
SECtion titlE
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

62 Computing in Science & Engineering 1521-9615/17/$33.00 © 2017 IEEE Copublished by the IEEE CS and the AIP January/February 2017

ComputEr SimulationS
Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

Simulating Search Engines

Mauricio Marín | Universidad de Santiago, Chile
Verónica Gil-Costa | Universidad Nacional de San Luis, Argentina
Carolina Bonacic and Alonso Inostrosa | Universidad de Santiago, Chile

S
earch engines are used by millions of people per sec-
ond around the world. Th e term search engine refers
not only to well-known commercial Web search en-
gines such as Google, Yahoo, and Bing but also to a

wide range of search systems that are part of major Web-based
applications such as email and social networks. In these appli-
cations, they support services such as contextual advertising
and special-purpose local search. Th ese systems are made of
diff erent algorithms and heuristics whose designs are devoted
to optimizing the rate of query requests fi nished per unit time
(query throughput) provided that no single query takes a run-
ning time beyond a given upper bound. In addition, the load
on computational resources is usually driven by unpredictable
user behavior, which takes the form of highly dynamic rates
of incoming queries. Th ese constraints must be guaranteed,
provided no processor is used beyond a given upper bound

so that processors are prepared to cope with sudden peaks in
query traffi c.

In general terms, large-scale search engines can be seen
as multicomponent systems whose individual design, imple-
mentation, deployment, and operation are always in con-
stant evolution, and thus it’s of paramount importance to be
able to predict their performance with precise and practical
methods. We’ve found discrete event simulation to be a use-
ful tool in this context because it enables us to both repre-
sent the actual system in a one-to-one correspondence with
its main components (including user behavior) and simulate
the cost of their relevant operations in a precise and high-
level manner. Th is requires modeling the cost of the diff er-
ent operations involved in processing very large streams of
user queries both at macroscopic (cluster of processors) and
microscopic (multicore processors) levels.

Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 63

In this article, we describe a methodology to
produce such simulations, where, depending on the
worldview used to represent and implement the re-
spective simulation model, you can either efficiently
obtain the performance metric values for alterna-
tive simulated designs or directly assess comparative
performance of alternative algorithms by embed-
ding their actual C++ codes into the simulator. To
illustrate our proposal, we present microscopic- and
macroscopic-level case studies represented with dif-
ferent worldviews: Discrete Event System Specifi-
cation (DEVS), discrete-event realization of timed
colored Petri nets (CPN), and process-oriented
simulation (POS).

Search Engines
Web search engines are composed of three main
elements: the crawler recovers documents from
the Web, the indexer indexes the documents col-
lected by the crawler, and the searcher solves user
queries by using the generated index and other
components required to achieve efficient perfor-
mance. Figure 1 shows the relationship among
the three elements. In this article, we focus on
how to simulate the searcher to evaluate the per-
formance of alternative algorithmic designs for its
components. In the searcher, users submit queries
composed of keywords, and, in return, they re-
ceive a list of pointers to Web documents ordered
in accordance with a relevance metric function on
the query keywords. We refer to the searcher as
the search engine.

A search engine is usually built as a collection
of services deployed on a large cluster of proces-
sors, wherein each service is distributed onto a set
of processors. The processors and the communica-
tion network are expected to be constructed from
commodity hardware. Each processor is expected
to be a multicore processor, enabling efficient mul-
tithreading on shared data structures. Message
passing is performed among processors to com-
pute on the distributed memory supported by the
processors.

The realization of each service can involve the
use of different distributed/multithreaded query
solution algorithms, distributed query routing
algorithms, query results caching policies and
heuristics, compressed index data structures, and
many other optimizations,1–6 all devised to en-
able efficient query processing and whose com-
parative performance can be evaluated through
simulation.7,8 The key issue is to place the studied
strategies in a simulated environment capable of

reproducing real operational conditions in a pre-
cise manner. This leads to the challenge of prop-
erly modeling the relevant running time costs of
query-processing strategies and system/hardware
software operation.

User queries can travel to several services to be
solved. Figure 2 shows an example with three typi-
cal services: front-service (FS), caching-service (CS),
and index-service (IS). Each query is received by
the FS, which redirects it to the CS. The CS then

Figure 1. Web search engine overview. Search engines are
composed of three main elements: the crawler recovers documents
from the Web; the indexer indexes the documents collected
by the crawler; and the searcher solves user queries by using
the generated index and other components required to achieve
efficient performance.

Indexer

Web

Searcher

User makes a query
against the database

UserLooks at content and
builds index database

Set of URLs

Crawler

Crawler searches the
Web and grabs
pages

Search
engine

database

Figure 2. Query processing. Each query is received by the front-
service (FS), which redirects it to the caching-service (CS). The
CS then checks whether the same query has already been solved
and if its results (document IDs) are stored in the service. The CS
can answer the FS with either a cache hit or a cache failure. In
the latter, the FS sends the query to the index-service (IS), which
proceeds to compute the top-K results of the query and sends
them back to the FS and CS. The IS uses a document index data
structure and additional special-purpose caches to speed up query
processing.

HTML page

New query

FS cluster (1)
(6)

(3) Response

(5)

(2)
query search

(4)
Index search

Result Cache

CS Cluster
P

Index
Intersection
cache

P
IS cluster

Top-K IDs

D

D

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

64	 � January/February 2017

Computer Simulations

checks whether the same query has already been
solved and if its results (document IDs) are stored in
the service. The CS can answer the FS with either
a cache hit or a cache failure. In the latter, the FS
sends the query to the IS, which proceeds to com-
pute the top-K results of the query and sends them
back to the FS and CS. The IS uses a document in-
dex data structure and additional special-purpose
caches to speed up query processing.

Search engine services are deployed on arrays
of P × D processors, where P is the level of data
partitioning and D is the level of data replication.
This architecture uses partitioning to reduce indi-
vidual query response times and replication to in-
crease the number of queries solved per unit time
(query throughput). Replication also provides sup-
port for fault tolerance. Notice that, in practice, the
upper bounds set for query response times are so
small that hitting secondary memory during query
processing isn’t an option. Thus, all data structures
are kept in the processors’ main memory in com-
pressed format. At any given time, many different
queries can be solved by different replicas of the
same partition; in each processor, several queries
can be solved in parallel via multithreading.

In the IS, a document index called the invert-
ed index quickly determines the list of documents
that contain query terms. After retrieving the
list of documents, a ranking algorithm is passed
through the document list to determine the top-K
documents that are the most pertinent to the query
terms. The amount of space occupied by the docu-
ments and inverted index is usually huge, so they
must be evenly distributed on a large set of distrib-
uted memory processors in a sharing nothing fash-

ion. Compression algorithms have been devised for
the inverted index and documents.9 The rationale
for the array of processors is as follows: each query
is sent to all of the P partitions, and, in parallel,
the local top-K document IDs in each partition are
determined. These local top-K results are then col-
lected by the requesting FS processor to determine
the global top-K document IDs. Alternatively,
one of the IS processors (selected in a round-robin
manner) can perform the global top-K calculation
and send the results to the FS processor.

The inverted index is composed of a vocabu-
lary table (containing the V distinct relevant terms
found in the document collection) and a set of
posting lists. The posting list for a term stores the
identifiers of the documents that contain the term
itself along with additional data used for the docu-
ments ranking function. To solve a query, a proces-
sor must fetch the posting lists for the query terms,
compute the intersection among them, and then
compute the ranking of the resulting intersection
set by using algorithms such as BM25 or WAND.10
The IS can also keep special-purpose caches such as
a posting lists intersection cache devised to reduce
the number of re-computation of intersections for
popular co-occurring query terms.

Services (processors) communicate through
a fast network of switches such as the fat-tree.11
Figure 3 shows a fat-tree with three levels: at the
bottom, processors are connected to edge switches;
at the top, we see the so-called core switches; and
in the middle, we have the aggregation switches.
A property of this network is that it allows achiev-
ing a high level of parallelism in message traffic to
avoid congestion due to the fact that messages can
follow different paths in the fat-tree to reach the
same given destination.

Search engines can also be required to support
real-time search, a situation in which index con-
tent can be updated concurrently with query pro-
cessing. However, there are potential read/write
conflicts in each processor that must be handled
with concurrency control algorithms. This prob-
lem is exacerbated by the fact that people tend
to use a reduced set of very popular terms both
in documents and in queries. Figure 4 shows an
incoming query Q containing the terms T2 and
T3. The thread in charge of solving the query
accesses the inverted index to retrieve the rel-
evant documents for the query and perform the
document-ranking operation. At the same time,
another thread updates the inverted index with a
new document that involves updating the post-

Figure 3. Fat-tree network. At the bottom, processors are
connected to edge switches; at the top, we see the so-called core
switches; and in the middle, we have the aggregation switches.

Core switch

10.4.1.1

10.0.2.1

10.0.0.1

10.0.0.2
10.0.0.3 10.0.1.3

10.0.1.2 10.1.0.2

POD

Racks

POD

10.0.1.1

10.0.2.2
Aggregation

switch

Edge
switch

10.4.1.2

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 65

ing lists associated with the terms present in the
document. Thus, at a microscopic level, the mul-
tithreading performed in each processor of the
index service has difficulties on its own merits.
Thread programming should optimize the
use of the memory hierarchy and prevent read/
write conflicts. This is a relevant issue because the
performance can be dramatically degraded due
to conflicting read and write operations among
threads.

In situations where the index isn’t updated
concurrently, an appropriate number of threads
must be scheduled to efficiently solve queries and
avoid idle/overloaded threads. A pragmatic ap-
proach to multithreaded query processing is to
let each incoming query be processed sequen-
tially by a single thread. However, the query
running time required to solve some queries
containing popular terms can be large because
the length of the corresponding posting lists can
be quite large as well. One solution is to exploit
parallelism by assigning several threads to solve
single queries.12 In this case, to increase the
chances of keeping all threads busy doing use-
ful work, query processing can be decomposed
into a number of units of work that are placed
in an incoming query queue from which threads
can take their next job. In the example in Figure
5, threads are dynamically assigned to the pro-
cessing of individual queries in accordance with
their predicted query running times. This pre-
diction is made by using machine learning tech-
niques. Query processing is decomposed into
several independent work units that are stored in
the shared queue and then processed in parallel
by multiple threads. Access to the queue is con-
trolled by a simple locking mechanism. A clas-
sification method helps determine the number of
work units per query so that the load balance for
the parallel query solution isn’t compromised.
In this particular case, the classification method
selects the minimum number of threads so that
a target average execution time is satisfied: que-
ries hitting large posting lists are assigned more
threads than queries with smaller ones.

Search engines can also rely on a cache hierar-
chy to enhance performance. Hierarchy goes from
the most specific precomputed data for queries
(results cache) to the most generic data required
to solve queries (posting list cache).13–15 The re-
sult cache (RCache) stores the most frequent que-
ries along with its result webpage; it’s deployed on
the CS. A location cache (LCache) stores frequent

queries not found in the RCache; for each query, it
keeps the list of IS partition IDs that provide the
query answer. This is a tiny cache as it only stores
partition IDs in compressed format. The ratio-
nale is that, for frequent queries evicted from the
RCache, the LCache can reduce the number of
processors involved in the query solution. In ad-
dition, under a situation of high query traffic (see
Figure 6), the LCache is used as a semantic cache,16

instructing the FS to send queries to the most
promising IS nodes to obtain approximate docu-

Figure 4. The inverted index. For an incoming query Q containing
the terms T2 and T3, the thread in charge of solving the query
accesses the inverted index to retrieve the relevant documents for
the query and perform the document-ranking operation. At the
same time, another thread updates the inverted index with a new
document that involves updating the posting lists associated with
the terms present in the document.

Read operations

New query

Q

T2 & T3

Inverted index

Write operations

New doc

D

T1

d1,f1
d2,f2
d3,f3
d4,f4

d5,f5
d6,f6
d7,f7
d8,f8
d9,f9

d10,f10

d41,f41
d42,f42
d43,f43
d44,f44
d45,f45

T1
T2
T3
T4

T5

T2 T3 TM-2 TM-1 TM

Figure 5. Query work units distribution among threads. Threads
are dynamically assigned to the processing of individual queries
in accordance with their predicted query running times. Query
processing is decomposed into several independent work units that
are stored in the shared queue and then processed in parallel by
multiple threads.

Estimator

nThreads QN

Q1

Q1

U11U12U21U22U31U32U33U34

Q2 Q3

Q2 QNScheduler

Lock

Unit process
thread 1

Unit process
thread 2

Unit process
thread N

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

Computer Simulations

66	 � January/February 2017

ment results. Overall, the LCache has the net ef-
fect of reducing the average number of processors
involved in solving queries, which implies reducing
the total amount of hardware required to serve a
given workload.

Upon a cache hit, the list of documents stored
in the cache is used to build the results webpage for
the query. In addition, an intersection cache keeps,
in each IS node, the intersection of the posting lists
associated with pairs of terms frequently occurring
in queries. The intersection operation is useful for
detecting documents that contain all the query
terms, which is a typical requirement for the top-K
results in major search engines.

Ultimately, many issues must be taken into
consideration to formulate a proper performance
prediction model: user behavior represented in
streams of queries containing terms of differing
popularity; drastic changes in user query traffic
when events capture world-wide interest; traffic-
dependent latency in query computation and com-
munication; multithreading in cluster-processing
nodes and message passing among cluster-process-
ing nodes; and different strategies properly com-
bined to reduce query response time and increase

query throughput. In addition to the different cach-
es placed at various points and compressed index
data structures, the design can include query-rout-
ing strategies, load balance strategies, and multiple
variants for document-ranking algorithms. These
issues make discrete-event simulation suitable for
performance evaluation.

Simulation Modeling
In this article, we present a methodology for modeling
and simulating search engines that

■■ uses models of parallel computation to feature
hardware/software system costs together with
benchmark programs built on the model rules
to measure the respective actual costs;

■■ uses benchmark programs to measure the
cost of relevant operations associated with
the different stages of query processing of
queries; and

■■ uses a circulating token approach to simulate
the cost of these stages, where each token repre-
sents a query that visits a number of concurrent
objects devised to cause cost in the simulation
time.

We apply the BSP models of parallel computa-
tion17 for a macroscopic representation of the sys-
tem (cluster of processors level) and Multi-BSP18
for a microscopic representation of the system
(multicore processor level). These models provide a
well-defined structure of parallel computation that
simplifies the determination of hardware and sys-
tem software costs, as well as the debugging and
verification of simulation programs.

In BSP, the cluster of processors is seen as P
processors with local memory, where communica-
tion among them is performed via point-to-point
messages. Parallel execution is organized as a se-
quence of supersteps. In each superstep, the proces-
sors can only work on local data and send messages
to other processors. The end of each superstep is
signaled by the barrier synchronization of all pro-
cessors. At this point, all messages are delivered at
their destinations so that processors can only con-
sume them at the start of the next superstep. This
organization of parallel computation in supersteps
enables integrated consideration of computation,
communication, and synchronization from both
the algorithmic design and performance evaluation
viewpoints.

Benchmark BSP programs are executed to fea-
ture the cost of these three components of parallel

Figure 6. LCache as a semantic cache for high query traffic
scenarios. The LCache has the net effect of reducing the average
number of processors involved in solving queries, which implies
reducing the total amount of hardware required to serve a given
workload.

LCache

House cat --> proc 1 proc 2 proc 8 proc 10
Dog car --> proc 8 proc 5 proc 9 proc 10

Is it in the LCache?

No

Yes

P
ar

ti
ti

on
s

M
em

or
y

P
ro

ce
ss

or

M
em

or
y

P
ro

ce
ss

or

M
em

or
y

P
ro

ce
ss

or

M
em

or
y

P
ro

ce
ss

or

FS

Incoming
query

Cat dog

Semantic analysis

High query traffic

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 67

computation on the target cluster of processors. In
Multi-BSP, the concept of supersteps is extended
to the processor cache hierarchy, wherein blocks of
data (cache lines) are transferred from main mem-
ory to caches close to processor cores, enabling al-
gorithm design to be aware of temporal and spatial
locality.

From the simulation modeling viewpoint,
the BSP and Multi-BSP models of parallel
computation enable a high-level representation of
the underlying hardware in which search engine
query-processing operat ions a re executed .
Once the BSP-based simulation program has
been debugged and tested, we remove the barrier
synchronization requirement of supersteps,
leading to a fully asynchronous message-passing
parallel processing system that’s close to the actual
search engine operation.

In addition, we refine the abstract commu-
nication network present in BSP by replacing it
with a fat-tree network, in which nodes contain
a queuing crossbar model of communication
switches. In this case, each switch is modeled by
following the same approach as in BSP, which,
in general, can be stated as defining a high-level
functional view of the component, where we can
identify its relevant operations from a collection
of specific operations available in the component;
defining its individual costs in the simulation
time with benchmark programs; and identifying
the way they interact with each other during com-
ponent operation under determined workloads
and constraints.

The sequence of operations executed by a
search engine such as the one in Figure 2 exempli-
fies the execution Directed Acyclic Graph (DAG)
associated with each query. These DAGs are inde-
pendent of each other, but they implicitly synchro-
nize when they compete for using cluster resourc-
es. We simulate these interactions with resources
by modeling them as circulating tokens that form
DAGs (fork and join) with nodes visiting queuing
networks across the cluster resources. Benchmark
programs are built to obtain the costs of relevant
operations related to query processing. These costs
become the work requests in the DAG nodes asso-
ciated with each query. In turn, each cost becomes
the amount of work requested in the respective
resource when access is granted by the queuing
strategy.

 Using the example in Figure 2, let’s further ex-
plore this DAG concept. Threads in the simulation
model execute primitive operations such as {CPU,

COMM, DISK, FORK, JOIN, BEGIN QUE-
RY, END QUERY, HIT RCACHE, UPDATE
RCACHE}. Each operation is associated with rele-
vant information such as its running time cost and
a message’s sender and receiver IDs. Each opera-
tion’s cost can be given by a constant value such as
(CPU 2032), or it can be obtained through a DAG
variable as in the case when the cost depends on
an intersection cache hit or on a particular query
content and ranking algorithm (the latter is an-
notated as (CPU $WAND) in the respective DAG
nodes). Additional DAG commands keep infor-
mation about the query itself, with the $TERMS
command indicating query term identifiers, $SIZE
indicating each term’s posting list length, and
$IDQ the query identifier. Figure 7 shows a typical

Figure 7. DAG. The advantage of this DAG enhanced with
constants, variables, and commands is that it closely resembles
the actual steps associated with processing queries in a real
search engine.

5. CPU 80
FORKNew query

1. BEGIN_QUERY 1
 $ TERMS 231 269
 $ SIZE 32001 4420011
 $WAND 20231 CPU 80

CPU 25344

$ SENDER $DESTINY

9. JOIN

10. UPDATE_RCACHE

CS

FS

FS

CS CS

CS CS CS

ISISIS

ISISIS

2. COMM 8

3. HIT_RCACHE

7. CPU sWAND 7. CPU $WAND

4. COMM 15
$RTE

8. COMM 120
$RTE

6. COMM 8
 $SENDER
 $DESTINY

Figure 8. Simulated fat-tree. Messages are divided into packages
of fixed size, and each package includes the data, a header with
sender and receiver identifiers, and the number of packages
forming the message. All input packages go to the same input
queue.

Link from
Link to

IN Select
output

Package Header
Data

Switch EDGE

10.0.0.3
10.0.0.2

10.0.2.2

10.0.2.1

10.0.2.1

10.0.2.2

10.0.0.2

10.0.0.3

tttt

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

Computer Simulations

68	 � January/February 2017

sequence of operations for our example. The advan-
tage of this DAG enhanced with constants, vari-
ables, and commands is that it closely resembles
the actual steps associated with processing queries
in a real search engine.

Figure 8 shows the network simulated as a
queuing crossbar network. Messages are divided
into packages of fixed size, and each package in-
cludes the data, a header with sender and receiver
identifiers, and the number of packages forming
the message. All input packages go to the same
input queue. We keep an output queue (or out-
put port) for each device connected to the switch.
Packages forming a message can be sent in paral-
lel through different output queues. If a package
is on its way up through the network (from an
edge switch to an aggregation switch or from an
aggregation switch to a core switch), we evaluate
the prefix of the destination IP address to select
the output queue.11 Otherwise, the output queue
is selected by evaluating the suffix of the destina-
tion IP address. Benchmark programs are devised
to evaluate the cost of different communication
patterns such as multicast, broadcast, and point-
to-point messages.

Methodology and World Views
Figure 9 shows our simulation methodology’s
main components. The simulation models can
be represented with formalisms such as DEVS
and CPN. Benchmark programs are based on
the BSP and Multi-BSP models and are execut-
ed on commodity hardware to determine the
costs of relevant operations. For the running ex-

ample in Figure 2, these benchmarks include
processor and network costs, inverted index in-
tersections, and document rankings. The simu-
lation provides three main objects: processors,
threads, and a fat-tree network. Each processor
is a multicore system enabling efficient multi-
threading on shared data structures, and mes-
sage passing is performed through the fat-tree
network to enable parallel computation on the
distributed memory supported by the processors.

The network builder component creates a fat-
tree network with all the links and switches; it also
computes the routing table used in the switches.
The mapping component assigns services to the
processors—that is, each service has a unique IP
and is linked to the input/output port of the cor-
responding edge switch to enable point-to-point
message passing between processors.

Overall, the proposed simulation methodology
enables modeling and simulation at microscopic
and macroscopic levels and with different levels of
detail. Figure 10 shows an example of a simulation
model generated with our methodology represent-
ed with the DEVS formalism; Figure 11 shows it
with a timed CPN.

Figure 10a shows a macroscopic view of the
search engine and its services modeled with DEVS.
Each service is a black box with in/out ports con-
necting with other services and additional elements
used to route the queries. Figure 10b shows the
formal DEVS definition of the search engine il-
lustrated in Figure 10a.19 DEVS supports different
levels of abstraction through atomic and coupled
models. Atomic models are the most elemental and
basic entity to represent systems, whereas coupled
models represent their structure.

Figure 11a shows a high-level view of the search
engine and the FS modeled with CPN. The logic
involved at this level is simple and, typically, the
models represent the connection between the sim-
ulated components and how the query tokens flow.
Figure 11b shows a microscopic (low-level) view of
threads competing for the resources (places) mod-
eled with CPN. Threads perform read/write op-
erations on the search engine’s inverted index (IS
processor). In this case, the logic tends to be more
complex, and we need to include more detailed in-
formation such as the delay and type of data.

Experimental Results
Our experimental results illustrate the effectiveness
of our simulation models to predict relevant per-
formance metrics in search engines. As a running

Figure 9. Conceptual model of the proposed methodology. The
mapping component assigns services—each service has a unique
IP and is linked to the input/output port of the corresponding edge
switch to enable point-to-point message passing between processors.

Service configuration Benchmark
programs

Mapping

Simulated
hardware

Fat-tree Simulator

Performance evaluation

Threads

Processor

Relevant
costs

Real hardware

Query traces

Query traffic

Network
builder

Routing table::

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 69

Figure 10. The proposed simulation methodology: DEVS (a) model for a search engine and (b) formalism. On the left, we see a
macroscopic-level view of the search engine, and on the right, a microscopic-level view of an FS.

Front service

Cache serviceIndex service

Query
generator

StatisticsQueryRouter

QueryRouter_Part

QueryRouter_P

Out_1 Out_DOut_1 Out_D

CS_P_DCS_P_1CS_1_1 CS_P_DIS_P_DIS_P_1IS_1_DIS_1_1

Out

Out

Stats Stats

Stats Stats

Stats Out

Out

Stats OutOut

QueryRouter_1QueryRouter_P

QueryRouter_Part

QueryRouter_1

In

In In

Stats

tolS toCS

Out_1

FS_1 FS_D

Out_D

WSE ={Xwse, Ywse, Dwse, { Mdwse
 d ∈ Dwse}, EICwse,

EOCwse, ICwse, selectwse}
Where:
Xwse = {Ø}
Ywse = {Ø}
Dwse = {QueryGenerator, FSi, CSjk ISIm}
∀ i ∈ (1, RFS]; ∀ j ∈ (1, RCS],∀ k ∈ (1, PCS]; ∀ i ∈
[1,RIS],∀ m ∈ [1,-PIS];
Where: RFS is the number of nodes in the FS, PCS and RCS
are the number of partitions and replicas of the CS, PIS and
RIS are the number of partitions and replicas of the IS.
Mdwse

 = { MQueryGenerator, MFSi
 , MCSjk

, MISlm
 }

EICwse = {Ø}
EOCwse = {Ø}
 ICwse ⊆ { ((Query Generator, outi), (FSi, in));
 ((FSi, outCSjk), (CS j k , in));
 ((FSi, outISlm), (ISlm, in));
 ((CSjk, outi), (FSi, in)); ((ISlm, outi), (FSi, in));}
selectwse = {QueryGenerator, FSi, CSjk, ISlm}

FS = {Xfs , Sfs, Yfs , δintfs
 , δextfs

 , λ, ta}
Where:
Xfs = {(“in”, q)lq ∈ Q} is the set of ports and its input
values (Query objects).
Sfs = {“Idle”, “Proc”} × σ × Q × qSize, where “Proc”
corresponds to state Processing, σ ∈ R0 has the time advance
value according to ta, and qSize is a variable containing
the current amount (size) of queries in the queue with
qSize ∈ z0.
Yfs = {(p, q) p ∈ OUT, q ∈ Q}, where q is a Query.

δintfs
 (“Proc”, σ, qSize) =

δextfs
 (“Idle”, a, qSize) = (“Proc”, 0, 1)

δextfs
 (“Proc”, a, qSize) = (“Proc”, σ –e, qSize + 1)

λ(“Proc”, σ, Query) = (out*, Query)
ta(“Proc”, σ, Query) = σ

+

+

(“Idle”, ∞) o. w.
(“Proc”, 0, qSize – 1) If 0 < qSize

(a)

(b)

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

Computer Simulations

70	 � January/February 2017

Figure 11. Colored Petri net (CPN) model for a search engine: (a) macroscopic and (b) microscopic modeling levels.

Arrivals

FS queue

IS queue

Queries

Query

query
1

1

in

Completed

FS CS Queue CSIS

Queries

Queries

FServer FS queue

Input queue Multithreaded
processing

Done
query

(1) and (5)
if (#State query = new) or
(#State query = update)
then 1` query
else empty

(2) and (4)
if (#State query = done)
or (#State query = hit)

then 1` query else empty

(3)
if (#State query = no_hit)
then 1` query
else empty

NFS`(1)
Set_CS(query);

CS
queue

out

out

out

Completed

IS
queue

T

Thread

if Contain Term(1)
then 1` RWtype
else empty if IsFirstTerm(1)

then 2` RWtype
else 2` RWtype

if IsFirstTerm(2)
then 2` RWtype
else 1` RWtype

if IsFirstTerm(n)
then 2` RWtype
else 1` RWtype

if Done()
then 1` Thread
else empty

if Done()
then 1` RWtype
else empty

if Next(n)
then 1` RWtype
else empty

if Next(1)
then 1` RWtype
else empty

2

2

E

D1

D2

PD1

PB1

PB2

PBn

1

1

C

1

LockB

LockB
(#nt RWtype)` RWtype

LockB

PD2

2Dn

PDn

@+Ω

@+Ω

@+Ω

if Next(2)
then 1` RWtype
else empty

if Contain Term(2)
then 1` RWtype
else empty

if Contain Term(N)
then 1` RWtype
else empty

A

in

input

LockA

1

B1

B2

Bn

(a)

(b)

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 71

Figure 12. Query throughput results (y-axis) achieved with a real
implementation and respective simulators of the system presented
in Figure 2. The service configurations (x-axis) shows the number
of processors supporting the FS, CS, and IS nodes ranging from
115 to 240.

350

Real POS
DEVS CPN

300

250

200

150

100

50

0
0 5 10 15 20

Service configurations
Th

ro
ug

hp
ut

Figure 13. Average response time for individual queries (y-axis)
achieved with a real implementation and process-oriented
simulator (POS) for the IS in the system in Figure 2. The
results are obtained for different numbers of partitions of the
IS (x-axis), with each partition held by a single multithreaded
processor.

1.0

0.8

N
or

m
al

iz
ed

 s
er

vi
ce

 t
im

e

0.6

0.4

0.2

0
0 20 40 60 80 100

IS partitions
120 140 160 180

POS
Real

example, we use the search engine described in
Figure 2. For this system, we developed both simu-
lators and an actual implementation based on C++
and the MPI message-passing library. The simula-
tors were built using process-oriented simulation
(POS) implemented using C++ libCppSim; DEVS,
which is run on its own simulation kernel called
PCD++20; and timed CPN with simulation kernel
implemented in C++.

We performed experiments with a log of actual
user queries submitted to the AOL search service
between 1 March and 31 May 2006. This log, ex-
posing typical patterns present in user queries, has
16,900,873 queries, with 6,614,176 unique queries
and a vocabulary consisting of 1,069,700 distinct
query terms. We also used a sample (1.5 Tbytes)
of the UK Web obtained in 2005 via the Yahoo
search engine, over which we constructed a
26-million-term and 56,153,990-document in-
verted index. We executed the queries against
this index to get the cost of query-processing op-
erations. The document ranking method we used
was WAND (index service) and the cache policy
was LRU (caching service). We ran all bench-
marks with the data stored in main memory to
avoid access to the disk. The results with the real
implementation of the search engine as described
in Figure 2 were obtained on a cluster with 256
nodes composed of a 32-core AMD Opteron
2.1-GHz Magny Cours processor with 16 Gbytes
of main memory per node. We executed simula-
tions with the same stream of query terms but
with additional information such as ranking cost
and posting list sizes.

Figure 12 presents results predicting the total
number of queries solved per unit time in Figure
2’s search engine for different incoming query
rates so that the total number of processors hold-
ing the FS, CS, and IS nodes are adjusted to the
minimum value required to serve the incoming
query rate without falling into processor satura-
tion. In all cases, the simulation results achieve
good agreement with the results from the actual
implementation. The differences are mainly due to
the model used for the communication network
supporting message passing among processors. In
the case of CPN, the network is an oversimplifi-
cation of the fat-tree network, whereas POS and
DEVS implement a more detailed model of the
fat-tree network.

Figure 13 shows results for the average run-
ning time required to solve individual queries
for a different number of partitions of the IS. In

this case, simulation results are even closer to
those from the actual implementation than those
shown in Figure 12. In Figure 13, the incom-
ing queries rate is kept at a value that ensures no
processor gets a utilization value beyond 50 per-
cent. This indicates a steady-state operation situ-
ation in which the processors have the capacity
to respond to a sudden increase in the incoming
queries rate.

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

Computer Simulations

72	 � January/February 2017

Figure 14 presents results for a situation in

which a single IS processor is almost 100 percent
utilized, meaning working at full capacity. All
threads are busy processing queries at all times,
with some queries processed in parallel by using
several threads and others processed by single
threads. This is in accordance with a thread as-
signment policy devised to achieve a target av-
erage value for query response time. Figure 14

shows the response time results for individual
queries. These results show that the POS can pre-
dict results from the actual implementation in a
very precise manner (the observed error is below 1
percent in all cases).

Finally, Figure 15 compares real and simula-
tion results for the communication cost in the fat-
tree network. In this case, the model is subjected to
increasingly demanding message traffic represented
by message sizes. The communication pattern is all-
to-all, that is, all processors repeatedly send a copy
of a different local message to all other processors.
The results show that the CPN simulator can pre-
dict the general trend in communication cost at a
low error rate. In particular, the root-mean-square
error of the deviation, which is a measure of the
differences between values obtained by the real
benchmark program and the values reported by the
simulator, is below 0.35 percent, whereas the rela-
tive error is below 1.03 percent. Similar error and
trend prediction is observed for the broadcast and
unicast communication patterns.

Practice and experience on the design of ef-
ficient query-processing strategies for search

engines have shown that discrete-event simula-
tion can be a powerful tool for comparing alter-
native approaches under complex performance
metrics. In this application domain, the entire
simulation is reduced to emulating competition
for using hardware resources, which simplifies
performance evaluation under a wide range of
possible user query dynamics. A challenging task
is to let these simulations execute event process-
ing in parallel to reduce overall running time.
The causal relationships among events associated
with DAGs poses difficulties to well-known syn-
chronization protocols for parallel discrete-event
simulation. Nevertheless, we anticipate that effi-
cient performance is feasible from the fact that
competing DAGs usually aren’t expected to ac-
cess the resources in any particular order. This
enables relaxation of strict event causality across
processors that can be exploited to design effi-
cient optimistic simulations capable of produc-
ing approximate but precise enough performance
metric values. We plan to further develop this
idea in the near future.

Acknowledgments
This work has been partially funded by CONICYT
Basal funds FB0001 and FONDEF IDeA ID15I10560.

Figure 14. Results for multithreaded query processing
with the processor operating at full capacity and using
the thread-scheduling strategy described in Figure 5. The
y -axis presents the response time of individual queries, and
the x-axis shows the queries ordered by increasing time
values.

300

250

200

150

100

50

0
0 2,000 4,000 6,000

Query ID

Q
ue

ry
 t

im
e

8,000 10,000

POS
Real

Figure 15. Latency in communication in the fat-tree network
connecting the cluster processors for all-to-all message
patterns. Specifically, we see results obtained with a benchmark
program (curve Real) and a simulator of the fat-tree constructed
with timed CPN (curve CPN). The simulation model is described
in Figure 8.

16M8M4M2M1M.5M
Message size

.2M128K64K32K16K8K

1.4

1.2

1.0

0.8

0.6

La
te

nc
y

(s
ec

)

0.4

0.2

0.0

Real
CPN

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 73

References
1.	 S. Alici et al., “Adaptive Time-to-Live Strategies for

Query Result Caching in Web Search Engines,”
Advances in Information Retrieval, 2012,
pp. 401–412.

2.	 D. Arroyuelo et al., “Document Identifier Reas-
signment and Run-Length-Compressed Inverted
Indexes for Improved Search Performance,” Proc.
Special Interest Group Information Retrieval, 2013,
pp. 173–182.

3.	 R. Baeza-Yates and B. R ibeiro-Neto, Mod-
ern Information Retrieval: The Concepts and
Technolog y behind Search, Addison-Wesley
Professional, 2011.

4.	 K. Chakrabarti, S. Chaudhuri, and V. Ganti,
“Interval-Based Pruning for Top-K Processing over
Compressed Lists,” Proc. Int’ l Conf. Data Eng.,
2011, pp. 709–720.

5.	 S. Ding and T. Suel, “Faster Top-K Document
Retrieval Using Block-Max Indexes,” Proc. Special
Interest Group Information Retrieval, 2011,
pp. 993–1002.

6.	 C. Macdonald, N. Tonellotto, and I. Ounis,
“Learning to Predict Response Times for Online
Query Scheduling,” Proc. Special Interest Group
Information Retrieval, 2012, pp. 621–630.

7.	 V. Formoso et al., “Analysis of Performance
Evaluation Techniques for Large Scale Informa-
tion Retrieval,” Proc. Large-Scale Distributed
Systems for Information Retrieval, 2013,
pp. 215–226.

8.	 V. Gil-Costa et al., “Modelling Search Engines Per-
formance Using Coloured Petri Nets,” Fundamenta
Informaticae, 2014, pp. 1–28.

9.	 H. Yan, S. Ding, and T. Suel, “Inverted Index
Compression and Query Processing with Opti-
mized Document Ordering,” Proc. World Wide
Web Conf., 2009, pp. 401–410.

10.	 A.Z. Broder et al., “Efficient Query Evaluation
Using a Two-Level Retrieval Process,” Proc. Conf.
Information and Knowledge Management, 2003,
pp. 426–434.

11.	 M. Al-Fares, A. Loukissas, and A. Vahdat, “A
Scalable, Commodity Data Center Network Archi-
tecture,” Proc. Special Interest Group on Data Com-
munication, 2008, pp. 38:63–38:74.

12.	C. Bonacic et al., “Multithreaded Processing in
Dynamic Inverted Indexes for Web Search En-
gines,” Proc. Large-Scale Distributed Systems for
Information Retrieval, 2015, pp. 15–20.

13.	 T. Fagni et al., “Boosting the Performance of Web
Search Engines: Caching and Prefetching Query
Results by Exploiting Historical Usage Data,”

ACM Trans. Information Systems, vol. 24, no. 1,
2006, pp. 51–78.

14.	 Q. Gan and T. Suel, “Improved Techniques for Re-
sult Caching in Web Search Engines,” Proc. World
Wide Web Conf., 2009, pp. 431–440.

15.	 M. Marin, V. Gil-Costa, and C. Gomez-Pantoja,
“New Caching Techniques for Web Search En-
gines,” Proc. Int’ l Symp. High-Performance Parallel
and Distributed Computing, 2010, pp. 215–226.

16.	 F. Ferrarotti, M. Marin, and M. Mendoza, “A
Last-Resort Semantic Cache for Web Queries,”
Proc. String Processing and Information Retrieval,
2009, pp. 310–321.

17.	 L. Valiant, “A Bridging Model for Parallel Compu-
tation,” Comm. ACM, vol. 33, no. 8, 1990,
pp. 103–111.

18.	 L. Valiant, “A Bridging Model for Multi-Core
Computing,” J. Computer and System Science, vol.
77, no. 1, 2011, pp. 154–166.

19.	 A. Inostrosa-Psijas et al., “DEVS Modeling of
Large Scale Web Search Engines,” Proc. Winter
Simulation Conf., 2014, pp. 3060–3071.

20.	Q. Liu and G. Wainer, “Parallel Environment for
Devs and Cell-Devs Models,” Simulation, vol. 6,
no. 83, 2007, pp. 449–471.

Mauricio Marín is a professor at Universidad de Santiago,
Chile. His research interests include parallel computing,
information retrieval, and discrete simulation. Contact
him at mauricio.marin@usach.cl.

Verónica Gil-Costa is an associate professor at Univer-
sidad Nacional de San Luis, Argentina. Her research
interests include simulation, similarity search and par-
allel computing, and distributed systems with applica-
tions in Web search engines. Contact her at gvcosta@
unsl.edu.ar.

Carolina Bonacic is an assistant professor at Univer-
sidad de Santiago, Chile. Her research interests include
parallel processing on multithreaded processors, infor-
mation retrieval, and simulation. Contact her at caro-
lina.bonacic@usach.cl.

Alonso Inostrosa is a postdoctoral researcher at Univer-
sidad de Santiago, Chile. His research interests include
simulation, parallel, and distributed computing. Contact
him at alonso.inostrosa@usach.cl.

Read your subscriptions through the
myCS publications portal at http://
mycs.computer.org.

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore. Restrictions apply.

