and we can consider a sequence α = {αj}j≥1 ∈ Σ(J ) such that

1. 0 < αj+1 < αj <
√

2− 2/
√
2, for j ≥ 1;

2. αj (1± sin(2 arccos(
2−α2

j

2
))) 6= αk (1± sin(2 arccos(

2−α2
k

2
))), for j 6= k.

The fact that

lim
x→0+

x

(

1± sin

(

2 arccos

(

2− x2

2

)))

= 0

implies that it is always possible to choose the sequence {αj}j≥1 as above. For each j ≥ 1,

we let θj = arccos
(

2−α2
j

2

)

(notice that θj is a increasing function of αj). Hence,

θj ∈ (0, π/4) , |1− e±iθj | = αj and lim
j→∞

θj = 0 .

We set
V =

⊕

j≥1

U(θj) ∈ UJ (H) ,

where each copy U(θj) is acting on the subspace Hj = Span{e1+2 (j−1) , e2j}, for j ≥ 1.
Indeed,

V = I +
⊕

j≥1

(U(θj)− I2) = I +K, s(K) = { (αj , αj) }j≥1 ∈ Σ(J ) ,

since |1 − e± i θj | = αj, by construction of θj . Notice that we have used that characteristic
sets are invariant under ampliations (see Section 2) to conclude that s(K) ∈ Σ(J ). Hence,
K ∈ J . Similarly, we consider

W =
⊕

j≥1

U(−θj) ∈ UJ (H) .

Consider A, B ∈ D the self-adjoint diagonal operators given by

A =
∑

j≥1

αj P1+2(j−1) =
⊕

j≥1

αj f1f
∗
1 and B =

∑

j≥1

αj P2j =
⊕

j≥1

αj f2f
∗
2 ,

where Pj denotes the orthogonal projection onto C ej, for j ≥ 1, and the direct sums of these
2 × 2 blocks αj fkf

∗
k , k = 1, 2, are considered as before (see the definitions of V and W ).

Now we define X, Y ∈ Dsa
J given by

X = V AV ∗ =
⊕

j≥1

αj xθjx
∗
θj

and Y = W BW ∗ =
⊕

j≥1

αj yθjy
∗
θj
,
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where we have used the block diagonal structure for A, B, V and W . Finally, notice that

X + Y =
⊕

j≥1

αj (xθjx
∗
θj
+ yθjy

∗
θj
) ∈ J sa .

We can further use the block diagonal structure of X + Y to conclude that the eigenvalues
of X + Y are given by the strictly positive numbers

αj (1 + sin(2θj)) and αj (1− sin(2θj)), j ≥ 1

with corresponding eigenvectors

vj =
e1+2(j−1) + e2j√

2
and wj =

e1+2(j−1) − e2j√
2

, j ≥ 1 . (10)

Then, by construction of {αj}j≥1, the eigenvalues ofX+Y (as described above) are all simple.
Therefore, we obtain the compact self-adjoint operator X+Y with simple eigenvalues, whose
eigenvectors are given by the Eq. (10). Now we apply Proposition 2.8: thus, we consider an
eigenvector of X + Y , say vj (the argument with wj is completely analogous) and a vector
ek in the orthonormal basis e. Notice that in case k /∈ {1 + 2(j − 1) , 2j}, then 〈vj , ek〉 = 0
and therefore, ‖vj − β ek‖ =

√
2, for every |β| = 1. In case k = 2j and |β| = 1, then

‖vj − β ek‖ =

∥

∥

∥

∥

1√
2
e1+2(j−1) −

(

1√
2

− β

)

e2j

∥

∥

∥

∥

≥ 1√
2
.

Similarly, if k = 1 + 2(j − 1), then we have that ‖vj − β ek‖ ≥ 1/
√
2. Thus, Proposition 2.8

implies that X + Y /∈ DJ .

Remark 4.2. The above result implies that Dsa
J 6= J sa, when J 6= F(H); this fact was

already proved in [10, Corollary 3.7].

Theorem 4.3. Let J be an operator ideal such that J 2 6= J . Then, SpanR(Dsa
J ) 6= J sa.

Proof. Our argument is simpler if we let the orthonormal basis of H be described as e =
{ej}j∈Z (i.e. we use the integers to describe the elements of the fixed orthonormal basis of
H). Assume that A ∈ DJ and consider V = 1 +K ∈ UJ (H), for some K ∈ J and D ∈ D
such that

A = V ∗DV = (1 +K)∗D (1 +K) = D +K∗D +DK +K∗DK .

In this case, D = V AV ∗ ∈ J , too. Let J ⊂ Z be any subset and let PJ be the orthogonal
projection onto the closure of the subspace spanned by {ej : j ∈ J}. Then, we consider the
(1, 2) anti-diagonal block of the matrix representation of A with respect to decomposition of
the identity {PJ , 1− PJ}, that is

PJ A (1− PJ) = PJ (D +K∗D +DK +K∗DK) (1− PJ)

= PJ (K
∗D +DK +K∗DK) (1− PJ) ∈ J 2 .

Here we have used that PJ D (1− PJ) = 0, since D ∈ D is a diagonal operator with respect
to the orthonormal basis e.

Hence, if A1, . . . , An ∈ DJ and PJ is as before, then

PJ (A1 + . . .+ An) (I − PJ) = PJ A1 (I − PJ) + . . .+ PJ An (I − PJ) ∈ J 2 .
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Now, let X ∈ B(H⊖K , K) be such that s(X) ∈ Σ(J ) \Σ(J 2), where K ⊂ H is the closure
of the subspace spanned by {ej}j≥1. Then, we consider the operator

B =

(

0 X
X∗ 0

)

.

It is well known that in this case

s(B) = D2(s(X)) = (s1(X), s1(X), s2(X), s2(X), . . .) ∈ Σ(J ) ,

so B ∈ J sa using that characteristic sets are invariant by ampliations. Now we choose
J = N ⊂ Z. Therefore, PJ = PK is the orthogonal projection onto K, so

PJ B (1− PJ) =

(

0 X
0 0

)

/∈ J 2,

since s(PJ B (I − PJ)) = s(X) ∈ Σ(J ) \ Σ(J 2). Hence, B cannot lie in the linear span of
Dsa

J .

For our next result on the structure of restricted orbits, we recall [10, Prop. 3.1] and [10,
Problem 6.6].

Proposition 4.4. If a normal compact operator X ∈ J 6= B(H) with spectral multiplicities
equal to one is UJ (H)-diagonalizable to a diagonal operator D ∈ D with respect to the fixed
basis e = {en}n≥1, then D is unique up to a finite permutation. Furthermore, X can be
UJ (H)-diagonalized to every finite permutation of D.

In what follows we extend the analysis of Proposition 4.4 to the general context of (nor-
mal) diagonalizable operators. We fix a diagonalizable operator

A =

N
∑

n=1

λn Pn , N ∈ N or N = ∞,

where the series converges strongly when N = ∞. We assume that A ∈ DJ for some proper
operator ideal J , and consider its restricted unitary orbit, i.e.

OJ (A) = {V AV ∗ : V ∈ UJ (H)}.

In order to tackle the previous problem, we consider the set

OJ (A) ∩ D = {B ∈ D : B = V AV ∗ for some V ∈ UJ (H)} .

We will show that OJ (A)∩D can also be described as an orbit under the action of the finite
permutations. Indeed, let U ∈ UJ (H) be such that

B = UAU∗ =
N
∑

n=1

λn En ∈ OJ (A) ∩ D ,

where En ∈ D, for 1 ≤ n ≤ N , are such that {En}Nn=1 is a decomposition of the identity.
Our next result is a consequence of the characterization obtained in Theorems 3.1 and 3.2
(see also Remark 3.11).
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Theorem 4.5. With the previous notation,

OJ (A) ∩ D = {UσBU∗
σ : σ is a finite permutation } (11)

where Uσ ∈ UJ (H) denotes the unitary operator induced by the finite permutation σ.

Proof. The inclusion of the set to the right into the set to the left in Eq. (11) is clear, since
Uσ − I is a finite rank operator, for each finite permutation σ.

To show the other inclusion notice that, with the previous notation, {En}Nn=1 induces a
partition P = {In}Nn=1 of N in such a way that En is the orthogonal projection onto the
closure of subspace spanned by {ei : i ∈ In}.

Take B′ ∈ OJ (A) ∩ D. Then, B′ =
∑N

n=1 λn E
′
n ∈ D for some decomposition of the

identity {E ′
n}Nn=1 in D. In this case, based on the theory of multiplicity of eigenvalues, there

exists a permutation τ : N → N such that E ′
n is the orthogonal projection onto the closure

of the subspace spanned by {eτ(i) : i ∈ In}, for 1 ≤ n ≤ N .
Consider

M(τ,P) = {i ≥ 1 : i ∈ In , 1 ≤ n ≤ N and τ(i) /∈ In} .
We now show that M(τ,P) is a finite set by way of contradiction. Thus, we assume that
M(τ,P) is an infinite set and consider the following two cases:

Case 1: {1 ≤ n ≤ N : ∃i ∈ In , τ(i) /∈ In} is a finite set. In this case, there exists
1 ≤ n ≤ N such that N = {i ∈ In , τ(i) /∈ In} is an infinite set. Then, by hypothesis,
Pn −En ∈ J and [Pn : En] = 0. In particular, limi∈N , i→∞ ‖(En − Pn)(ei)‖ = 0. Hence there
exists i0 ∈ N such that for i ≥ i0 we have that ‖ei − Pn(ei)‖ ≤ 1/2. Notice that in this case
‖ei− (I−Pm)(ei)‖ ≤ 1/2, for i ∈ N , i ≥ i0 and m 6= n. Now fix i ∈ N , i ≥ i0 and let m 6= n
be such that E ′

mei = ei, so that

‖ei − E ′
m(I − Pm)(ei)‖ = ‖E ′

m(ei − (I − Pm)(ei))‖ ≤ 1/2.

Therefore,
‖E ′

m(I − Pm)(ei)‖ ≥ 1/2 .

The previous inequality shows that ‖∑N
r=1E

′
r(I − Pr)(ei)‖ ≥ ‖E ′

m(I − Pm)(ei)‖ ≥ 1/2, for

i ∈ N , i ≥ i0. Since the set of such indexes is infinite, we see that
∑N

r=1E
′
r(I − Pr) is not a

compact operator, which contradicts the fact that B′ ∈ OJ (A)∩D by Theorem 3.1 if N ∈ N

or by item iv) in Remark 3.11 if N = ∞.
Case 2: {1 ≤ n ≤ N : ∃i ∈ In , τ(i) /∈ In} is an infinite set (hence N = ∞). In this case

we notice that by Lemma 3.6 we have that limn→∞ ‖En − Pn‖ = 0. We argue as before: let
n0 ≥ 1 be such that ‖En−Pn‖ ≤ 1/2 for n ≥ n0. Then, the set N = {i ∈ N : ∃n ≥ n0 , i ∈
In , τ(i) /∈ In} is infinite. For each i ∈ N we have that ‖∑r≥1E

′
r(I − Pr)(ei)‖ ≥ 1/2,

as before. Hence, in this case
∑

r≥1E
′
r(I − Pr) is not a compact operator, which again

contradicts the fact that B′ ∈ OJ (A) ∩ D, by item iv) in Remark 3.11.
Hence M(τ,P) is a finite set. Now, it is a combinatorial exercise to show that there

exists a finite permutation σ : N → N such that σ(In) = τ(In), for 1 ≤ n ≤ N (see Remark
4.6 below).

Remark 4.6. We sketch a brief argument to prove the last claim in the previous proof. We
apply induction on the number of elements #(M(τ,P)). Fix i ∈ M(τ,P). Consider the
following cases:

Case 1: there exists 1 ≤ k0 ∈ N such that τk0(i) = i. If we consider the finite cycle
µ = (i τ(i) . . . τk0−1(i)) then µ−1 ◦ τ is a permutation such that µ−1 ◦ τ(τ r(i)) = τ r(i), for
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r ∈ Z and µ−1 ◦ τ(j) = j, j 6= τ r(i) and r ∈ Z. Hence, #(M(µ−1 ◦ τ,P)) ≤ #(M(τ,P))− 2
(since there are at least two jumps from different Im’s in the cycle, that we have erased). In
this case we can apply our inductive hypothesis to µ−1 ◦ τ and obtain a finite permutation
σ′ such that µ−1 ◦ τ(In) = σ′(In) for 1 ≤ n ≤ N , from which it follows that σ = µ ◦ σ′ has
the desired properties.

Case 2: τk(i) 6= i for k ∈ Z. In this case there exists n0 ∈ N and 1 ≤ k′ ∈ N such that
τk(i) ∈ In0

, for k ≥ k′. Let k′ ≤ k0 = 2α + 1, for some α ∈ N. Similarly, there exists
an index r′ ≤ 0 such that τk(i) ∈ Im0

, for some (unique) m0 ∈ N, for every k ≤ r′; let
r0 = −2 β ≤ r′ for some β ∈ N. We now define the finite cycle ρ : N → N given by ρ =
(τ r0(i) τ r0+1(i) . . . τk0(i)). Notice that in this case M(ρ◦ τ,P) ≤ M(τ,P)+1 (since we are
adding a jump from In0

to (the possibly different set) Im0
at the value ρ◦τ(τk0−1(i)) = τ r0(i)).

On the other hand, it is easy to check that (ρ ◦ τ)α = τ r0(i) and that (ρ ◦ τ)α+β = τ 0(i) = i.
We now construct, as in case 1, the finite cycle µ = (i (ρ ◦ τ)(i) . . . (ρ ◦ τ)α+β−1(i)) so that
M(µ−1◦(ρ◦τ),P) ≤ M(ρ◦τ,P)−2 ≤ M(τ,P)−1. In this case we can apply our inductive
hypothesis to µ−1 ◦ ρ ◦ τ and obtain a finite permutation σ′ such that µ−1 ◦ ρ ◦ τ(In) = σ′(In)
for 1 ≤ n ≤ N , from which it follows that σ = ρ−1 ◦ µ ◦ σ′ has the desired properties.

Remark 4.7. Consider the following equivalence relation in ℓ∞(N): given α = {αn}n≥1, β =
{βn}n≥1 ∈ ℓ∞(N) then α ≈ β if and only if there exists U ∈ U(H) such that Dα = UDβ U

∗,
where Dα, Dβ ∈ D are the diagonal operators induced by the sequences α and β, respectively.
It is straightforward to check that α ≈ β if and only if C = {αn : n ∈ N} = {βn : n ∈ N} ⊂
C and for every γ ∈ C we have that #({n ∈ N : αn = γ}) = #({n ∈ N : βn = γ}) ∈ [0,∞].

Given α ∈ ℓ∞(N) let [α] denote the equivalence class of α with respect to ≈. We can
further consider the equivalence relation in [α] given by γ ≡ δ if there exists a finite permu-
tation σ such that γn = δσ(n), for n ∈ N. We further denote by [[γ]] the equivalence class of
γ ∈ [α] with respect to ≡.

Given a proper operator ideal J then Theorem 4.5 allow us to describe the set DJ ,B(H)

of restricted diagonalizable operators as follows:

DJ ,B(H) =
⋃

[α]∈ℓ∞(N)/≈

⋃

[[γ]]∈[α]/≡

OJ (Dγ)

where all unions are disjoint.
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