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The discovery of a negative feedback loop between the immune system and
the brain [1-3] is one of the most exciting advances in the field of neuroendocrine-
immunology, Immune cells can be stimulated by microorganism-derived toxins
to secrete cytokines [4]. In turn, cytokines may induce many host responses
associated with endotoxemia [5], characterized by fever, stress hormone release,
mineral redistribution and incre'ased acute phase protein synthesis [6]. Inter-
leukin (IL)-1 [7] and tumor necrosis factor-a (TNFa) [8] have been proposed
as being the most important mediators for the development of all these patho-
physiological responses.

In the bidirectional interplay between the immune and endocrine systems,
the communications most deeply investigated up to now have been those between
the immuhC:and the hypothalamo-pituita~y-adrenal (HPA) and the HP-gonadal
(HPG) [for review see, 9] axes. For instance, mitogen/antigen-activated
immune cells secrete cytokines; in turn, these substances are able to stimulate
the hypothalamus thus inducing the activation of the corticotropin-releasing
hormone (CRR)-ergic function [10]. Once the eRR neuronal system has been
activated, this peptide is able to locally (centrally) inhibit the HPG axis function
[for references see, 11] and, via the corticotrope cells, to stimulate HPA axis
function [12].

Evidence indicates that gonadal steroids modulate immunological function
[13]. Our findings and those of other researchers suggest that while estrogens



enhance the immune response [14], androgens inhibit it [15] and that gonadec-
tomyalters this response [16, 17].

Skin allograft rejection time in mice is longer in males than in females and
orchidectomy significantly reduces the time for such rejection [16J. Male F 1
N2BIN2W mice are less susceptible to autoimmune lupus, but will die if
gonadectomized [17]. In addition, mitogen-driven plaque-forming cell response
of B-lymphocytes in vitro is inhibited by androgens [18J. All this evidence is
strongly supported by the presence of specific receptors for sex hormones in
organs responsible for the immune response [13].

However, gonadal steroids seem to influence not only immune activity but
also HPA axis function [19], in fact they can either positively (estrogen) [20, 21]
or negatively (androgen) [22] modulate hypothalamic CRH production and, as a
consequence, close the interactive circuit between the HPA and HPG axes [11].

A sex hormone basis for neuroendocrine-immunological sexual dimor-
phism has been described [13, IS). The HPA axis function in rodents has been
characterized as sexually dimorphic in both basal and post-stress conditions
[15, 23]; moreover, sexual dimorphism in the HPA axis response holds true
regardless of the type of stimulus since, for instance, both neuroendocrine [23]
and immune [15] stresses induce a final release of glucocorticoid in plasma that
is higher in female than in male adult animals.

Glucocorticoid secretion is crucial for metabolic adaptations of the organ-
ism to stress [24) and a glucocorticoid hormone basis tallies with survival of
individuals in sepsis [24, 25].

Young adult (8-10 weeks old) mice are the best laboratory animal model
to study the influence of the gender background on the HPA axis response to
immune challenge. A gender-dependent characteristic BPA axis response to
endotoxin administration (2 mglkg i.p.) is displayed in figure 1. As illustrated,
the time course of plasma ACTH (fig. lay anci corticosterone (fig. 1b) level~ in
response to lipopolysaccharide (LPS) stimulus is similar in both sexes; however,
the intensity of the response is significantly greater in females than in males.
Corticotrope resiliency [26] is completed 72 h after challenge and is identi-
cal in both groups of mice. Adrenal function, in basal and post-endotoxin
conditions, displayed a very clear gender-dependent characteristic, female corti-
costerone plasma levels being at each time point significantly higher than male
values. This pattern was also found in middle-aged (l5-month-old) mice
(fig. Ie, d), thus indicating the persistenc~ of the gender-dependent difference in
HPA axis function at more advanced ages. These characteristics were not only

;-
'-~'

1,500 *+ *+
125

1,200
100

E 900 ~
0, -.:!:: 75
~ a>c
I 2f- a>
() 600 to 50<{ 0

u
't
0
()

300 25

+

a a
a 1 10 100 a 1 10 100 ba

Time (h) Time (h)

1,000 40

~

• Basal • Basal
0 LPS 0 LPS

750 U 30
0,

E -.:!::
0, a>
~ c

500 0 20
I Q;
f- to
() 0
<{ u

't
0250 () 10

I '
0-1 0

dlMale Female

Fig. 1. Plasma ACTH (a) and corticosterone (b) concentrations before and after
i.p. administration of endotoxin (2 mg/kg) in 2-month-old mice of both sexes. Circulating
ACTH (c) and glucocorticoid (d) 2 h after i.p. injection of vehicle alone (basal) or con-
taining LPS (2 mglkg) in l5-month-old mice of both sexes. Mean :t: SEM (n = 6-9 animals
per group). *p < 0.05 vs. the respective basal values; +p < 0.05 vs. males under similar
conditions.
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Fig.2. Adrenal gland glucocorticoid content before and at several time points after i.p.
administration of endotoxin (2 mglkg) in 2-month-old mice ofboth sexes (a). Basal and LPS-
stimulated (at 2 h) adrenal gland glucocorticoid content in middle-aged mice of both sexes
(b). Circulating corticosterone under basal and post-LPS (2 mglkg, i.p.) conditions in male
(c) and female (d) mice of different ages. Mean ± SEM (n = 6-9 animals per group).
*p < 0.05 vs. the respective basal values; +p < 0.05 vs. condition-matched males; #p < 0.05
vs. the remaining LPS values in mice of same sex.

observed in circulating plasma hormone levels, but also in adrenal
glucocorticoid content (fig. 2a, b).

However, some parameters indicate that the enzymatic process could be
involved in these patterns since, for instance, in 8-week-old mice, while females
showed increased estrogen plasma concentrations 2 h after LPS (90.4 :±:5.3
vs. basal 35.4 :±:3.5 pg/ml), males developed a significant decrease in plasma
testosterone levels (from 4.6 :±:1.9 ng/ml under basal conditions to 1.4:±:
OJ ng/ml). This indicates that the gender-dependent differences in HPA axis
function after immune challenge could have a sex-steroid hormone basis. An
increased testicular aromatization of androgen to estrogen has been reported
during endotoxemia [27]. Therefore, this increased aromatization in males, who
are less immunoresponsive than females (15], could result in an enhanced
immune response as an adaptation of the body's defense mechanisms shortly
after injury. Because testosterone levels vary over development, and in order
to determine whether physiological testosterone changes may modulate the
HPA axis response to endotoxin, we measured the plasma corticosterone response
to endotoxin administration in prepubertal (30-day-old) mice - a period of
development with low testosterone levels (1.54 :±:0.04 ng/ml) - and in peri-
postpubertal and adult mice (45 and 60 days old) - periods of development with
normal testosterone levels (3.99 ::!:: 0.11 and 3.81 :±:0.14ng/ml, respectively).
The corticosterone response to LPS was higher at 30 days of age, when testo-
sterone levels are low, than in 45- and 60-day-old mice when testosterone levels
are in the nonnal adult range (fig. 2c, d).

These results demonstrate the existence of an inverse correlation between
the HPA axis response to LPS and the testosterone levels, confinning the
inhibitory effect of androgens. Furthermore, the importance of circulating sex
steroids in modulating the HPA axis response to LPS is also clearly suggested
by the observation that the gender specific pattern of this response is absent in
immature mice - both male and female mice showing the same response -
whereas a clear sexual dimorphic pattern is apparent only after animals reached
puberty, with female showing a greater response to LPS than males (fig. 2c, d).

However, these gender-related dift,;rences also depend on the strain of ani-
mal studied. It is known that while female Fischer 3441N rats are resistant,
LewislN rats of the same sex are sensitive to developing arthritic syndrome after
administration of group-A streptococcal cell wall fragments [28]; interestingly,
LEWIN showed no gender-related difference in the corticotrope response to
immune challenges, such as LPS (fig. 3a) and neurotoxin [29] (fig. 3b), while
female Fischer 344/N rats were hyperresponsive, regardless of the stimulus
(fig. 3a, b). The hyporesponsiveness of the corticotrope function in female
LewislN rats was further confirmed when stimulated in vivo with CRR (0.5 j.Lg
per rat) but not with arginine vasopressin (5 j.Lgper rat; fig. 3c, d). Considering
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that cytokines released after immune system activation by either LPS or neuro-
toxin treatment result in enhanced CRR output [10, 29] and that CRH i11turn
stimulates corticotrope cells, the corticotrope hyporesponsiveness to CRR stim-
ulation in female LEWIN rats indicates a decreased adrenal glucocorticoid
response which is then less able to counteract the activated immune system and
thus facilitates the development of the arthritic syndrome.

Evidence for a Sex Steroid Hormone Basis for Neuroendocrine-
Immunological Sexual Dimorphism

To further characterize the modulatory effects of sex steroids on the
responses of the HPA and immune axes during endotoxemia, we studied the
influence of gonadectomy and sex hormone therapy on the LPS-stimulated
neuroendocrine-immune system.

Adult BALB/c mice of both sexes were either sham operated or gonadec-
tomized (Gnx) for 20 days (Odx = orchidectomized; Ovx = ovariectomized).
Sex steroid replacement therapy in Gnx mice consisted of the administration of
the homologous sex steroid on alternate days between days I and 19 after Gnx
(20 f.Lgtestosterone propionate/50 f.LIcom oil, Odx +T; or estradiol benzoate,
2 f.Lg/50f.LIcom oil, Ovx +E). On day 20 after surgery, mice were injected
intraperitoneally (i.p.) with vehicle alone (sterile saline solution) or containing
LPS (2 mg/kg). In both sexes, gonadectomy did not modify basal corticosterone
(B) levels, but significantly enhanced the LPS-induced corticosterone release .
Moreover, the removal of endogenous androgens by orchidectomy induced
higher plasma corticosterone release than when estrogens were removed by
ovariectomy (fig. 4a, b). These results clearly suggest a predominant inhibitory
role of testosterone on the HPA axis response to endotoxin. The importance of
testosterone in modulating the HPA axis response to LPS was confirmed by the
substitution therapy experiment because testosterone substitution completely
prevented the enhanced adrenal response to LPS administration in Gnx animals
of both sexes (fig. 4a, b). Surprisingly, however, the adrenal hyperresponse to
LPS in Gnx mice of both sexes is not only prevented by testosterone, but also by
the administration of estradiol (fig. 4a, b). Thus in the Gnx animals regardless of
the sex, both estrogen and testosterone prevent the adrenal hyperresponse to LPS.

We also investigated whether gonadal steroids modulate the LPS-induced
immune response by measuring the effect of endotoxin on the release of plasma
INFo: in the same experimental design (see fig. 4c, d). Plasma TNFa levels
were similar under all basal conditions. LPS administration significantly enhanced
INFo: levels with no sex-related differences. Orchidectomy and ovariectomy
significantly enhanced the effect ofLPS on TNFo: release. Replacement therapy

Fig. 3. Plasma ACTH levels in male (M) and female (F) adult F3441N and LEWIN rats
under basal conditions (Veh) and after i.p. administration of either LPS (100 fLg/rat; a), neu-
rotoxin (SY, 100 fLg/rat; b), vasopressin (5 fLg/rat; c) or CRH (0.5 fLg/rat; d). Mean::': SEM
(n = 6--9 animals per group). All values post-stressor are significantly (p < 0.05) higher than
the respective basal (Veh) values. *p < 0.05 vs. the respective values in F344/N rats;
+p < 0.05 vs. condition-matched males.



Table I. Experimental design
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Mice employed in this cxperimental design were previouslv (1 week before) orchidee-
tomized [receiving (Odx+TI or not (Odx) testosterone replacement therapy] or sham-
operated (Sham).

'-' = i.p. injection ofN01CI 0.9°" (vehicle): * = i.p injection of25IJ-g ofLPS: + = decap-
itation 2 h after the injection.

HPA axis t"unction. Surprisingly. the estrous cycle had no effect on corti-
costerone release. Basal nnd LPS-stimulnted corticosterone levels were not
influenced by the normnl estrous cycle. Therefore. in our mouse model acute
chnnges in pl<lSma estrogen lewIs throughout the 4-day cycle were unable to
influence the HPA axis response to LPS. Others_ however. have ShO\\'ll that. in
female rats. the HPA nxis is most sensitin; to stress during the early portion of
proestnh suggesting a facilitatory effeet of estrogens on HPA axis function [30].

\\'e extended the evidence for a sex hormone basis of immuno-neuro-
endoerine interaction by de\'eloping a model of tolerance to repeated endotoxin
administration. In these experiments sham-operated (Sham) and 7-day Odx
mice treated (Odx + T) or not (Od,,) with testosterone propionate were tested.
The dose of LPS administered i.p. was again 2mg!kg. and the schedule of the
tolerance model. which started I week after gonadectomy. was as follows: (a) on
day I (0 I) mice were injected with veh icle alone or containing LPS and animals
were killed 2 h after treatment; (b) mice were injected on D I and 02 with LPS
and on 03 were injected with vehicle alone (LPS2- Veh) or containing LPS
(LPS2-LPS), animals were then killed 2 h after the last treatment, and (c) mice
were treated on 0 I, 02, D3 and 04 with LPS and on D5 were injected with
either vehicle alone (LPS4- Veh) or containing LPS (LPS4-LPS) and killed 2 h
after injection (for details see table I). In the control group, Sham mice were
injected every day with vehicle only.

Figure 5 shows the decrease in body weight of the mice under repeated
LPS treatment. Mean body weights were significantly decreased on day 2 of the

Fig. -I. 1'1:1>11101glucocc)rticoid (II. b) and T:\Fo Ie. d 12 halter i.p. administration uf
L rs (50 IJ-gmOUSe) in sC\'cral groups of male (a. c) anJ female (iJ. d I 1-mon\h-old mice
\lean =: SE\l In = 6-9 animals pcr group). All \alues post-stressor are significantl\
(p < 0.05) higher than the respective basal (vehicle-injected) values. *1' < 0.05 \'5. values in
the remaining groups: -"p < 0.05 vs. females and O\X -i- T.

with testosterone completely reversed the enhanced LPS--elicited TNFcx release
in Gnx animals of both sexes. Estradiol treatment only partially blocked this
effect in Gnx female mice and had no effect \'In Gnx male animals (fig. 4c, dl.
Thus. in both sexes. testosterone was more effective than estrogen treatment in
decreasing the e!Tectof gonadectomy on LPS-stimu]ated TNFcx secretion, strongly
supporting an endocrine-hormone basis for an immunological dimorphism.

Because sex steroids seem to play such an important modulatory role, we
investigated whether the endogenous sex steroid status that characterizes each
stage of the normal estrous cycle could influence basal and/or LPS-stimulated
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Fig. 5. Effects of i.p. injections of vehicle (Veh) or LPS (2 mg/kg) on the body weight
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on 05. Mean::':: SEM (n = 6-11 animals per group). *p < 0.01 vs. Sham-Veh on same day. Fig. 6. Effects of single and repeated LPS (2 mg/kg) administration on plasma ACTH

(a), glucocorticoid (b) and cytokine (c) levels 2 h after the last treatment with either Veh or
LPS in sham male mice. Mean::':: SEM (n = 6--11 animals per group). *p < 0.02 ys. the
respective Veh; "p < 0.05 Ys. LPS (01); bp < 0_05Ys. LPS (0 I) and LPS2-LPS (03).experiment and remained low until the end of the experiment. The loss of body

weight was similar in all groups (Sham, Odx and Odx +T mice). Figure 6a
shows plasma ACTH levels in the different groups of mice. Animals killed 2 h
after a vehicle injection without previous (Veh, D I) and with previous
endotoxin treatments (LPS2- Veh, D3; LPS4- Veh, D5; for more details on the
experimental design see table I) showed plasma ACTH values within the non-
stress range (10-70 pg/ml). These results indicate that previous treatments
(either 2 or 4) with LPS did not modify the basal plasma ACTH levels measured
24 h after the last endotoxin administration. Uncastrated mice treated with LPS,

in single (LPS, DI) or repeated (LPS2-LPS, D3 and LPS4-LPS, D5) doses, had
significantly higher plasma ACTH levels (2 h after the last endotoxin adminis-
tration) than those observed in control groups (killed 2 h after vehicle injection
on DI, D3 and D5, respectively). However, the LPS-induced plasma ACTH
secretion on D I (2 h after one injection) was significantly higher than values
found 2 h after the third (D3) and fifth (D5) LPS injections (fig. 6a) demon-
'strating the occurrence of a kind of tolerance to repeated LPS administration.



Similar to the ACTH values, plasma B levels in control groups (those killed 2 h
after a last administration of vehicle with or without previous LPS treatment) were
also within the non-stress range (1-10 flg/dl; fig. 6b). Two hours after the last LPS
administration a significant increase over control values in adrenal B release took
place, regardless of the day of treatment. However, after repeated LPS administra-
tion, the endotoxin-elicited B secretion decreased; it was significantly lower 2 h
after the fifth (DS) than after both the first (D I) and the third (D3) LPS adminis-
trations (fig. 6b). In this paradigm, plasma TNFex values also show a tolerance in
response to repeated LPS administration, similar to the one described for plasma
ACTH levels (fig. 6c). Finally, while on D1 of treatment there is a high correlation
between plasma ACTH (r = 0.8) or B (r = 0.7) and TNFexlevels after LPS admin-
istration, this correlation was significantly lower on D3 and D5 of treatment
(r = OJ for ACTH and r = 0.4 for B). This observation clearly suggests that the
activation of the HPA axis function under repeated LPS treatment is independent
ofTNFex secretion in plasma and that other cytokines released after LPS adminis-
tration could be responsible for the HPA axis response.

Although hypothalamic CRR and pituitary ACTH remained unchanged
after single or repeated LPS injection, compared to control animals, adrenal
B content was significantly enhanced 2 h after the first, third and fifth endo-
toxin injections (fig. 7). To determine whether sex steroids could influence
the HPA axis and immune functions in our design. we studied these responses
in 7-day-orchidectomized mice substituted (Odx + T) or not (Odx) with testos-
terone propionate. As it can be seen in figure 8a, Odx and Odx + T had no sig-
nificant effect on plasma ACTH levels in controls (animals killed 2 h after
vehicle administration on D I, D3 and DS, respectively). However, Odx was able
to significantly enhance the LPS-elicited ACTH secretion after the first LPS
injection, and this effect was only partially prevented by testosterone therapy
(Odx+T). Surprisingly, Odx and Odx+T had no such effects after the third and
fifth LPS administration. Although in the paradigm using 7-day Gnx animals,
Odx had no effect on other parameters such as hypothalamic CRR content, pitu-
itary ACTH content, plasma corticosterone and TNFex levels, it enhanced the
LPS-induced increase in adrenal B content (fig. 8b). Indeed, the LPS effect was
significantly enhanced by orchidectomy 2 h after the first (LPS, D 1), third
(LPS2-LPS, D3) and fifth (LPS4-LPS, D5) endotoxin administrations com-
pared to the respective sham-operated animals (treated with LPS in a similar
fashion). Furthermore, testosterone replacement therapy (Odx + T) completely
abolished this effect induced by orchidectomy, regardless of the experimental
day, suggesting again an inhibitory effect of the androgens on adrenal glucocor-
ticoid synthesis under endotoxemia (fig. 8b).

This observation tallies with data showing a modulatory effect of sex
steroid hormones on gluc~corticoid metabolism under other stress conditions
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Fig. 7. Effects of single and repeated LPS (2 mg/kg) administration on adrena
glucocorticoid content 2 h after the last treatment with either vehicle (Yeh) or LPS in shan
male mice. Mean::':: SEM (n = 6-11 animals per group). *p < 0.01 vs. the respective Yeh.

[31, 32]. Thus, our results indicate a clear inhibitory effect of the androgen 0

adrenal glucocorticoidogenesis.
Transient hypogonadism has been described in severely ill patients and suc

an effect has been attributed to an increased testosterone to estradiol conversio
due to an endotoxin-enhanced aromatase activity [33], thus, a decrease in peripr
eral androgen concentration may represent a body's defense mechanism for SUI

vival after injury. These observations are in agreement with the data reported i
this chapter regarding the enhanced HPA axis response seen in orchidectomize
mice during the acute phase of endotoxic shock. However, the mechanism(:
involved in the lack of a modulatory effect of testosterone on the HPA ax
response under repeated LPS administration remains to be determined.
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hormones play an important modulatory role in the HPA axis response after
inflammation and further suggest that these molecules blunt the effect of
inflammation. In conclusion, in addition to gender difference [34], all the data
strongly support a sex steroid basis for neuroendocrine-immunological sexual
dimorphism. Because inflammation and other purely neuroendocrine stressors
probably stimulate different subtypes of hypothalamic CRH neurosecretory
terminals or CRH receptors, it could be extrapolated that these neuronal
subpopulations undergo a different process of maturation during development
and that such sex-related characteristics persist up to middle age, The sexual
dimorphism in the response of the HPA axis to immune signals may represent
an important factor in the understanding of reciprocal interactions between the
two systems in physiological and pathological conditions.
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