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S
earch engines are used by millions of people per sec-
ond around the world. Th e term search engine refers 
not only to well-known commercial Web search en-
gines such as Google, Yahoo, and Bing but also to a 

wide range of search systems that are part of major Web-based 
applications such as email and social networks. In these appli-
cations, they support services such as contextual advertising 
and special-purpose local search. Th ese systems are made of 
diff erent algorithms and heuristics whose designs are devoted 
to optimizing the rate of query requests fi nished per unit time 
(query throughput) provided that no single query takes a run-
ning time beyond a given upper bound. In addition, the load 
on computational resources is usually driven by unpredictable 
user behavior, which takes the form of highly dynamic rates 
of incoming queries. Th ese constraints must be guaranteed, 
provided no processor is used beyond a given upper bound 

so that processors are prepared to cope with sudden peaks in 
query traffi  c.

In general terms, large-scale search engines can be seen 
as multicomponent systems whose individual design, imple-
mentation, deployment, and operation are always in con-
stant evolution, and thus it’s of paramount importance to be 
able to predict their performance with precise and practical 
methods. We’ve found discrete event simulation to be a use-
ful tool in this context because it enables us to both repre-
sent the actual system in a one-to-one correspondence with 
its main components (including user behavior) and simulate 
the cost of their relevant operations in a precise and high-
level manner. Th is requires modeling the cost of the diff er-
ent operations involved in processing very large streams of 
user queries both at macroscopic (cluster of processors) and 
microscopic (multicore processors) levels.

Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore.  Restrictions apply. 



www.computer.org/cise			   	�  63

In this article, we describe a methodology to 
produce such simulations, where, depending on the 
worldview used to represent and implement the re-
spective simulation model, you can either efficiently 
obtain the performance metric values for alterna-
tive simulated designs or directly assess comparative 
performance of alternative algorithms by embed-
ding their actual C++ codes into the simulator. To 
illustrate our proposal, we present microscopic- and 
macroscopic-level case studies represented with dif-
ferent worldviews: Discrete Event System Specifi-
cation (DEVS), discrete-event realization of timed 
colored Petri nets (CPN), and process-oriented 
simulation (POS).

Search Engines
Web search engines are composed of three main 
elements: the crawler recovers documents from 
the Web, the indexer indexes the documents col-
lected by the crawler, and the searcher solves user 
queries by using the generated index and other 
components required to achieve efficient perfor-
mance. Figure 1 shows the relationship among 
the three elements. In this article, we focus on 
how to simulate the searcher to evaluate the per-
formance of alternative algorithmic designs for its 
components. In the searcher, users submit queries 
composed of keywords, and, in return, they re-
ceive a list of pointers to Web documents ordered 
in accordance with a relevance metric function on 
the query keywords. We refer to the searcher as 
the search engine.

A search engine is usually built as a collection 
of services deployed on a large cluster of proces-
sors, wherein each service is distributed onto a set 
of processors. The processors and the communica-
tion network are expected to be constructed from 
commodity hardware. Each processor is expected 
to be a multicore processor, enabling efficient mul-
tithreading on shared data structures. Message 
passing is performed among processors to com-
pute on the distributed memory supported by the 
processors.

The realization of each service can involve the 
use of different distributed/multithreaded query 
solution algorithms, distributed query routing 
algorithms, query results caching policies and 
heuristics, compressed index data structures, and 
many other optimizations,1–6 all devised to en-
able efficient query processing and whose com-
parative performance can be evaluated through 
simulation.7,8 The key issue is to place the studied 
strategies in a simulated environment capable of 

reproducing real operational conditions in a pre-
cise manner. This leads to the challenge of prop-
erly modeling the relevant running time costs of 
query-processing strategies and system/hardware 
software operation. 

User queries can travel to several services to be 
solved. Figure 2 shows an example with three typi-
cal services: front-service (FS), caching-service (CS), 
and index-service (IS). Each query is received by 
the FS, which redirects it to the CS. The CS then 

Figure 1. Web search engine overview. Search engines are 
composed of three main elements: the crawler recovers documents 
from the Web; the indexer indexes the documents collected 
by the crawler; and the searcher solves user queries by using 
the generated index and other components required to achieve 
efficient performance.
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Figure 2. Query processing. Each query is received by the front-
service (FS), which redirects it to the caching-service (CS). The 
CS then checks whether the same query has already been solved 
and if its results (document IDs) are stored in the service. The CS 
can answer the FS with either a cache hit or a cache failure. In 
the latter, the FS sends the query to the index-service (IS), which 
proceeds to compute the top-K results of the query and sends 
them back to the FS and CS. The IS uses a document index data 
structure and additional special-purpose caches to speed up query 
processing.
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checks whether the same query has already been 
solved and if its results (document IDs) are stored in 
the service. The CS can answer the FS with either 
a cache hit or a cache failure. In the latter, the FS 
sends the query to the IS, which proceeds to com-
pute the top-K results of the query and sends them 
back to the FS and CS. The IS uses a document in-
dex data structure and additional special-purpose 
caches to speed up query processing.

Search engine services are deployed on arrays 
of P × D processors, where P is the level of data 
partitioning and D is the level of data replication. 
This architecture uses partitioning to reduce indi-
vidual query response times and replication to in-
crease the number of queries solved per unit time 
(query throughput). Replication also provides sup-
port for fault tolerance. Notice that, in practice, the 
upper bounds set for query response times are so 
small that hitting secondary memory during query 
processing isn’t an option. Thus, all data structures 
are kept in the processors’ main memory in com-
pressed format. At any given time, many different 
queries can be solved by different replicas of the 
same partition; in each processor, several queries 
can be solved in parallel via multithreading.

In the IS, a document index called the invert-
ed index quickly determines the list of documents 
that contain query terms. After retrieving the 
list of documents, a ranking algorithm is passed 
through the document list to determine the top-K 
documents that are the most pertinent to the query 
terms. The amount of space occupied by the docu-
ments and inverted index is usually huge, so they 
must be evenly distributed on a large set of distrib-
uted memory processors in a sharing nothing fash-

ion. Compression algorithms have been devised for 
the inverted index and documents.9 The rationale 
for the array of processors is as follows: each query 
is sent to all of the P partitions, and, in parallel, 
the local top-K document IDs in each partition are 
determined. These local top-K results are then col-
lected by the requesting FS processor to determine 
the global top-K document IDs. Alternatively, 
one of the IS processors (selected in a round-robin 
manner) can perform the global top-K calculation 
and send the results to the FS processor.

The inverted index is composed of a vocabu-
lary table (containing the V distinct relevant terms 
found in the document collection) and a set of 
posting lists. The posting list for a term stores the 
identifiers of the documents that contain the term 
itself along with additional data used for the docu-
ments ranking function. To solve a query, a proces-
sor must fetch the posting lists for the query terms, 
compute the intersection among them, and then 
compute the ranking of the resulting intersection 
set by using algorithms such as BM25 or WAND.10 
The IS can also keep special-purpose caches such as 
a posting lists intersection cache devised to reduce 
the number of re-computation of intersections for 
popular co-occurring query terms.

Services (processors) communicate through 
a fast network of switches such as the fat-tree.11 
Figure 3 shows a fat-tree with three levels: at the 
bottom, processors are connected to edge switches; 
at the top, we see the so-called core switches; and 
in the middle, we have the aggregation switches. 
A property of this network is that it allows achiev-
ing a high level of parallelism in message traffic to 
avoid congestion due to the fact that messages can 
follow different paths in the fat-tree to reach the 
same given destination.

Search engines can also be required to support 
real-time search, a situation in which index con-
tent can be updated concurrently with query pro-
cessing. However, there are potential read/write 
conflicts in each processor that must be handled 
with concurrency control algorithms. This prob-
lem is exacerbated by the fact that people tend 
to use a reduced set of very popular terms both 
in documents and in queries. Figure 4 shows an 
incoming query Q containing the terms T2 and 
T3. The thread in charge of solving the query 
accesses the inverted index to retrieve the rel-
evant documents for the query and perform the 
document-ranking operation. At the same time, 
another thread updates the inverted index with a 
new document that involves updating the post-

Figure 3. Fat-tree network. At the bottom, processors are 
connected to edge switches; at the top, we see the so-called core 
switches; and in the middle, we have the aggregation switches.
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ing lists associated with the terms present in the 
document. Thus, at a microscopic level, the mul-
tithreading performed in each processor of the 
index service has difficulties on its own merits.  
Thread programming should optimize the 
use of the memory hierarchy and prevent read/
write conflicts. This is a relevant issue because the 
performance can be dramatically degraded due 
to conflicting read and write operations among 
threads.

In situations where the index isn’t updated 
concurrently, an appropriate number of threads 
must be scheduled to efficiently solve queries and 
avoid idle/overloaded threads. A pragmatic ap-
proach to multithreaded query processing is to 
let each incoming query be processed sequen-
tially by a single thread. However, the query 
running time required to solve some queries 
containing popular terms can be large because 
the length of the corresponding posting lists can 
be quite large as well. One solution is to exploit 
parallelism by assigning several threads to solve 
single queries.12 In this case, to increase the 
chances of keeping all threads busy doing use-
ful work, query processing can be decomposed 
into a number of units of work that are placed 
in an incoming query queue from which threads 
can take their next job. In the example in Figure 
5, threads are dynamically assigned to the pro-
cessing of individual queries in accordance with 
their predicted query running times. This pre-
diction is made by using machine learning tech-
niques. Query processing is decomposed into 
several independent work units that are stored in 
the shared queue and then processed in parallel 
by multiple threads. Access to the queue is con-
trolled by a simple locking mechanism. A clas-
sification method helps determine the number of 
work units per query so that the load balance for 
the parallel query solution isn’t compromised. 
In this particular case, the classification method 
selects the minimum number of threads so that 
a target average execution time is satisfied: que-
ries hitting large posting lists are assigned more 
threads than queries with smaller ones.

Search engines can also rely on a cache hierar-
chy to enhance performance. Hierarchy goes from 
the most specific precomputed data for queries 
(results cache) to the most generic data required 
to solve queries (posting list cache).13–15 The re-
sult cache (RCache) stores the most frequent que-
ries along with its result webpage; it’s deployed on 
the CS. A location cache (LCache) stores frequent 

queries not found in the RCache; for each query, it 
keeps the list of IS partition IDs that provide the 
query answer. This is a tiny cache as it only stores 
partition IDs in compressed format. The ratio-
nale is that, for frequent queries evicted from the 
RCache, the LCache can reduce the number of 
processors involved in the query solution. In ad-
dition, under a situation of high query traffic (see 
Figure 6), the LCache is used as a semantic cache,16 

instructing the FS to send queries to the most 
promising IS nodes to obtain approximate docu-

Figure 4. The inverted index. For an incoming query Q containing 
the terms T2 and T3, the thread in charge of solving the query 
accesses the inverted index to retrieve the relevant documents for 
the query and perform the document-ranking operation. At the 
same time, another thread updates the inverted index with a new 
document that involves updating the posting lists associated with 
the terms present in the document.
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ment results. Overall, the LCache has the net ef-
fect of reducing the average number of processors 
involved in solving queries, which implies reducing 
the total amount of hardware required to serve a 
given workload.

Upon a cache hit, the list of documents stored 
in the cache is used to build the results webpage for 
the query. In addition, an intersection cache keeps, 
in each IS node, the intersection of the posting lists 
associated with pairs of terms frequently occurring 
in queries. The intersection operation is useful for 
detecting documents that contain all the query 
terms, which is a typical requirement for the top-K 
results in major search engines.

Ultimately, many issues must be taken into 
consideration to formulate a proper performance 
prediction model: user behavior represented in 
streams of queries containing terms of differing 
popularity; drastic changes in user query traffic 
when events capture world-wide interest; traffic-
dependent latency in query computation and com-
munication; multithreading in cluster-processing 
nodes and message passing among cluster-process-
ing nodes; and different strategies properly com-
bined to reduce query response time and increase 

query throughput. In addition to the different cach-
es placed at various points and compressed index 
data structures, the design can include query-rout-
ing strategies, load balance strategies, and multiple 
variants for document-ranking algorithms. These 
issues make discrete-event simulation suitable for 
performance evaluation.

Simulation Modeling
In this article, we present a methodology for modeling 
and simulating search engines that 

■■ uses models of parallel computation to feature 
hardware/software system costs together with 
benchmark programs built on the model rules 
to measure the respective actual costs;

■■ uses benchmark programs to measure the 
cost of relevant operations associated with 
the different stages of query processing of 
queries; and 

■■ uses a circulating token approach to simulate 
the cost of these stages, where each token repre-
sents a query that visits a number of concurrent 
objects devised to cause cost in the simulation 
time.

We apply the BSP models of parallel computa-
tion17 for a macroscopic representation of the sys-
tem (cluster of processors level) and Multi-BSP18 
for a microscopic representation of the system 
(multicore processor level). These models provide a 
well-defined structure of parallel computation that 
simplifies the determination of hardware and sys-
tem software costs, as well as the debugging and 
verification of simulation programs.

In BSP, the cluster of processors is seen as P 
processors with local memory, where communica-
tion among them is performed via point-to-point 
messages. Parallel execution is organized as a se-
quence of supersteps. In each superstep, the proces-
sors can only work on local data and send messages 
to other processors. The end of each superstep is 
signaled by the barrier synchronization of all pro-
cessors. At this point, all messages are delivered at 
their destinations so that processors can only con-
sume them at the start of the next superstep. This 
organization of parallel computation in supersteps 
enables integrated consideration of computation, 
communication, and synchronization from both 
the algorithmic design and performance evaluation 
viewpoints.

Benchmark BSP programs are executed to fea-
ture the cost of these three components of parallel 

Figure 6. LCache as a semantic cache for high query traffic 
scenarios. The LCache has the net effect of reducing the average 
number of processors involved in solving queries, which implies 
reducing the total amount of hardware required to serve a given 
workload.
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computation on the target cluster of processors. In 
Multi-BSP, the concept of supersteps is extended 
to the processor cache hierarchy, wherein blocks of 
data (cache lines) are transferred from main mem-
ory to caches close to processor cores, enabling al-
gorithm design to be aware of temporal and spatial 
locality.

From the simulation modeling viewpoint, 
the BSP and Multi-BSP models of parallel 
computation enable a high-level representation of 
the underlying hardware in which search engine 
query-processing operat ions a re  executed . 
Once the BSP-based simulation program has 
been debugged and tested, we remove the barrier 
synchronization requirement of supersteps, 
leading to a fully asynchronous message-passing 
parallel processing system that’s close to the actual 
search engine operation.

In addition, we refine the abstract commu-
nication network present in BSP by replacing it 
with a fat-tree network, in which nodes contain 
a queuing crossbar model of communication 
switches. In this case, each switch is modeled by 
following the same approach as in BSP, which, 
in general, can be stated as defining a high-level 
functional view of the component, where we can 
identify its relevant operations from a collection 
of specific operations available in the component; 
defining its individual costs in the simulation 
time with benchmark programs; and identifying 
the way they interact with each other during com-
ponent operation under determined workloads 
and constraints.

The sequence of operations executed by a 
search engine such as the one in Figure 2 exempli-
fies the execution Directed Acyclic Graph (DAG) 
associated with each query. These DAGs are inde-
pendent of each other, but they implicitly synchro-
nize when they compete for using cluster resourc-
es. We simulate these interactions with resources 
by modeling them as circulating tokens that form 
DAGs (fork and join) with nodes visiting queuing 
networks across the cluster resources. Benchmark 
programs are built to obtain the costs of relevant 
operations related to query processing. These costs 
become the work requests in the DAG nodes asso-
ciated with each query. In turn, each cost becomes 
the amount of work requested in the respective 
resource when access is granted by the queuing 
strategy.

 Using the example in Figure 2, let’s further ex-
plore this DAG concept. Threads in the simulation 
model execute primitive operations such as {CPU, 

COMM, DISK, FORK, JOIN, BEGIN QUE-
RY, END QUERY, HIT RCACHE, UPDATE 
RCACHE}. Each operation is associated with rele-
vant information such as its running time cost and 
a message’s sender and receiver IDs. Each opera-
tion’s cost can be given by a constant value such as 
(CPU 2032), or it can be obtained through a DAG 
variable as in the case when the cost depends on 
an intersection cache hit or on a particular query 
content and ranking algorithm (the latter is an-
notated as (CPU $WAND) in the respective DAG 
nodes). Additional DAG commands keep infor-
mation about the query itself, with the $TERMS 
command indicating query term identifiers, $SIZE 
indicating each term’s posting list length, and 
$IDQ the query identifier. Figure 7 shows a typical 

Figure 7. DAG. The advantage of this DAG enhanced with 
constants, variables, and commands is that it closely resembles 
the actual steps associated with processing queries in a real 
search engine.
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sequence of operations for our example. The advan-
tage of this DAG enhanced with constants, vari-
ables, and commands is that it closely resembles 
the actual steps associated with processing queries 
in a real search engine.

Figure 8 shows the network simulated as a 
queuing crossbar network. Messages are divided 
into packages of fixed size, and each package in-
cludes the data, a header with sender and receiver 
identifiers, and the number of packages forming 
the message. All input packages go to the same 
input queue. We keep an output queue (or out-
put port) for each device connected to the switch. 
Packages forming a message can be sent in paral-
lel through different output queues. If a package 
is on its way up through the network (from an 
edge switch to an aggregation switch or from an 
aggregation switch to a core switch), we evaluate 
the prefix of the destination IP address to select 
the output queue.11 Otherwise, the output queue 
is selected by evaluating the suffix of the destina-
tion IP address. Benchmark programs are devised 
to evaluate the cost of different communication 
patterns such as multicast, broadcast, and point-
to-point messages.

Methodology and World Views
Figure 9 shows our simulation methodology’s 
main components. The simulation models can 
be represented with formalisms such as DEVS 
and CPN. Benchmark programs are based on 
the BSP and Multi-BSP models and are execut-
ed on commodity hardware to determine the 
costs of relevant operations. For the running ex-

ample in Figure 2, these benchmarks include 
processor and network costs, inverted index in-
tersections, and document rankings. The simu-
lation provides three main objects: processors, 
threads, and a fat-tree network. Each processor 
is a multicore system enabling efficient multi-
threading on shared data structures, and mes-
sage passing is performed through the fat-tree  
network to enable parallel computation on the 
distributed memory supported by the processors.

The network builder component creates a fat-
tree network with all the links and switches; it also 
computes the routing table used in the switches. 
The mapping component assigns services to the 
processors—that is, each service has a unique IP 
and is linked to the input/output port of the cor-
responding edge switch to enable point-to-point 
message passing between processors. 

Overall, the proposed simulation methodology 
enables modeling and simulation at microscopic 
and macroscopic levels and with different levels of 
detail. Figure 10 shows an example of a simulation 
model generated with our methodology represent-
ed with the DEVS formalism; Figure 11 shows it 
with a timed CPN.

Figure 10a shows a macroscopic view of the 
search engine and its services modeled with DEVS. 
Each service is a black box with in/out ports con-
necting with other services and additional elements 
used to route the queries. Figure 10b shows the 
formal DEVS definition of the search engine il-
lustrated in Figure 10a.19 DEVS supports different 
levels of abstraction through atomic and coupled 
models. Atomic models are the most elemental and 
basic entity to represent systems, whereas coupled 
models represent their structure.

Figure 11a shows a high-level view of the search 
engine and the FS modeled with CPN. The logic 
involved at this level is simple and, typically, the 
models represent the connection between the sim-
ulated components and how the query tokens flow. 
Figure 11b shows a microscopic (low-level) view of 
threads competing for the resources (places) mod-
eled with CPN. Threads perform read/write op-
erations on the search engine’s inverted index (IS 
processor). In this case, the logic tends to be more 
complex, and we need to include more detailed in-
formation such as the delay and type of data.

Experimental Results
Our experimental results illustrate the effectiveness 
of our simulation models to predict relevant per-
formance metrics in search engines. As a running 

Figure 9. Conceptual model of the proposed methodology. The 
mapping component assigns services—each service has a unique 
IP and is linked to the input/output port of the corresponding edge 
switch to enable point-to-point message passing between processors.
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Figure 10. The proposed simulation methodology: DEVS (a) model for a search engine and (b) formalism. On the left, we see a 
macroscopic-level view of the search engine, and on the right, a microscopic-level view of an FS.
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WSE ={Xwse, Ywse, Dwse, { Mdwse
 d ∈ Dwse}, EICwse,

EOCwse, ICwse, selectwse}
Where:
Xwse = {Ø}
Ywse = {Ø}
Dwse = {QueryGenerator, FSi, CSjk ISIm}
∀ i ∈ (1, RFS]; ∀ j ∈ (1, RCS],∀ k ∈ (1, PCS]; ∀ i ∈
[1,RIS],∀ m ∈ [1,-PIS];
Where: RFS is the number of nodes in the FS, PCS and RCS
are the number of partitions and replicas of the CS, PIS and
RIS are the number of partitions and replicas of the IS.
Mdwse

 = { MQueryGenerator, MFSi
 , MCSjk

, MISlm
 }

EICwse = {Ø}
EOCwse = {Ø}
    ICwse ⊆ { ( (Query Generator, outi), (FSi, in));
            ((FSi, outCSjk), ( CS j k , in));
            ((FSi, outISlm), (ISlm, in));
            ((CSjk, outi), (FSi, in)); ((ISlm, outi), (FSi, in));}
selectwse = {QueryGenerator, FSi, CSjk, ISlm}

FS = {Xfs , Sfs, Yfs , δintfs
 , δextfs

 , λ, ta}
Where:
Xfs = {(“in”, q)lq ∈ Q} is the set of ports and its input
values (Query objects).
Sfs = {“Idle”, “Proc”} × σ × Q × qSize, where “Proc”
corresponds to state Processing, σ ∈ R0 has the time advance
value according to ta, and qSize is a variable containing
the current amount (size) of queries in the queue with
qSize ∈ z0.
Yfs = {(p, q) p ∈ OUT, q ∈ Q}, where q is a Query.

δintfs
 (“Proc”, σ, qSize) =

δextfs
 (“Idle”, a, qSize) = (“Proc”, 0, 1)

δextfs
 (“Proc”, a, qSize) = (“Proc”, σ –e, qSize + 1)

λ(“Proc”, σ, Query) = (out*, Query)
ta(“Proc”, σ, Query) = σ

+

+

(“Idle”, ∞)  o. w.
(“Proc”, 0, qSize – 1) If 0 < qSize

(a)

(b)
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Figure 11. Colored Petri net (CPN) model for a search engine: (a) macroscopic and (b) microscopic modeling levels.
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Figure 12. Query throughput results (y-axis) achieved with a real 
implementation and respective simulators of the system presented 
in Figure 2. The service configurations (x-axis) shows the number 
of processors supporting the FS, CS, and IS nodes ranging from 
115 to 240.
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Figure 13. Average response time for individual queries (y-axis) 
achieved with a real implementation and process-oriented 
simulator (POS) for the IS in the system in Figure 2. The 
results are obtained for different numbers of partitions of the 
IS (x-axis), with each partition held by a single multithreaded 
processor.
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example, we use the search engine described in  
Figure 2. For this system, we developed both simu-
lators and an actual implementation based on C++ 
and the MPI message-passing library. The simula-
tors were built using process-oriented simulation 
(POS) implemented using C++ libCppSim; DEVS, 
which is run on its own simulation kernel called 
PCD++20; and timed CPN with simulation kernel 
implemented in C++.

We performed experiments with a log of actual 
user queries submitted to the AOL search service 
between 1 March and 31 May 2006. This log, ex-
posing typical patterns present in user queries, has 
16,900,873 queries, with 6,614,176 unique queries 
and a vocabulary consisting of 1,069,700 distinct 
query terms. We also used a sample (1.5 Tbytes) 
of the UK Web obtained in 2005 via the Yahoo  
search engine, over which we constructed a  
26-million-term and 56,153,990-document in-
verted index. We executed the queries against 
this index to get the cost of query-processing op-
erations. The document ranking method we used 
was WAND (index service) and the cache policy 
was LRU (caching service). We ran all bench-
marks with the data stored in main memory to 
avoid access to the disk. The results with the real 
implementation of the search engine as described 
in Figure 2 were obtained on a cluster with 256 
nodes composed of a 32-core AMD Opteron  
2.1-GHz Magny Cours processor with 16 Gbytes 
of main memory per node. We executed simula-
tions with the same stream of query terms but 
with additional information such as ranking cost 
and posting list sizes.

Figure 12 presents results predicting the total 
number of queries solved per unit time in Figure 
2’s search engine for different incoming query 
rates so that the total number of processors hold-
ing the FS, CS, and IS nodes are adjusted to the 
minimum value required to serve the incoming 
query rate without falling into processor satura-
tion. In all cases, the simulation results achieve 
good agreement with the results from the actual 
implementation. The differences are mainly due to 
the model used for the communication network 
supporting message passing among processors. In 
the case of CPN, the network is an oversimplifi-
cation of the fat-tree network, whereas POS and 
DEVS implement a more detailed model of the 
fat-tree network.

Figure 13 shows results for the average run-
ning time required to solve individual queries 
for a different number of partitions of the IS. In 

this case, simulation results are even closer to 
those from the actual implementation than those 
shown in Figure 12. In Figure 13, the incom-
ing queries rate is kept at a value that ensures no 
processor gets a utilization value beyond 50 per-
cent. This indicates a steady-state operation situ-
ation in which the processors have the capacity 
to respond to a sudden increase in the incoming 
queries rate.

Authorized licensed use limited to: MINCYT. Downloaded on January 25,2022 at 16:45:44 UTC from IEEE Xplore.  Restrictions apply. 



Computer Simulations

72	 � January/February 2017

Figure 14 presents results for a situation in 

which a single IS processor is almost 100 percent 
utilized, meaning working at full capacity. All 
threads are busy processing queries at all times, 
with some queries processed in parallel by using 
several threads and others processed by single 
threads. This is in accordance with a thread as-
signment policy devised to achieve a target av-
erage value for query response time. Figure 14 

shows the response time results for individual 
queries. These results show that the POS can pre-
dict results from the actual implementation in a 
very precise manner (the observed error is below 1 
percent in all cases).

Finally, Figure 15 compares real and simula-
tion results for the communication cost in the fat-
tree network. In this case, the model is subjected to 
increasingly demanding message traffic represented 
by message sizes. The communication pattern is all-
to-all, that is, all processors repeatedly send a copy 
of a different local message to all other processors. 
The results show that the CPN simulator can pre-
dict the general trend in communication cost at a 
low error rate. In particular, the root-mean-square 
error of the deviation, which is a measure of the 
differences between values obtained by the real 
benchmark program and the values reported by the 
simulator, is below 0.35 percent, whereas the rela-
tive error is below 1.03 percent. Similar error and 
trend prediction is observed for the broadcast and 
unicast communication patterns.

Practice and experience on the design of ef-
ficient query-processing strategies for search 

engines have shown that discrete-event simula-
tion can be a powerful tool for comparing alter-
native approaches under complex performance 
metrics. In this application domain, the entire 
simulation is reduced to emulating competition 
for using hardware resources, which simplifies 
performance evaluation under a wide range of 
possible user query dynamics. A challenging task 
is to let these simulations execute event process-
ing in parallel to reduce overall running time. 
The causal relationships among events associated 
with DAGs poses difficulties to well-known syn-
chronization protocols for parallel discrete-event 
simulation. Nevertheless, we anticipate that effi-
cient performance is feasible from the fact that 
competing DAGs usually aren’t expected to ac-
cess the resources in any particular order. This 
enables relaxation of strict event causality across 
processors that can be exploited to design effi-
cient optimistic simulations capable of produc-
ing approximate but precise enough performance 
metric values. We plan to further develop this 
idea in the near future. 
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Figure 14. Results for multithreaded query processing 
with the processor operating at full capacity and using 
the thread-scheduling strategy described in Figure 5. The 
y -axis presents the response time of individual queries, and 
the x-axis shows the queries ordered by increasing time 
values.
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Figure 15. Latency in communication in the fat-tree network 
connecting the cluster processors for all-to-all message 
patterns. Specifically, we see results obtained with a benchmark 
program (curve Real) and a simulator of the fat-tree constructed 
with timed CPN (curve CPN). The simulation model is described 
in Figure 8.
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