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Abstract

An improved understanding of the evolution of thamfatinian basement in the Sierra
Grande de San Luis (SGSL) in Argentina is presen@ambining geological, geophysical and
petrological data, a 3D inversion model for thedmasnt rocks and their shear zones in the study
area was constructed. The inversion model and tbend data show that the main deformation
mechanism that affected the metamorphic complexeglated to a significant number of shear
zones which delineate the architecture of the basenResults suggest that the regional scale shear
system (~40 km wide and ~120 km long) and the matestructural elements of the different
tectonic domains are the product of an importanistal shortening. A contractional tectonic
framework related to the indentation of the Cuy#Aecordillera microcontinent on the western
Gondwana margin is proposed to be the cause ofetttenic mechanisms that led to a pop-up

megastructure in the western sector of the SGSlitandlosing of the Famatinian backarc.

Keywords: Shear zone system, Tectonic evolution, Pop-upcttre, Gravity/magnetic data,

Structural analysis.
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1. INTRODUCTION

The processes that affected the basement unte iSierra Grande de San Luis (SGSL) have
been the subject of extensive discussions in @te?2ld years (e.g. Sims et al., 1998; von Gosen and
Prozzi, 1998; Sato et al., 2003; Ortiz Suarez amadqQet, 2005; Delpino et al., 2007; 2016;
Steenken et al., 2008; Morosini et al., 2014; Glamsen et al., 2019). These units represent thie ro
of the Famatinian orogen, which was associated wittonvergent plate motion at the Western
Gondwana margin in Ordovician-Silurian times. There, revealing the basement architecture is
essential for the reconstruction of the paleotacteatting. The systematic study of the shear zones
that delineate the crustal geometry during tectpnicesses is a fundamental step to understand the
geodynamic processes that created the differeigieaies in the world (e.g. Solar and Brown, 2001,
Little et al., 2002; Goscombe et al., 2005; Chettgd Bhaskar Rao, 2006; Schulmann et al., 2008;
Carosi et al., 2018).

The structural and kinematic features of the skeaes in the SGSL were studied in detall
by von Gosen (1998a, b). This author interprets tha arrangement of the crustal blocks (or
metamorphic complexes) in the southwestern sedttheostudy area was related to transpressive
stress conditions due to a sinistral oblique catitvaal strain. Later, von Gosen and Prozzi (2005)
observed dextral mylonitic zones as a result of MVWVESE shortening process, combining sinistral
and dextral oblique contractional deformations toajugated system. On a regional tectonic scale,
a collision model was suggested in which the Cwy/&necordillera microcontinent acted as an
indenter due to its shape (curved toward the extjeconditioning the different orientations of the
dextral and sinistral faults during the Late Oraoam-Early Devonian (von Gosen et al., 2002).
Although very detailed studies about the shear gomere carried out by these authors, the
architecture of southern SGSL was better undersédi@ad the construction of a three-dimensional
model using the structural data with geophysical petrophysical constraints (Christiansen et al.,
2019).

The shear zones in the western portion of the S8&t e studied in this work, incorporating
new structural and geophysical data of the northeeotor, which were not considered in
Christiansen et al. (2019). New evidence abouttlatile deformation style and the tectonic setting
during the Famatinian orogeny is presented in e@etldimensional model in order to establish the

geodynamic evolution of the western proto-margiGohdwana.
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2. GEOLOGICAL SETTING
2.1. Regional context

Several Neoproterozoic to Paleozoic elements forthedlerra Australis Orogen along the
South American Andes (Cawood, 2005). The late Ceaiootectonics in the Andean foreland,
known as the Pampean flat-slab of the Central AifRasnos et al., 2002), caused a great exposure
to these elements developed during the PampeaRamndtinian cycles in the Sierras Pampeanas of
Argentina.

The Pampean events (Acefiolaza and Toselli, 197a Balda, 1987; Rapela et al., 1998;
Escayola et al.2007; Rapela et al., 2007; Ramos et al., 2014)roedfrom the Ediacaran (~550
Ma) to the Stage 3 of the Cambrian (~515 Ma) (Sisgend et al., 2010; Baldo et al., 2014). The
most important outcrops of this orogenic cycle aeognized in the basement of the Sierras de
Cédrdoba (Fig. 1). These events were developeccongext were a subduction-related magmatic arc
was active between 550 and 525 Ma (Schwartz eR@08; lannizzotto et al., 2013; Baldo et al.,
2014; Lopez de Luchi et al., 2018). A new short amdnse tectono-thermal event followed the
subduction stage, deforming and metamorphosingaretonary prism in amphibolite to granulite
facies, located on the western side of the arcc@0-Ma (Tibaldi et al., 2008). Several hypotheses
explain the origin of this orogeny: (a) the cobisiof a continental terrane named Pampia against
the Rio de la Plata Craton (Ramos, 1988), b) thewsttion of a seismically active ocean ridge, or
ridge-trench collision (Gromet et al., 2005; Schwat al., 2008), (c) the collision of a ridge aggti
the Kalahari craton, subsequent collision of thesi&fen Sierras Pampeanas block, and displacement
by a transform fault to the Rio de la Plata crg®apela et al., 2007), (d) the collision of annsla
arc with the Rio de La Plata craton and subsedgeamntipia terrain collision (Escayola et 2007;
Steenken et al., 2010), e) the collision of an iexbaurentian MARA block (acronym of Maz,
Arequipa, Rio Apa) again the Kalahari and Rio dé’lata cratons (Casquet et al., 2012, 2018),
among others.

The Famatinian orogeny was originally defined byeAalaza and Toselli (1976) in order to
group the tectono-sedimentary events that occutuehg the Lower Paleozoic in the northwestern
and central regions of Argentina. However, therevglence that these events can be extended to
the north up to the Venezuelan Andes, and to théhsantil the central part of Patagonia (Ramos,
2018). The Famatinian magmatic arc is representedxeellent outcrops of Early Paleozoic
batholiths, which were formed along the paleo-Ra&fondwana margin, in the Sierra de Famatina
(Toselli et al., 1996; Saavedra et al., 1998; Pardthet al., 1998). In the geodynamic context of
Argentina, the Famatinian arc is genetically relate an east-dipping subduction zone and to a

backarc metamorphic belt bordering the preceding@endwanan Pampean orogen (Otamendi et
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al., 2020). Southward of 28° south latitude, thegenic exhumation can be considered an episode
associated with the closure of the arc due to diremt-to-arc collision (Astini and Davila, 2004;
Cristofolini et al., 2014; Otamendi et al., 2020).

The Famatinian arc initiated at ~495 Ma when a sabdn regime was re-established along
the western margin of the Pampean orogen and wasuaously active during the Early Ordovician
(Pankhurst et al., 1998; Sims et al., 1997; Steemkel., 2004; Cristofolini et al., 2014). Thizar
developed in a thick and wide sedimentary basin¢hvbontained sediments from the erosion of the
exhumed Pampean arc, and were deposited betwe@nansl3~495 Ma, as the Meson Group, and
the Negro Peinado, Achavil and San Luis Formati@rebe et al., 2009; Cristofolini et al., 2012;
Rapela et al., 2016; Perén Orrillo et al., 2019bduction-related magmatism in the Sierras
Pampeanas segment ceased about ~465 Ma (Cristafodih, 2012; Ducea et al., 2015; Morosini et
al., 2017; Otamendi et al., 2017). At this times Framatinian orogen began its intense construction,
southward of 28° south latitude, so the arc anddracwere internally structured and differentially
uplifted during the collision of the Laurentian-ted Cuyania/Precordillera microcontinent
(Thomas and Astini, 1996; Benedetto, 2004; Otamenhdil., 2020) against the western margin of
Gondwana (Astini and Davila, 2004; Ramos, 2004 nttadi et al., 2009, 2017; Ducea et al., 2010,
2015; Ramos et al., 2010; Cristofolini et al., 201Bhis continent-arc collision conditioned the
different orientations of the fault trends durifge tMid Ordovician-Early Devonian times (von
Gosen et al., 2002; Astini and Davila, 2004). Femhore, this collision produced the current
exposures of the Famatinian deep paleo-arc that shoontinuous deepening from north to south
(Otamendi et al., 2010; Tibaldi et al., 2013; Cistini et al., 2014) and from east to west
(Camilletti et al., 2020). During the Famatiniantbmnstruction, the deformation was regionally
resolved in different ways; through large scalel fahd thrust belts in the upper crust (Astini and
Davila, 2004), along major shear zones in the faomd margins of the Famatinian paleo-arc (von
Gosen and Prozzi, 1998, 2005; Hockenreiner ek@03; Cristofolini et al., 2014; Mulcahy et al.,
2014), through large-scale west-verging shear ztwteded in the Pampean basement (Sims et al.,
1997; Martino, 2003; Cristofolini et al., 2017; Ssmov et al., 2019), and double-vergent structures
developed in the paleo-backarc (Larrovere et al72 Christiansen et al., 2019). Further,
contraction at mid-crustal level in the paleo-backaas predominately focused along west-verging
reverse ductile shearing and folding (Finch et2817; Larrovere et al., 2020).

The Achalian orogeny occurred during the Mid-LatevbBnian (Sims et al., 1997) and
produced, to a lesser extent, deformation in tea.arhe collision of the Chilenia terrane (Ramos et
al., 1984) against the western margin of the Cw/Bnecordillera terrane, which was already

amalgamated to Gondwana, caused reactivation aer@nshear zones and intra-plate plutonic
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activity (Sims et al., 1998; Steenken et al., 2008i)is plutonism was widely distributed along the
Sierras Pampeanas Orientales (southward of 27h&was associated with a stage of uplift and
erosion (Sato et al.,, 2003; Llambias et al., 1998yosini et al., 2017) related to progressive
delamination of the crust, accompanied by upwellrigthe upper mantle from south to north
(Grosse et al., 2009).

2.2. Local geology of the Sierra de San Luis

The SGSL is located in the southern sector of ieer& Pampeanas (Caminos, 1979) and
has approximately 160 km long and 80 km wide (Fj. Three NNE trending metamorphic
complexes integrate the SGSL: the Conlara (CMClinglrs (PMC) and Nogoli (NMC)
Metamorphic Complexes (Sims et al., 1997). In thélsern sector, these units are separated by two
low-grade metamorphic belts named San Luis Formgt®iF) (Prozzi and Ramos, 1988). In the
north area, a medium-grade metamorphic unit callag Higueras (Ortiz Suarez et al., 2009)
separates the Conlara from the Pringles Metamoi@bioplex. The presence of ductile shear zones
between metamorphic units indicates tectonic cesittn Gosen and Prozzi, 1998; Ortiz Suéarez
and Casquet, 2005; Christiansen et al., 2019).

The Conlara Metamorphic Complex is located in thstern sector of the SGSL. It is
subdivided into two metamorphic domains (Sims gt1897; Morosini et al., 2019; Christiansen et
al., 2019), one is predominantly composed by sebéstocks, equivalent to the Las Aguadas Group
(Ortiz Suérez, 1988), and the other is predomigattmposed by migmatites, named San Martin
Group (Enriquez et al., 2015). Las Aguadas Grouppmases mid-grade metamorphic rocks (high-
greenschist to low-amphibolite facies), which csp@nd to gneisses, quartz-feldspar schists
(banded) and micaceous schists (Ortiz Suarez, 1868sini et al., 2019). The San Martin Group
comprises rocks of a higher metamorphic grade (higphibolite facies) and is mostly composed
by migmatites (metatexites and diatexites), orthaiaibolites and to a lesser extent marbles and
calc-silicate rocks (Llambias and Malvicini, 19&2elakowitz et al., 1991; Loépez de Luchi et al.,
2003). The sedimentary protoliths of this compleg the oldest in the SGSL with maximum
depositional ages of 580 Ma (Steenken et al., 2006be et al., 2009) or 550 Ma (Rapela et al.,
2016), probably they are equivalent to the Puncawia series of the NW of Argentina (Drobe et
al., 2009, 2011) (Fig. 3). Three deformational gsartiz Suarez, 1988) with two folding stages
(von Gosen and Prozzi, 1998) were recognized inCbelara Metamorphic Complex. The third
deformational phase was contemporaneous with tiRe&bdn granite intrusion, dated at 497 + 8 Ma
(SHRIMP U/Pb-Zrn, Steenken et al., 2006), indiagtinat at least part of the tectonic evolution of

CMC occurred during the Upper Precambrian. Theadgeetamorphism remains unsolved for this
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complex; Whitmeyer and Simpson (2004) reported metphic ages of 470-482 Ma (U/Pb-
monazite), while age of 564 + 21 Ma (stepwise le@agH’b/Pb-garnet data) was published by
Siegesmund et al. (2010).

The Nogoli Metamorphic Complex is located in thesigen sector of SGSL. It is composed
of paragneisses, orthogneisses, migmatites, scloidtroamphibolites, marble, calc-silicate rocks
and banded iron layers (Ortiz Suarez, 1999; Gomzlal., 2002, 2004; Carugno Duran and Ortiz
Suarez, 2012). According to Gonzalez et al. (20043 complex is integrated by different
metasedimentary units with distinctive metamorpihegrees, from rocks that reached anatexis in
high amphibolite facies (metatexites and diateXités rocks without fusion (middle-greenschist
facies), represented mainly by metapsammites atdpeiges (Drobe et al., 2009). According to its
deformation, two structural sets can be recognizigloin this complex: one is a relict NW foliation
attributed to pre-Famatinian events and the otker ipenetrative NNE foliation assigned to
Famatinian events (Sato et al., 2003; Gonzalet,e2@04). The average metamorphic age for this
complex is 467 + 12 Ma (Ortiz Suéarez, 1999; Gorzéleal., 2002; Sato et al., 2005; Steenken et
al., 2006; Carugno Duran and Ortiz Suarez, 201®)icating an Ordovician metamorphic climax
(Famatinian) (Fig. 3). The maximum depositional af¢éhe protoliths was defined at ~530 Ma by
U/Pb in detrital zircons, and they have a proverasource from the Pampean and Brasiliano
orogenies (Drobe et al., 2009).

The Pringles Metamorphic Complex is located in temtral sector of the SGSL, and
includes two units; a middle-grade metamorphic galted Micaschist Group (MG) by von Gosen
and Prozzi (1998), and a high-grade metamorphict wviich reaches granulite facies
(Hauzenberger et al., 2001; Delpino et al., 20@1,62 Ortiz Suarez and Casquet, 2005) named San
José Complex (SJC) by Costa et al. (2001). The #dhuat Group is arranged along two belts on
both sides of the San José Complex. The metamonuriditions for this unit vary from high-
greenschist to middle-amphibolite facies and regresniddle crustal portions (von Gosen and
Prozzi, 1998; Morosini et al., 2014). It is compbd®y micaceous and quartz-feldspar schists,
quartzites and calc-silicates (Ortiz Suarez etl&92; von Gosen, 1998a, b). The San José Complex
is principally composed of migmatites and paragess and to a lesser extent, by amphibolites,
granulites, orthogneisses and calc-silicate rookstamorphosed in high-amphibolite to granulite
facies. The La Jovita-Las Aguilas mafic-ultramafiomplex (Sato et al., 2003) is hosted by the San
José Complex and is spatially related to an intemydonitic zone called La Arenilla (Ortiz Suéarez
et al., 1992). The average metamorphic age of tmgles Metamorphic Complex is 469 + 22 Ma
(Sims et al., 1998; Ortiz Suarez, 1999; Steenkeal.e2006) (Fig. 3). The maximum depositional
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age of the sedimentary protoliths is ~530 Ma, witbhvenance from a Pampean source (Sims et al.,
1998; Steenken et al., 2006).

Las Higueras Complex, located in the northwest GISSE, is integrated by metapelites,
metasandstones, calc-silicates and metavolcaniks rocetamorphosed under low-amphibolite
facies (Ortiz Suérez et al., 2009). It shows a tratiee NNE to NE axial plane foliation, which
dips mainly to the NW and to a lesser extent, towdhe SE (Ortiz Suéarez et al., 2009). Hornfels
were recognized in this unit caused by the intrusibDevonian granitic plutons, like El Telarillo,
El Hornito and La Poblacion (Ortiz Suarez et alQ0?). This complex presents lithology
similarities with the San Luis Formation, but prblyawith different tectonothermal evolution,
which suggests a link with the Micaschist Groupt@6uarez et al., 2009). However, it also
presents some common features with Las AguadaspGisehists of the Conlara Metamorphic
Complex). The absolute age of metamorphism ofdbieplex is still unknown.

The San Luis Formation is a metasedimentary umtipmsed of siliciclastic sedimentary
successions metamorphosed under greenschist {aunies Suarez et al., 1992; von Gosen, 1998b).
The most abundant protoliths recognized in thi¢ are mudstones, sandstones and conglomerates
(Ortiz Suéarez et al., 1992), along with scarce litg® and dacites that intruded as dikes and sills
(von Gosen and Prozzi, 1998; Casquet et al., 2B&yn Orrillo et al., 2019). This unit shows tight
folds with hinge lines plunging slightly toward NNEhe axial planes are marked by sub-vertical
NNE-trending phyllitic cleavage that dips eithertbe NW or to the SE (von Gosen, 1998b; von
Gosen and Prozzi, 1998; Peron Orrillo et al., 20T8g absolute age of metamorphism for this unit
remains unknown, but it is restricted to have oemrafter the intrusion of metavolcanic rocks
dated at 467.4 = 5.1 Ma (Casquet et al., 2014)rataded to the Famatinian magmatic arc stage
during the early to middle Ordovician (von Gosef98b). Maximum depositional age in the
western belt straddles over the transition from ldte Neoproterozoic (~555 Ma) to the early
Cambrian (~530 Ma), whereas maximum depositionaliaghe eastern belt is late Cambrian (~515
Ma) (Perdn Orrillo et al., 2019). Both belts of than Luis Formation show U-Pb age distributions
of detrital zircons with dominant peaks that ararelteristic of the orogenic systems in the West
Gondwanan landmasses (Peron Orrillo et al., 2019).

The SGSL is composed of about 20% plutonic rockichvhave been widely studied and
classified (Ortiz Suarez et al., 1992; Llambiaalet1998; Sato et al., 2003; Brogioni et al., 2005
Lépez de Luchi et al., 2007). Two Paleozoic magmetients were recognized in the study area; a
basic, intermediate and acidic Ordovician magmats®75 + 11 Ma), associated with the
development of the Famatinian arc/retro-arc (Sitnal.e 1998; Sato et al., 2003; Steenken et al.,
2006; Casquet et al.,, 2014; Morosini et al., 202@019) and a Devonian (~398 + 13 Ma)
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monzogranitic and monzonitic magmatism associatéd tive Achalian orogeny (Sims et al., 1997;
Stuart-Smith et al. 1999; Lépez de Luchi et alQ2®007, 2017; Sato et al., 2003; Siegesmund et
al., 2004; Morosini et al., 2017; Dahlquist et 2D19) (Fig. 3).

The shear zones recognized in the SGSL are genstditparallel to a previous axial plane
foliation developed during an intense folding byianing and they were generated during the
construction of Famatinian orogen that occurredvbenh the late Ordovician and early Devonian
(Whitmeyer and Simpson, 2004; Steenken et al., 20bBistiansen et al., 2019). Studies by von
Gosen (1998a) and Delpino et al. (2001) in the kanfla shear zone (the hottest of the SGSL)
proposed that the kinematic indicators were forrhgdectonic shortening with a small oblique
sinistral component. Additionally, during the middate Devonian there was a reactivation of this
shear zone in low greenschist-grade deformatiomg&it al., 1997; Steenken et al., 2008).

An inverted disposition of the metamorphism for tRengles Metamorphic Complex,
caused by a syn-metamorphic orogenic exhumatidmgtf-pressure over low-pressure rocks was
determined by Ortiz Suarez and Casquet (2005). Wioog to these authors, the extrusion was
caused by a combination of internal deformatioreach metamorphic domain and sinistral-reverse
displacements along ductile shear zones. Steertkah @008), based on a petrological-structural
analysis, proposed that the metamorphic fabrigs ¢Sthe Pringles Metamorphic Complex were
affected by two folding events ¢@and ) related to the Ordovician approach and collisibrthe
Cuyania/Precordillera terrane. According to Haumsegér et al. (2001) the mafic-ultramafic
intrusions of Las Aguilas were the heat sources ld#thto amphibolite and local granulite facies
metamorphism in the Pringles Metamorphic CompléighBy before these events (at 510 Ma), the
San Luis Formation was deposited, probably alonty Wie sedimentary protoliths of the Nogoli
and Pringles metamorphic complexes, but it wasctdte by a low metamorphism (von Gosen,
1998b). Drobe et al. (2009) proposed that afteex@ensional phase, related to deposition of the
protoliths of the San Luis Formation, Pringles &mboli Metamorphic Complexes, the back arc
basin was closed and folded, producing a diffeabniplift of the meta sedimentary units. This last
event was a contractional stage in the Famatinragemy and was responsible for exposing and
juxtaposing the high-grade metamorphic rocks ofRhagles Metamorphic Complex over the low
grade metamorphic rocks of the San Luis Formatidheasame crustal level.

The last work on this topic corresponds to Chnten et al. (2019), which analyzed the
main shear zones in the south-western sector c8@8L and built a three-dimensional model of
the area. These authors conclude that there isga-tzale doubly-vergent structure caused by a
transpressional tectonic setting due to the collisibetween an allochthonous terrane

(Cuyania/Precordillera) and the proto margin of WesGondwana.
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3. METHODOLOGY

In order to study the entire Sierra Grande de Sas, the database used by Christiansen et
al. (2019) was extended to the north, providing gealogical, geophysical and petrophysical data.
For the southern sector we used the entirely pusvitatabase (Christiansen et al., 2019), which
consists of aeromagnetic, gravimetric, petrophysgteuctural, and petrological data. This area has
a higher concentration of information due to theyeaccessibility to its outcrops and the high-
density aeromagnetic database.

The northern sector was not covered by magnate lobecause the achievable resolution was
not sufficient for this type of study. However, magjc susceptibility values were acquired in order
to compare and contrast the ranges of values a@utdior the same units in the southern sector.
Faults and shear zones were characterized basesiiréace geological observations and their
continuity at depth was obtained from a 3D moddthdugh the same gravity database as in the
southern sector was used, this work shows 500 mawtyg points and 34 new density values for the

northern sector that were not exposed in previalmigations.

3.1 Geological data

Structural data and rock samples for the nortlsestor were obtained during several field
works, while the data for the southern sector watained from Christiansen et al. (2019). Structural
data (foliations and lineations) were acquired amcips within and between units of different
metamorphic grades with structural hand compaséeasurement locations were carefully selected
to represent the main shear zones structures. Ta¢gavere plotted and processed statistically with
Stereonet© 2011-2015 (Allmendinger et al., 2013;rd6ao and Allmendinger, 2013).
Representative thin sections of oriented samplesdifferent units and shear zones were
petrographically analyzed under an optical micrpscdo determine microstructures, mineral

associations and rock strain states (Simpson amade 1991; Passchier and Trouw, 2005).

3.2 Gravity data

Gravity anomaly grids were computed based on f288ons covering an area bigger than
the Sierra Grande de San Luis to avoid border &ff@ig. 4). Theoretical gravity was calculated
using the International Gravity Formula 1967 andi@ger gravity anomalies (Blakely, 1995) were
calculated using an average rock density of 2.6@Y(Hinze, 2003). The effects of earth curvature
(LaFehr, 1991a, b) were corrected due to the ditleeoarea considered for the study. Although the

terrain effects are small, these were correctddvimhg Nagy (1966) and Kane (1962), using local



300 and regional DEMs with 90 m and 300 m resolutisaspectively. A terrain density of 2.67 gftm
301 was considered in these corrections. The anomalywgas obtained, applying kriging interpolation
302 with a 1500 m cell size (Christiansen et al., 20F@gional-residual separation was performed
303 following Zeng et al. (2007), finding an optimumwgrd continuation height of 25 km. This
304 separation resulted in representative wavelendgthg do 6 km depth (Jacobsen, 1987). For more

305 information regarding the processing of gravimettata, the reader is directed to Christiansen

306 (2019).

307

308 3.3 Magnetic data

309 Total Magnetic Anomaly data are available only ttee southern sector of the SGSL and

310 was previously presented by Chernicoff and Ram083Rand Christiansen et al. (2019) (Fig. 5). It
311 was acquired and pre-processed by Servicio Geaddinero Argentino (SEGEMAR) along lines
312 at average heights of 120 m in E-W direction arated every 500 m with N-S tie lines every 5000
313 m. Data spikes (high amplitude and short wavelemglise) were removed utilizing a non-linear
314 filter (Naudy and Dreyer, 1968). The filtered datare gridded to a cell size of 160 m using a bi-
315 directional gridding method. The resulting gridsreveompared with 125 ground magnetic stations
316 (previously upwarded to 120 m) that were acquiregr dwo E-W profiles in the southern sector of
317 the SGSL. A shift in the TMA (Total Magnetic Anorgalof 180 nT was detected and corrected. In
318 order to obtain the residual TMA grid a Gaussiderfiwas applied with a cut-off wavelength of 24
319 km. This is consistent with a maximum depth of stigation of ~6 km. The northern area could not
320 be explored with magnetic data with sufficient tason to show the geological structures, so it was
321 decided not to continue with the terrestrial magraalysis in this sector.

322

323 3.4 Density and magnetic susceptibility data

324 Rock samples were considered to analyze densityes utilizing the method of double
325 weighting with paraffin (Smithson, 1971), while theagnetic susceptibility values were measured
326 in situ with portable equipment. The obtained valuere averaged within a radius of 50 meters and
327 assigned to the center of the locations. As ate3dildensity and 68 magnetic susceptibility values
328 for the northern sector were added to the exidiiagbase (Christiansen et al., 2019). These data
329 were used as a reference input for the petrophysarameters in the initial 3D model (see section
330 3.5). Some discrepancies with respect to the samie i the southern sector may arise since the
331 number of samples is very limited and the metamorgtade varies within the area in parallel with
332 the physical properties of the rocks (Best, 2068)thermore, there is a possible range of values of

333 two to four orders of magnitude in the magneticcepsibility for the same unit (Clark, 1997).
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Moreover, the weathering of rocks diminishes thesleles due to the metastable nature of both
magnetite and pyrrhotite at the surface of thetE@dles and Rankin, 2013). The complete list of
samples is shown in Appendix A

3.5 Three dimensional litho-constrained inversion rodel

Geophysical inversion models provide useful ingghto rock properties and geometry of
the lithological units. Inversion and modelling imeds carried out in this paper were implemented
using the GeoModeller software developed by Inttepeophysics and BRGM (Calcagno et al.,
2008; Guillen et al., 2008). This technique wascsdly designed for cases in which geology is
known in scattered places on the surface. Thetabdievaluate the petrophysical properties of the
units by performing a deterministic search for tespuares through the values proposed for each
lithology is also of special interest.

Based on the theory of potential fields, this tegbe interpolates and extrapolates
information considering the geological contactgirtlorientation and the order of the stratigraphic
column to create an initial 3D model to describe gfeometry of the different lithological units.
Then each unit is assigned statistically petrogt@ayroperties, being defined by their mode, mean,
standard deviation and distribution law. A potdriield approach is then used to adjust these
models through litho-constrained joint inversion bgmparing the measured gravimetric and
magnetic data with those produced by the model.eCihe initial model is achieved, certain
limitations or values must be introduced to thetrretions that will be used by the inversion
algorithm when modifying the properties and geognefrthe units.

The non-deterministic method of inversion modifse cell of the model during each
iteration, within a range determined by the usiéhee in terms of geometry or rock property. The
new obtained geophysical response is recomputéaiiolg the small change, and assessed against
the field geophysical data. Results are given thinolikelihood statistics in the form of the most
probable geological model and distributions of des and magnetic susceptibilities for all its
volume. For a detailed description of the methogglthat led to the 3D litho-constrained inversion
model the reader is directed to Christiansen (2@t@) Christiansen et al. (2019). The complete

inversion process for the northern zone is presentdppendix B.

4. RESULTS
4.1. Structure and microstructure of the San Luis Sear System

The main structural feature in the Sierra GrandeSde Luis is a ductile shear system,
named by von Gosen and Prozzi (2005) as San L@arSystem (SLSS). This system has a N15°
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average strike and consists of several shear ashigh transpose and alternate lithological units
and structural domains. From east to west the ijpahshear zones are: 1) Rio Guzman, 2) San
Martin, 3) Inti Huasi, 4) La Troya, 5) Quebrada &stida, 6) La Arenilla, 7) San Pedro - El
Volcan, 8) La Escalerilla, 9) Pancanta - La Camlih0) El Realito - Rio de La Quebrada, and 11)
Rio de Los Bayos — Funes (Fig. 6). The main charistics of the shear zones are described below

and summarized in Table 1.

4.1.1. Rio Guzman Shear Zone (RG-SZ)

The RG-SZ (Sims et al., 1997) represents the bayruaetween the Conlara Metamorphic
Complex and the eastern belt of the San Luis Foomatlhe mylonitic/phyllonitic fabric is defined
by the paragenesis of Qz+Chl+SertMag, indicating-¢pade deformation conditions (greenschist
facies). The mylonitic foliation (§) has mainly steeply to vertical dips towards ti&EEwhile the
stretching lineation (ky) plunges towards the SSE (Figs. 2 and 6). Kinematlicators such as
S/C’ fabrics,o-type clasts and asymmetric folds, indicate anquiglireverse-sinistral movement,
with east-side-up. Ar/Ar-muscovite ages of 362 8ad Ma (Sims et al., 1998) suggest a Devonian
age for this shear zone.

4.1.2. San Martin Shear Zone (SM-SZ)

The SM-SZ extends northward of Las Chacras bathadihd separates the Conlara
Metamorphic Complex from Las Higueras Complex (lBig.It is composed by at least three main
belts with striking NNE-SSW that juxtapose differelithologies, which tend to increase in
metamorphic grade to the east. The SM-SZ is contbosehyllonites and mylonites of schists.
Overall, the &y has an NNE strike with a steeply to subverticaEEfp, while the L,y plunges
towards the ENE. Kinematic indicators such as S¥Gcgires, asymmetric sigma porphyroclasts
and drag folds show reverse motion with a minortidéxcomponent (Fig 7a). The mineral
paragenesis in mylonitic rocks is Qz+PI+Bt+GrttGhticates greenschist facies metamorphic

conditions.

4.1.3. Inti Huasi Shear Zone (IH-SZ)

The IH-SZ (Ortiz Suarez and Casquet, 2005) sepmathie eastern belt of the Micaschist
Group (west) from the eastern belt of the San Eaignation (east). This shear zone has a southern
segment with N strike, and a northern segment Wihstrikes (Fig. 6). It contains mylonites and
phyllonites that overprint phyllites, micaceousist) pegmatites and tonalites. Thg, 8ips W or
NW, while the L,y plunges towards the NW. Drag folds, transposeadatsires by shear bands, S/C
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and S/C'-fabricsg-type clasts and mica fish, indicate a reverse esg@west-side-up) with a minor
sinistral strike-slip component for this shear zohemperatures between ~350 and 450° C were
interpreted due to the development of bulging (B@hyl subgrain rotation (SGR) recrystallisation

microstructures in quartz.

4.1.4. La Troya Shear Zone (LT-SZ)

The LT-SZ (Ortiz Suarez and Casquet, 2005) sepathie San José Complex from the
eastern belt of the Micaschist Group (Fig. 2 andTé)e southern segment has a N strike with a
slight concavity towards the east and dips towéndsW or NW, whereas the northern segment has
a general NE strike, and dips at a very high amghards the NW. It is ramified into some minor
synthetic splay shear belts in the Micaschist Grdlely. 6). The LT-SZ deforms migmatites,
gneisses, coarse-grained schists and few amplaboiithich present kinematic indicators such as
asymmetric folds, S/C'-fabrics, boudin structurassposed by shear bandsype clasts and mica
fish. Ribbons of quartz with grain boundary migoat{GBM) recrystallization indicate moderate to
high-temperature deformation (~500-550° C). Likeayithe growth of new bands of sericite would
be indicating reactivations at lower temperatufeg.(7b). In the southern sector, thg,lplunges to
NW, and the shear was resolved through reverse mewe (west-side-up) with a minor sinistral
strike-slip component. In contrast, in the northeettor, the ky is horizontal, with a maximum
plunge of ~5° towards to N, indicating a sinistsdtike-slip sense with a very little reverse

component.

4.1.5. Quebrada Escondida Shear Zone (QE-SZ)

The QE-SZ separates the Las Higueras Complex fnen$an José Complex. It is composed
by several branches striking NNE and located ncgtwf Las Chacras batholith (Fig. 6). QE-SZ is
disrupted by this intrusion because in this areasitike is displaced in E-W direction by a
clockwise rotation and all branches converge int@.olhis shear zone develops mylonites of
schists, granites, tonalites, pegmatites, and miiggsaand to a lesser extent protomylonites and
ultramylonites bands. Thengstrikes NE and dip to NW, and the,Lplunges towards the SW,
although occasionally they dip with low-angles tos#gathe NE. Kinematic indicators such as S-C'
structures, drag folds, sigma clasts, mica fiskjcate reverse movements (west-side-up) with a
minor dextral strike-slip component. Ribbons of mawith grain boundary migration (GBM)
recrystallization suggest a deformation temperabdfire500-550° C.
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4.1.6. La Arenilla Shear Zone (LA-SZ)

The LA-SZ (Ortiz Suarez et al., 1992) extends nibem 95 km in N-S direction within the
San José Complex. In the central part, it comprésesgle wide belt (~3 km), while to the north
and south, it ramifies into wider branches (Figan@ 6). This shear zone contains mylonites of
gneisses, migmatites, pegmatites and mafic-ultr@mnaéks. The &y strikes N to NNE, with steep
dips (>70°) towards the E or NW. The\lis close to down dip (von Gosen y Prozzi, 1998;pivel
et al., 2007). In general terms, the LA-SZ show®rge movement with a minor strike-slip sinistral
component. The eastern block is the hanging wakmwthe &, dips to the E (von Gosen and
Prozzi, 1998; Delpino et al., 2001), while the weestblock is the hanging wall when thgy,Slips
towards the W (Morosini et al., 2014), giving rigea horst pop-up structure. Nevertheless, in a
small branch of this shear zone, oblique normabksa movement was observed, but this is an
exception to the general movement of the LA-SZ (R Metasedimentary mylonites have
porphyroclastic texture with mantledshape clasts of Pl, Kfs and Grt, and a recrygedlimatrix of
Bt, Sil, Ms and Qz (ribbons). Kfs and Pl porphyasts show deformed twinning, undulous
extinction, recrystallized edges and fragmentafisinear-band type porphyroclasts). Leucosome
pods with sigma-shape (Fig. 7c), asymmetrical doddgs of stromatitic migmatite and S/C or S/C’
fabrics are very common. Mafic mylonites have p@rphblastic texture or a compositional banded
foliation (Fig. 7d). Thes-shape clasts of PI, Amp, Opx or Grt hosted in maif Amp, Pl, Px, Bt
and Op are a common feature of these rocks. Octbiomafic mylonites have ultramylonite
texture and a millimetric compositional bandingwli¢ucocratic granoblastic bands of Pl and mafic
nematoblastic bands of Amp £ Px + Op. The P-T comal of the mylonitic event reached upper
amphibolite facies at intermediate pressures (688-T, 630-690 MPa) (Delpino et al., 2007) and
minimum temperature records indicate more than @(@Steenken et al., 2008). These authors also
determined the age of 414 + 10 Ma (K/Ar-biotite)airBt-Grt-Sil mylonite, which suggests tectonic
activity during Silurian times. Likewise, within ithshear zone, there are also thin overlapping
bands with evidence of deformation at lower temjpees (greenschist facies) that indicate
retrograde conditions during the exhumation (Dednal., 2007).

4.1.7. San Pedro - El Volcan Shear Zone (SP-EV-SZ)

The SP-EV-SZ (Ortiz Suéarez, 1999; Morosini, 201&pasates the western belt of the
Micaschist Group from the San José Complex. It aisep mylonites of migmatites, gneisses,
micaceous and quartz schists, pegmatites and aolipgh The G strikes from NE to NNW, and

dips toward the E. Theqy plunges predominantly towards the SE. The kinessatidicators such
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as asymmetrically folded veins;shape or synthetically faulted Kfs porphyroclg$isg. 7€), mica
fish, bookshelf and pinch and swell structures & &nd PI indicate reverse movement (east-side-
up) with a minor sinistral strike-slip componenhefefore, the San José Complex was juxtaposed
over the western belt of the Micaschist Group @8uarez, 1999; von Gosen and Prozzi, 2005;
Morosini et al., 2014). At its northern end, a tatkearing, which developed a,& foliation of NE
strike, displaced and curved (clockwise rotatidrg trajectories of the previous shear zones. The
kinematic indicators show a dextral strike-slip motfor this ductile fault. Temperatures between
~450 and 550° C have been interpreted as evidebgedrain boundary migration (GBM)
recrystallization of quartz, and feldspars (cord amantle microstructures). However, the presence
of late retrograde microstructures is common, ldends of sericite, microfractures in feldspar,
undulous extinction or BLG in quartz (Fig. 7f). Hee elements would be indicating a late
reactivation close to ~300 °C (greenschist facies).

4.1.8. La Escalerilla shear zone (LE-SZ)

The LE-SZ extends over 63 km with NNE general strik is located on the eastern
boundary of the La Escalerilla pluton, which isvbetn the western belts of the Micaschist Group
and San Luis Formation (Figs. 2, 6 and 8a). Thehswno segment is curved and has a concave
morphology towards the east with a strike that glearslowly from NNW to NE, while the northern
segment is rectilinear with NNE strike. Thg,$resents steep dips to the E, while thg jlunges
towards the SSE or SE. It is composed of mylongkgranites, quartzites and schists, and of
phyllonites. The &, in deformed granites is a high-temperature myionid ultra-mylonitic
lamination developed in amphibolite facies condisio(Steenken et al., 2008). Evidence of
deformation temperatures over 550°C includes unduéxtinction in plagioclase, subgrain rotation
(SGR) recrystallisation and myrmekitization in noicline, and ribbons of quartz with grain
boundary migration (GBM) recrystallisation (Fig. )8bThe presence of sericite indicates
reactivation at lower temperatures. The S/C-fabndc-shape feldspar clasts in granitic mylonites,
as well as asymmetric folds of veins in schistdjaate an oblique reverse-sinistral movement with
east-side-up (von Gosen, 1998a, Steenken et &8, 2@orosini and Ortiz Suarez, 2010). In the
central sector the shear zone intersects severarmbranches (10 m width) with NNW strikes,
which are synthetic to the movement of the maimdina In these branches thgylplunges gently
towards the SSE, andshape or imbricated K-feldspar porphyroclastsdatéis sinistral strike-slip

movement.
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4.1.9. Pancanta - La Carolina Shear Zone (P-LC-SZ)

The P-LC-SZ is located within the western belthed San Luis Formation. The main branch
has an NNE strike with a near planar morphologye 8k, dips steeply toward NW, while then}
plunges gently towards the SW. Kinematic indicatstgeh ass ands-shape clasts, drag folds, en
echelon veins and S/C-fabric evidence an obliqudralereverse motion (Fig. 8c). It is mainly
composed of phyllonites with domanial slaty cleajagvhich is typical of shearing in low
metamorphic grade rocks. Based on thermobaromdgéia, Morosini and Ortiz Suarez (2011)
determined temperatures of ~450° C in the nortsegment of this branch. The other branch strikes
EW and it separates an isolated block of the NolNttamorphic Complex from the San Luis
Formation. Its &y dips moderately toward N while they)plunges towards WNW. Kinematic

indicators show oblique reverse-dextral motion.

4.1.10. El Realito - Rio de La Quebrada Shear &R RQ-SZ)

The ER-RQ-SZ (Sato et al., 2003) separates the INdrtamorphic Complex from the
Pringles Metamorphic Complex (in the northern paftpm the western belt of the San Luis
Formation (in the central part), and from the Ladsrilla pluton (in the southern part). It affects
metamorphic rocks of different grades and some littmaand granitic plutons developing
mylonites, phyllonites and protomylonites. It hageneral NNE strike with local variations. In
some places, it splits into several smaller anasseah branches that form lozenges while in other
places, it is intercepted by new lateral brancii@sngalez et al., 2006). Three distinctive segments
can be recognized. The northern segment is diviimtedseveral parallel branches that border the El
Realito pluton with an NNE strike, and vertical glipn the central segment the,Strikes NNE,
dips steeply toward NW, and the,lLplunges towards NNW. The Gasparillo and San Miguel
tonalitic plutons were thrust to the east overwiestern belt of San Luis Formation with an oblique
sinistral sense (von Gosen, 1998a; Morosini, 20RA19ng this segment, some minor branches
intercept the main one. These minor shear zongdagtis &y with N to NNW strike, steep dips to
W or E, and the ky, has a gentle plunge to the N or NNW. A sinisttalke-slip movement is
evidenced by the counterclockwise rotation of th&immarm of the shear zone. In the southern
segment the 5 strikes NNE and dips moderately toward ESE. Thedips towards the SE, and
the kinematics indicators showed a reverse movefeast-side-up, Fig. 8d), with a minor sinistral
strike-slip component. The preferred orientationnotas and amphibole prisms,and 5-shape
clasts, mica fish, ribbons of quartz with dynangcrystallization (SBR and GBM), core and mantle

structures in Kfs porphyroclasts with undulate mstibn and exsolution of perthites, and
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plagioclase with flexured twinning, are evidence stiearing in a wide range of temperatures
between 450° and 550° C.

4.1.11. Rio de Los Bayos - Funes Shear Zones (BB}F-

The RB-F-SZ are located within the Nogoli Metamacpgbomplex (Gonzalez et al., 2006).
Due to their length and thickness they are the nmogortant of 24 ductile shear bands in the area.
The main characteristics are a trajectory of mbent30 km that form lozenges with N to NNE
orientation (Fig. 6). The lithology of these sheanes varies from protomylonites and mylonites to
ultramylonites and phyllonites of metasedimentargt enafic/felsic igneous protoliths (Fig. 8f). Its
metamorphism differs from high to low thermal gra@ato et al., 2003). Generally, theySs
subvertical or steeply dipping towards the E oram the L,y plunges towards the S, SSE or NNW.
Mica elongation, drag folds, S/C and S/C' fabrigsd aasymmetric porphyroclasts indicate
dominance of sinistral oblique sense with tectaraasport to the NNW. However, the relationship
of these shear zones with orogenic and late toopmgnic granitoids indicates repeated activation
(Sato et al., 2003; Gonzalez et al., 2006).

4.2. Deformational stages

Sets of structures were defined based on reliabéepointing criteria, such as a foliation
(Sy) that has been folded {f folds) or cross-cutting relationship. We avoid ngsidescriptive
features like style, orientation, tightness of fotd correlate structural sets because it may @ang
outcrops of the same age. Although these desceigatures help to understand part of the
deformation mechanisms, they are not reliable tineethe succession of events (Passchier and
Trouw, 2005). We define four deformational evetst taffected the rocks of the SGSL. Figure 9
shows the results of the main structural elemelot$gal in stereograms, while the main features are
summarized in the Table 2. In addition, Figure it@rapts to graphically simplify the complex
structural sequence of each metamorphic unit.

A particular feature in the SGSL is that the folsformational phase Pis associated with
the development of a continuous or spaced folia(®h defined by the growth of metamorphic
minerals (slaty cleavage, schistosity, composilidrended, or stromatitic foliations), which are
arranged parallel or subparallel to thesBdimentary bedding. Naturally, the spatial digposs of
the § foliation vary in each unit depending on the styfeoverprint generated by the subsequent
deformation phases, but statistically they are nieasible to measure in planes with NNE to NE
strikes (Fig. 9) because the contractional foldimgnts were in WNW-ESE direction.
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The second deformational phase)(vas responsible for generating an intense folding
widely visible in most outcrops of the SGSL (Fig® and 11). This deformation phase,)D
generated Ffolds with $ axial planes of the average NNE strike. Theaf vertical or steeply
inclined towards the WNW or ESE, depending on #&@ (Fig. 9). In general, the, Binge lines
of the R, folds are gently or moderately plunging towarde MNE or SSW, and less frequently
towards the SE. The amplitudes and lengths of tifeléfs are variable and generally depend on the
metamorphic degree and the structural domain bieat tepresent (Figs. 10, and 11, and Table 2).

The D; deformational phase is related to the developménbhe San Luis Shear System,
except in the Conlara metamorphic Complex wheregtesents the f2leformational phase. These
NNE shear zones worked under non-coaxial streamesg(Christiansen et al., 2019), generating
rotations and fold of the previous fabrics of in@r domains that surround the shear belts.
Therefore, two set of structural fabrics are redogph for the @ deformational phase according to
its strain. The most representative fabrics areSthg mylonitic foliation and its different associated
structural elements (e.g. S-C, S-C' structuresdrad folds) located within the shear belts (high-
strain zone). The other set of structural elem&nt®cognized within the internal domains (low-
strain zone) surrounded by shears belts. In thesgauhs, the superimposition of Folds over k
folds produced interference patterns similar tetgpf Ramsay (1967) (Fig 10).

The third deformation phase {Dalso generated superposition of dver F, folds in the
Conlara Metamorphic Complex, developing type 3rfetence patterns. But in this complex, unlike
the rest of the units, there is not a clear spétilbetween the development of these patterns and
the presence of shear zones.

A fourth deformation phase ¢Dis related to the development of narrow NE or Nkiéar
zones displacing the priorssy mylonitic surfaces (Fig. 10). Thessy iS not penetrative on a
regional scale, and only developed along widelycegdabelts (hundreds of meters to kilometers).
Likewise, several shear zones associated withsiibbw low-temperature reactivations through
discrete planes taking advantage of the prior dedtion surfaces. These reactivations are also
considered part of a fourth deformation phasg,(Eince they overprint to the previous ones. i th
Las Higueras Complex a localized Surface can be associated with the forced intrusiothe

Devonian plutons.

4.3. Geophysical maps and inversion results
Residual Bouguer and magnetic anomaly maps shogrniation about the density and
magnetic susceptibility distribution in the uppertpof the crust. These grids are obtained by the

elimination of regional longer wavelength anomaligsing frequency filters. The information



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

provided by the combination of both methods faaiéis the identification of structures and
lithologies for the generation of an initial 3D neddwhich is then adjusted by inversion. The result
are models that are consistent with the known sarfgeology and measured density and magnetic
susceptibility values. Final models show the geoynat 3D and provide information about the

distribution of petrophysical parameters belowshgace.

4.3.1 Gravity anomaly maps

The residual Bouguer anomaly map (Fig. 12) displayseasonable gravity variation
according to the different types of lithologiestime SGSL. The clearest and most prominent signals
are the negative anomalies produced by the larg@m@n post-orogenic granitic plutons, such as
Las Chacras, El Hornito, El Telarillo, La Poblacidnd San José del Morro. In the Nogoli and
Pringles metamorphic complexes the maximum posialees are mainly associated with mafic-
ultramafic rocks. Furthermore, a moderate posiinemaly is recognized in the northeastern sector
of the Conlara Metamorphic Complex which is atttdzlito the mafic and intermediate rocks of the
Rodeo Viejo pluton. The prominent positive anomadjues, which cover an area of approximately
500 knf and are located immediately to the west and nasihef the SGSL, suggest the presence
of an important volume of sub-cropping mafic robledonging to the Famatinian magmatic arc axis.
These rocks can be considered the southeasternmuatidn of the mafic units present in the Sierra
de Valle Fértil - La Huerta (e.g. Otamendi et 2009), which are characterized by a strong positive
gravimetric anomaly (Introcaso et al., 2004; Weidmat al., 2016).

Although gravimetric information is consistent wihrface lithology, in some places, data
coverage is not homogeneous, and therefore, thealspaterpolation fails to represent real
anomalies. Consequently, some geological featwrels as the Renca pluton, located in the eastern
sector of the SGSL, do not show a significant nggaanomaly as the rest of the Devonian post-

orogenic plutons.

4.3.2 Magnetic anomaly maps

One of the most significant and contrasting properamong the lithological units of the
SGSL is the magnetic susceptibility. Variationghrs physical parameter produce strong magnetic
anomalies (e.g. presence of mafic-ultramafic racksle to the dipolar nature of the geomagnetic
field, observed magnetic anomalies are asymmetran evhen the source body distribution is
symmetric. Therefore, for visualization purposessidual magnetic data is presented after the
reduction to the magnetic pole (RTP) filter is apgl This method removes anomaly asymmetry,

assuming that the remnant magnetism is small. im way, anomalies are situated above the
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causative bodies. Due to the lack of aeromagnetia th the northern sector, a reduced to the
magnetic pole (RTP) aeromagnetic map only for thereern SGSL is shown in Fig. 13.

The RTP map clearly shows a magnetic contrast leetwievo first-order structural
meridional domains in the metamorphic basementhénwestern sector of the SGSL, where the
Nogoli and Pringles Metamorphic Complexes and tae Buis Formation are located, magnetic
anomalies are particularly prominent, thin, eloedat&nd interspersed positive and negative values.
These N-S trending features correspond to the tatalcpatterns generated by the ductile shear
zones and to the magnetic domain of the San LugsiS8ystem. In contrast, on the eastern sector,
where the Conlara Metamorphic Complex is locatee , RTP image does not show strong anomaly
contrasts, except for the prominent signals cabgeithe Devonian granitic plutons, small Neogene
volcanic domes and some minor linear featurespneééed as modern faults. A common feature of
Devonian granitic plutons is concentric positivegmetic anomalies in their edges that contrast with
the internal zone and their host rock. These magaehing represent internal lithological changes
(Sims et al, 1997; Chernicoff and Ramos, 2003) amedprobably produced by a difference in the
content of magnetite in their facies.

Two main reasons explain the prominent magneticadsgin the western SGSL. One reason
is related to the folding or shearing of rocks aterate to high temperature, which generates a high
concentration of magnetite in low-strain zones Itegy in increased magnetic susceptibility (Isles
and Rankin, 2013). These interpretations are dontedein the Rio Guzman Shear Zone, where
veins of remobilized quartz with intense magnete® present. The other reason is associated to
the mafic-ultramafic rocks in the San José Complekjch contain a high concentration of
pyrrhotite and magnetite as primary and secondangmals (e.g. Hauzenberger et al., 1997). The
main negative magnetic anomalies are related tolLtheEscalerilla and San Miguel plutons,
indicating, in general terms, their low magnetiscptibilities compared to other units.

4.3.3 Inversion model

The creation of the 3D models and a subsequentsiorewas carried out for the southern
and northern sectors separately. The southern rsecs covered by gravity and magnetic
information, consequently, a joint inversion wasdmaising both data sets. As a result, the most
probable geological model and density and magrsetsceptibility cubes were obtained (Fig. 14).
For a detailed explanation of the joint inversiongess and the obtained 3D model in the southern
sector, the reader is directed to Christianseh €2@19).

The initial model for the northern sector was ¢onged by geostatistical interpolation in

order to obtain a reference lithological model.aBgraphy and relationships between units were
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defined following geological field studies. Densitglues obtained from the field samples (section
3.4) were assigned to the lithological units. Farse units without density data, the values were
assigned following international tables taking dithgy into account. Eight control profiles were
defined perpendicular to the main structures orclwhd observe the units up to a depth of 6 km.
This value corresponds to the research depth dkbased on the residual gravity grids.

The initial model was adjusted on the profilesxsidering the gravity produced by the
sections. The densities were then optimized udwegléast-squares technique and the gravimetric
response was recalculated. The inversion of the was carried out through 20 million iterations
respecting the established stratigraphic orderoxXelsize of 500x500x300 m (x-y-z) was used with
a probability of change in the petrophysical prdpsrof 50% and a probability of change in the
geometry of the units of 50%.

Results for the northern sector (Fig. 15) indicdiat the structures continue with the same
trend as in the south with almost vertical contdmsyveen the main units. Most of the analyzed
shear zones project to the depth with the saméatmn as the measured angles on the surface.
The density distribution shows great surface vamatespecially in the sediments. In general, it is
observed that the results for the densities arg sinilar to those obtained in the laboratory with
differences of 2.35% on average.

As a most distinctive feature, it can be noteat the San José Complex extends along the
entire length of the model, reducing its width Img tcenter. On the other hand, the Las Chacras
Batholith presents great dimensions and its basddvwot exceed 4000 m depth. Considering the
fault system and the arrangement of the litholdgiggts, we can affirm that in this area, the
double-vergent structure of regional-scale obsertesdards the south is maintained, although it
would affect only the San José Complex and the Higsieras Complex because the Micaschist

Group and San Luis Formation do not continue tantbrh.

5. DISCUSSION AND INTERPRETATION
5.1. Architecture of the Sierra de San Luis

One of the most difficult tasks regarding geolobicaodelling is to determine the
continuation of structures and lithological unitdapth. If the limits between the units of the $GS
are projected indefinitely according to the angiesasured on the surface, very different profiles
would be obtained comparing to the model presehtsd. A strong predominance of vertical or
steep dip structures on the surface such as theL@anFormation or the granitic and tonalitic
plutons can be extremely thick, reaching depthsen$ of kilometers, resulting in an unreal and

unlikely design for the orogenic architecture. Gdesng the petrophysical properties and
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geophysical data, the boundaries between unitsiracdifferent inclinations at depth and therefore
the model becomes more realistic.

The results of the surface structural survey retleatl most of the shear zones incline with
angles greater than 60° (Fig. 6b). However, inRnagles Metamorphic Complex the mylonitic
foliations are practically vertical (90°) in itsrdeal sector (San José Complex) and gradually eeduc
its angles (~60°) towards both flanks (in the barets between Micaschist Group and San Luis
Formation) (Fig. 2). In the western flank the faba dips to the east, while in the eastern flamk t
the west. Generally, the stretching lineatiop,jLdips to the southeast when the shear zones dip to
the east and towards the northwest when theptines are inclined to the west. Predominant
kinematic indicators show (in both cases) reverswaments with a minor sinistral strike-slip
component. This situation is compatible with a gah&on-coaxial compressive deformation.
According to Goscombe and Gray (2009), the tectasttiquity (B;) of an orogen can be
determined from an average of the regional patbémmaximum stretching direction indicated by
stretching lineations, thus defining a maximumtstrieg obliquity ). The San Luis Shear System
presents angles between the orogen strike (N1%P}Yrendirection of the stretching lineation in the
shear zonesf(), indicating that the kinematic corresponds toamgpressional orogen of sinistral
oblique (to high-angles) convergence with steep ¢Hig. 6).

The 3D litho-constrained inversion model showsdtagenic architecture of the SGSL up to
a depth of 6 km (Fig. 16). Since most of the bouedabetween lithological units are shear zones,
the structural pattern of the entire shear systeoh the shape of each tectonic thrust sheet are
outlined by the 3D shape of each lithological uMitcording to the geophysical model, the
architecture of the central part of the San Luie@hSystem can be interpreted as a large-scale
double-vergent megastructure. The inversion model shows that most of the shear zones tend to
intercept at depth to form a single belt of ductisformation, which can be interpreted as a vdrtica
extrusion channel (Figs. 16 and 17a, b).

The double-vergent pop-up structure has a centmaé 2or high metamorphic grade core
represented by the San José Complex that hosts-omidkmafic rocks. This central zone is flanked
on both sides (in decreasing order of metamorptrade) by the Micaschist Group (middle-grade)
and the San Luis Formation (low-grade) (Figs. I&f &7c). The elongated sigmoidal-shape of the
La Escalerilla granitic pluton, located between Mieaschist Group and San Luis Formation (Figs.
16f and 18), is consistent with a deformed elemeithin this transpressive shear system (von
Gosen, 1998a; Morosini and Ortiz Suarez, 2010)hénnorthern sector of the SGSL, the San José
Complex is directly in contact with the Nogoli Metarphic Complex to the west and Las Higueras

Complex to the east but maintains a wedge-shapei#s-section that tapers towards the east.
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The Nogoli and Conlara metamorphic complexes fdrenetxternal substrate of the doubly-
vergent structure. The Nogoli Metamorphic Comples below the western belt of the San Luis
Formation, as well as the La Escalerilla and ElliRealutons (Figs. 16¢ and 18). The San Luis
Formation was probably placed on top of the Nod@étamorphic Complex through an early
decollement, which in turn acted as a ramp fordhmplacement of the La Escalerilla pluton, and
then was truncated by the El Realito - Rio de lalipada Shear Zone (Fig 17c¢). Within the Nogoli
Metamorphic Complex, mafic-ultramafic, tonaliticcagranitic rocks are present on the surface and,
according to the geophysical results, must alspresent at depth.

Two metamorphic zones are recognized within thel@arMetamorphic Complex. The San
Martin Group (high-grade metamorphism) is in a k@&@riielt on the northeast edge of the model, as
well as two oval-shaped sectors that would reptesegmatic domes (Morosini et al., 2019) (Fig.
16). The zone of less metamorphic grade (Las Agu&taup) is located between the previous ones
and represents the superstructure of the Conlatarivephic Complex.

The eastern belt of the San Luis Formation andHigsieras Complex are in contact with
the western limit of the Conlara Metamorphic Compl&ccording to the field results this limit is a
shear zone with steep dip towards the east. Howéver3D model indicates a sub-horizontal dip
towards the western limit, which is interceptediepth by the vertical Inti Huasi Shear Zone. This
sub-horizontal boundary is interpreted as an eargfence decollement associated with the orogenic
retro-wedge (Fig. 17) evidenced by the presencasgimetric folds with eastern vergence in the
San Luis Formation. Results suggest that thesetstas are detachment folds developed above a
decollement during shortening in the @eformational phase. Moreover, this surface taggetbith
the Inti Huasi, La Troya and Quebrada Escondidarshenes are interpreted as the limits of the
thrust sheets that were extruded eastward andedsualthe stacking of the San José Complex over
the Las Higueras Complex and the Micaschist Grauq, of the Micaschist Group over the eastern
belt of the San Luis Formation in the south area.

The interpreted basal detachment that placed tmelS& Formation and Las Higueras
Complex in contact with the Conlara Metamorphic @&r was truncated sometime after the) (F
folding by the younger west-verging and high-arigle Guzméan and San Martin shear zones (Fig.
17c). Our interpretations suggest that the sediamgrmirotoliths of the San Luis Formation and the
Las Higueras Complex were deposited to the westhef oldest protoliths of the Conlara
Metamorphic Complex, and then during the Famatic@miractional stage were juxtaposed. For all
these reasons, it is considered that the Conlatarivephic Complex acted as a backstop during

the development of the pop-up megastructure.
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5.2. P-T conditions of the units that integrate thelouble-vergent structure

The metamorphic evolution of the SGSL is compled aat yet fully understood. The data
set of the metamorphic conditions (Fig. 19a andld &) shows the P-T peaks and the different
metamorphic grades for the units that composedithble-vergent belt corresponding to: 1) high-
amphibolite to granulite facies for the San Joséflex, 2) low-to medium-amphibolite facies for
the Micaschist Group, and 3) low-to high-greendctaisies for the San Luis Formation, all of them
represent a Barrovian Series. The regional digiohuof the metamorphic grade in the double-
vergent megastructure has an NNE-SSW longitudiastep. The axis of higher temperature is
coincident with the La Jovita - Las Aguilas maficramafic belt (these rocks being also the
deepest) located at the center of the double-vergenmcture. The lower temperature and pressure
zones correspond to both San Luis Formation behs;h flank the mafic-ultramafic belt on each
side. These units are now located in a structuesitipn below the high-grade units, with the
Micaschist Group structurally inserted between thehhe distribution of the metamorphic
conditions and relation with the structure indicateinverted arrangement of the metamorphism,
produced by the thrust of deeper higher-temperaanes over more superficial and colder zones
(Fig. 17c) (Ortiz Suarez, 1999; Ortiz Suarez andqDat, 2005; Morosini et al., 2014).

Results indicate that the mylonitic temperatureditions of the shear zone in the area
depend on the previous metamorphic conditions @h egeological unit prior to the orogenic
exhumation. For example, the San Luis FormationthedMicaschist Group are separated by shear
zones with mylonitic temperatures in medium-grebrsidacies. In contrast, the La Arenilla Shear
Zone nucleated within the San José Complex, reathgittamphibolite facies. However, it is
possible to distinguish in the La Arenilla SheangZ@reenschist facies mylonitic events, which are
located at the boundaries of the pop-up core ooriewg previous upper-amphibolite shear zones.
This last observation indicates a superpositiorhigh and low temperature ductile deformation
events due to the cooling of the San José Compleingl its decompression, and suggest a
protracted contractional activity.

A paleo-depth profile perpendicular to the douldegent megastructure calculated from the
metamorphic climaxes (Fig. 19b) indicates maximuatep-depths of 36 km for the high-grade
metamorphic rocks in the internal domain (San Joséaplex) and 18 km for the external domain
(San Luis Formation). This bell-shaped profile amsistent with the development of a vertical
extrusion channel where the greatest amount of reglion corresponds to the pop-up core. The
vertical advection of the hot material in the pgpairucture (vertical channel flow of the Pringles

Metamorphic Complex) is evidenced by the coolinthpaletermined with K-Ar ages in Hbl, Ms
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and Bt (Steenken et al.,, 2008). The average K-Atomc closure ages for the Pringles
Metamorphic Complex is approximately ~40 M.y. yoenghan in the Conlara Metamorphic
Complex and in the northern portion of Nogoli Metaphic Complex. Only in the Middle
Devonian (~370 Ma) the metamorphic complexes rehdeenperatures of ~300 °C and were
positioned next to each other as they are currgmégerved (Fig. 19¢). These data suggest a higher
exhumation rate in the central part of the douldegent structure (Pringles Metamorphic Complex)

than rest of the SGSL units during the Famatiniageny.

5.3 Kinematic model of the orogenic section

The configuration of the metamorphic units anddeitt domains of the current upper crust
in the study area (up to 6 km depth) are compatilitie a double-vergent structure developed in the
central sector of the SGSL (Figs. 16 and 17c). &tteumed units represent lower and middle levels
of the crust during the Famatinian orogeny. The arnsgucture involves the Pringles Metamorphic
Complex, San Luis Formation and Las Higueras Corppiehile the Conlara and Nogoli
metamorphic complexes are the surrounding elements.

The structural style of the orogenic wedge devaldpehe western units of the SGSL (west
to the Rio Guzman and San Martin shear zones) stggtfeat the Conlara Metamorphic Complex
acted as a backstop (e.g. Byrne et al., 1993) dutive development of the double-vergent
transpressive belt (Fig. 20). Evidence of thisnottetation is the provenance age patterns of detrit
zircons, such as the maximum depositional agesrdeted in the Conlara Metamorphic Complex
(Drobe et al., 2009; Rapela et al., 2016), whichgsst that its protholits correspond to a prior
sedimentation cycle, equivalent to the pre-PampPamcoviscana Series of the Argentine
Northwest (see Rapela et al., 2016; Weinberg gP@lL8). This series was deposited in the fore-arc
and/or trench of the west-facing Pampean arc bet®®0 Ma and was structured during the
Pampean orogeny between 537 and 524 Ma (Escayall, @011). This sequence was probably
part of the paleo-continent during the developnarthe Famatinian island arc located westward.
Conversely, the sedimentary protoliths of the umitsated west of the Conlara Metamorphic
Complex have detrital zircons of early Cambrian. adeese sediments were deposited at the margin
of the Pampean orogenic system during the middidate Cambrian (Steenken et al., 2006; Drobe
et al.,, 2009, Perdn Oirrillo et al.,, 2019), and ageivalent to the Negro Peinado and Achauvil
formations (Collo et al., 2009), the Meson Groupug@stsson et al., 2011) and Valle Feértil
metasediments (Cristofolini et al., 2012).

The predominant lithological and geophysical feagun the Nogoli Metamorphic Complex

suggest that it was the immediate eastern parh@fRamatinian magmatic arc (exposed in the



838 Sierras de Valle Fértil - La Huerta, Ulapes and g&s¢ This can be interpreted from the larger
839 volume of Ordovician plutonic rocks or the promihegravimetric anomaly located a few
840 kilometers to the west of the SGSL (Fig. 12). Aastsitic root rapidly developed synchronic with
841 the Famatinian arc, and a voluminous and compaosiliy stratified igneous crust, immediately
842 west of the Nogoli Metamorphic Complex, was devetbpefore the orogenic stage between 488-
843 465 Ma (Tibaldi et al., 2013; Ducea et al., 201nletti et al., 2020; Otamendi et al., 2020).
844  During this period, in the backarc there was anftupf the mantle isotherms that gave rise to a
845 regional metamorphic event of low-to medium-presgtifauzenberger et al., 2001; Larrovere et al.,
846 2011). This metamorphic event melted deeper crustela-sedimentary units and developed
847 migmatic complexes, while on the surface the sediarg protoliths of the La Cébila Formation
848 were being deposited (Verdecchia et al.,, 2007). these reasons, we interpret that the first
849 deformational phase ¢Pthat affected the Cambrian sedimentary protoliththe SGSL imprinted
850 its metamorphic fabrics in an extensional or nésetting (?).

851 The beginning of the continent-arc collision due #tcretion of the Cuyania/Precordillera
852 microplate against Gondwana (Benedetto, 2004; Astiml Davila, 2004; Ramos et al., 2004)
853 caused that all units belonging to the Pringles Hodoli metamorphic complexes, the San Luis
854 Formation and Las Higueras Complex were imprisdretdieen the Famatinian arc and the Conlara
855 Metamorphic Complex (backstop). These units wetensely deformed by the contraction during
856 the closure of the Ordovician backarc basia @@formational phase). This deformation ultimately
857 resulted in the extrusion and riding of high-gradetamorphic units of the Pringles Metamorphic
858 Complex (San José Complex) above those of lowategf(@an Luis Formation and Las Higueras
859 Complex), and the imbrication of the structural éims in the Nogoli Metamorphic Complexs(D
860 to D, deformational phases).

861 From the suture zone (Valle Fértil-Desaguadercaliment) to the high-grade metamorphic
862 rocks of the San José Complex (pop-up core), tbgemic deformation probably has an imbricated
863 west-vergence pro-wedge style, as it happens neghwf the study area (Fig. 20a). While
864 eastward, from the San José Complex to the CoMatamorphic Complex, the shear zones with
865 east-vergence corresponds to a retro-wedge devtlmgs the Pampean paleo-orogen (backstop)
866 (Fig. 20b). Within the Conlara Metamorphic Comptéere is a predominantly western vergence
867 structural style, and its eastern limit is the éamgestern vergence Guacha Corral shear zone, that
868 was reactivated during the Famatinian orogeny ($emet al., 2019).

869
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5.4 Geotectonic implications in the construction oFamatinian orogen

The structural features related to the developroéat double-vergent transpressive belt in
the SGSL suggest that there was a significant shioig between 32° and 34° S latitude. As a
result, a vertical exhumation of 36 km of the SaséJComplex in the core of a pop-up structure
was produced. According to Schulmann et al. (2@08yid floor is required for the mechanism of
vertical extrusion to be possible, represented Isyr@eng sub-root mantle. In the orogenic model
presented in this work, the overriding Famatiniamand backarc became mechanically decoupled
from the complementary lithospheric mantle andwhele main arc and backarc metasedimentary
sequences experienced rapid uplift rates (Otametdal.,, 2020) (Fig. 20b). Furthermore,
lithospheric mantle was mechanically decoupled fittvn backstop and horizontally displaced to
the east toward the continent. For this reasorretiagere important activations in the old west-
vergent shear zones located in the Sierras de ©ardaring the construction of the Famatinian
orogen (e.g. Semenov et al., 2019).

The deformation style across the collided edge ssigghat there was an indentation of the
Cuyania/Precordillera microcontinent over the pnotargin of Gondwana (von Gosen and Prozzi,
2005; Christiansen et al., 2019). At least thresedi of evidence indicate that the
Cuyania/Precordillera microplate was an indentér:tlie subcircular-shape of the first-order
structural mega-lineament named Valle Fértil-Desaguo, which according to geophysical studies
corresponds to a suture (e.g. Giménez et al., 206@caso et al., 2004; Alvarez et al., 2016) (Fig
20a); 2) a counter-clockwise rotation due to teict@scape for the Western Puna block, located
immediately in the northern sector of the indeotatiinterpreted through paleomagnetic data by
Spagnuolo et al. (2011); and 3) the style of wram#ad deformation of the shear zones in the
indented basement between 30°S and 34°S, whichestgythat there was a radial field of the
horizontal deviatoric stress vectors (Christianseal., 2019).

The disposition and kinematic features of the malrear zones recognized in the
Famatinian orogen southwards of 28° south latii{idg. 20a), show that the shortening directions
were more or less perpendicular to the strike ef shear zones (Otamendi et al., 2020, and
references therein), suggesting an orthogonal egewee of the indenter over the paleo-continent.
However, the local obliquity shown by the stresstoes with respect to the general strike of the
orogen in the SGSL (Fig. 6) is interpreted as asequnence of the clockwise rotation of the vectors
due to the convex morphology of the indenter ins¢h&atitudes (Christiansen et al., 2019). The
peaks of metamorphic conditions reflected in theegaepths, and consequently, in the vertical
flow of the material during the orogenesis (e.g.s€@ownbe and Gray 2009) suggest that the

Famatinian orogen was not uniformly exhumed, neitagtudinally nor longitudinally (Otamendi
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et al., 2020). The differential exhumation can b@l&ned by the morphology of an indenter
conditioning the deformation style of the indentedrgin (e.g. Houseman and England, 1993;
Nettesheim et al., 2018).

Determining the horizontal components of movementthe shortening driven by the
indentation of the Cuyania/Precordillera microcoetit is one of the future challenges. However,
with a preliminary model of indentation it is pdssi to deduce that the shortening should increase
from north to south along of Sierras Pampeanasn@lies (Fig. 20a, c). The total volume of
exhumed material due to indentation should be ptap@l to the amount of shortening at the same
latitude. This interpretation is consistent witle ihcrease in paleo-depths from north to southgalon
the Famatinian orogen between 34° S and 27° S (&tdiet al., 2020). At 33° S, this event
produced the development of a transpressive dowdslgent megastructure (pop-up) with vertical
extrusion of deep crustal rocks (~36 km), and wopresent one of the sectors with greater

orogenic shortening.

6. CONCLUSIONS

The shear zones of the Sierra de San Luis recoegngchist to amphibolite facies
deformation conditions (between 350° and 760° Gh Wihologies that vary from protomylonites,
mylonites, ultramylonites and phyllonites of metiisgentary to mafic/felsic igneous protoliths. The
disposition of the shear zones shows an anastonpadezin in plan view, but the results of the 3D
litho-constrained inversion model show that mostsbéar zones converge in one central zone,
resulting in a double-vergent megastructure. Thepdeand hottest rocks (San José Complex) in the
Sierra de San Luis are in the core of this stractwhile the lower temperature and pressure rocks
(San Luis Formation) are located below this highedgr unit. The Micaschist Group is structurally
inserted between the high and low-grade units. dureent distribution of the metamorphic units
indicates an inverted disposition of the metamaphiwhere deeper and hottest zones overthrust
the more superficial and colder units.

The angles between the general orogen strike anditéction of stretching lineations in the
shear zones indicate that the kinematic corresptmdstranspressional orogen of sinistral oblique
(to high-angles) convergence with steep dips. Thectural evidence, aeromagnetic contrasts, 3D
litho-constrained model, and background on thersediation and provenance ages in the Conlara
Metamorphic Complex suggest that this unit acted dmckstop during the development of the
double-vergent transpressive belt. In this contexie Famatinian magmatic arc (located
immediately to the west of the Nogoli Metamorphien@plex) acted as a buoyant crustal element

during the convergence with the ability to supdarger amounts of stress than the rocks of the
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backarc (Nogoli and Pringles metamorphic complexes Higueras Complex and San Luis
Formation).

An important shortening occurred during the Famatirorogeny at the Pampean segment
latitude, increasing from north to south over tlodlided edge. This is in concordance with the
hypothesis of an indentation of the Cuyania/Pratierd microplate on the Gondwana proto-
margin. In the segment that covers the Sierra Gradwl San Luis (33° S) the shortening was
responsible for a huge orogenic extrusion (with ldewergent disposition) developed over the
Famatinian backarc.
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Fig. 1. Geological map of the pre-Carboniferoustsum the western margin of Gondwana at the
Sierras Pampeanas and Northwest Argentina (modffi@eh Acefiolaza and Acefiolaza, 2005;
Steenken et al., 2006; Collo et al., 2009; Drobal €t2009; Augustsson et al., 2011; Rapela et al.,
2016; Peron Orrillo et al., 2019; Otamendi et2020, and others).

Fig. 2: Geological-structural map of the SGSL shayvihe distribution of metamorphic and
magmatic units. A) Area covered by Christianseralet(2019). B) Area with new information

presented in this work.

Fig. 3: Compilation of ages reported for the SGELSims et al. (1998); 2) Steenken et al. (2006);
3) Morosini et al. (2017); 4) Sato et al. (2003);Gasquet et al. (2014); 6) Sims et al. (1997); 7)
Stuart-Smith et al. (1999); 8) Siegesmund et &042; 9) Whitmeyer and Simpson (2004); 10)
Carugno Duran and Ortiz Suarez (2012). 11) Satal.ef2005). 12) Gonzalez et al. (2002). 13)
Morosini et al. (2019). 14) Siegesmund et al. (3016) Ortiz Suarez (1999). 16) Lopez de Luchi et
al. (2002). 17) Dahlquist et al. (2019). 18) Dradieal. (2009, 2011). 19) Rapela et al. (2016). 20)
Peron Orrillo et al. (2019).

Fig. 4. Gravimetric grids of the study area. 1) Bgal map of the study area. 2) Complete
Bouguer Anomaly. 3) Regional Bouguer Anomaly. 2§ideal Bouguer Anomaly. A) Area covered
by Christiansen et al. (2019). B) Area with newomfation presented in this work. Black dots

represent gravity stations.

Fig. 5: Magnetic grids of the study area. 1) Gemlalgmap of the study area. 2) Total Magnetic
Anomaly. 3) Regional Magnetic Anomaly. 2) Residi#dgnetic Anomaly. A) Area covered by
Christiansen et al. (2019). B) Area with new infation presented in this work. Black dots

represent the magnetic control stations.

Fig. 6: a) Map of the San Luis Shear System. b) éfleariables describing the first-order geometry
of orogenic system based on dips of shear zaemn(l obliquity of the stretching direction respect
to the orogen strikeg3() (Modified from Goscombe and Gray, 2009). The blsguare and the cross
correspond to the mean value with its standardadievi of the exposed structures, and represent of
the gross geometry orogen. c) Cross sections ob#tmeLuis Shear System (based on the results of

the litho-constrained model).
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Fig. 7: a) Field photography showing drag-foldstire San Martin Shear Zone. Floor view
perpendicular to 53 and oblique to ky. b) Photomicrography of the La Troya Shear Zorensing

a mica fish with sericite recrystallized along timas in mylonites. Section parallel to theLand
normal to the &, in cross-polarized light. c) Field photography wihng ac-shape leucosome pod
in the La Arenilla Shear Zones. Floor view perpeotlir to &, and oblique to k. d) Field
photographs showing a mesoscopic sinistral lozegeeloped in mafic mylonites of the La
Arenilla Shear Zone. e) Field photography showirgymthetically fragmented Kfs porphyroclast in
a mylonitic pegmatite of San Pedro-El Volcan Sh&ame. View perpendicular tonpand parallel
to Lmy. f) Photomicrography showing a plagioclase porphhast in a mylonite of the San Pedro-El
Volcan Shear Zone. Two stages of deformation canrdmegnized, first a moderate to high
temperature deformation is evidenced in the devetp of ribbons of Qz with GBM-
recrystallization. Then, a lower temperature defatian is evidenced by sericite-rich bands, BLG-
recrystallization of Qz and microfractures on Ricton parallel to the 4, and normal to the,§ in

cross-polarized light.

Fig. 8: a) Field photography showing a southwamwof the La Escalerilla Shear Zone. The view
is perpendicular to bothnp and Lny. b). Photomicrography showing dynamic recrystatian
(SGR) on a Kfs porphyroclast and myrmekitizationobging to a granitic mylonite of the La
Escalerilla Shear Zone. Quartz ribbons with GBMrystallisation are also observed. View
perpendicular to thengin cross-polarized light. c) Field photography shmayvan asymmetricof
shape) boudin of quartz in a mylonitic schist o fancata-La Carolina Shear Zone. Floor view
perpendicular to 53 and parallel to ky. d) Field photography showing a mylonite of gnersshe

El Realito - Rio de La Quebrada Shear Zones. NaeWw perpendicular to theppand parallel to
Lmy. €) Photomicrography of the El Realito - Rio deQuebrada Shear Zone showing a mica fish
with small recrystallised muscovite grains along thms and ribbons of quartz in mylonites. Some
of the quartz ribbons contain strongly elongateglei crystals, formed by grain boundary migration
(GBM) within the ribbon. Section parallel to theland normal to the,g in cross-polarized light.

f) Field photography showing boudinage of felsikedi intruded in mafic mylonites from the Rio de

los Bayos — Funes Shear Zone. North view perpefation S,y.

Fig. 9: Stereographic projections of planar anddmstructures observed in the different litholagic
units of the SGSL. Sis the sedimentary bedding;, &, S, Smy and Sy are foliation planes
associated to deformational phasegnylis the stretching lineation associated t@ySnylonitic

foliation. B, and B are hinge lines. Diagrams are shown as pole dessitsing the Kamb
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contouring method of Stereonet© 2011-2015 (Allmegdr et al., 2013; Cardozo and
Allmendinger, 2013).

Fig. 10: Interpretive diagrams of structural fabrieveloped during the deformation phases.

Fig. 11: Photographs showing internal structuratdees of each lithological unit of the SGSL. a)
Centimetric type 3 interference pattern in mignestitof Conlara Metamorphic Complex. b)
Decimetric type 3 interference pattern in migmatidé Nogoli Metamorphic Complex. Corresponds
to an internal domain limited by two shear beljg-ald (F,) in migmatites of the San José Complex
(PMC). d) Crenulation cleavage in the Micaschiso@r (PMC). The Sfoliation is defined by
cleavage domains (flanks of microfolds) and mit¢halns (fold hinge areas) that preserved the S
schistosity. These characteristics are more commareas near to the hinge of decametric folds. e)
Decimetric layer of a folded meta-sandstone in Hagieras Complex. f) Flank of a meso fold)(F

in meta-turbidites of the eastern San Luis Fornmabielt.

Fig. 12: Residual Bouguer map of the study areaionbtl by upward continuation. Dark dots
represent the locations of the geophysical statibhe yellow, blue, and magenta circles indicate
different density ranges determined in laborat@mgles. Numbers indicate the shear zones: 1) Rio
Guzman, 2) San Martin, 3) Inti Huasi, 4) La TroyaQuebrada Escondida, 6) La Arenilla, 7) San
Pedro - El Volcan, 8) La Escalerilla, 9) Pancantha- Carolina, 10) El Realito - Rio de La

Quebrada, and 11) Rio de Los Bayos - Funes.

Fig. 13: a) Reduced to the pole residual anomaly afahe southern SGSL. In thin white lines the
contour of the SGSL, plutons and shear zones. Ntsribdicate the shear zones: 1) Rio Guzméan,
2) San Matrtin, 3) Inti Huasi, 4) La Troya, 5) Quada Escondida, 6) La Arenilla, 7) San Pedro - El
Volcan, 8) La Escalerilla, 9) Pancanta - La Camlih0) El Realito - Rio de La Quebrada, and 11)
Rio de Los Bayos - Funes. The yellow, blue, andentgycircles indicate magnetic susceptibility
ranges determined in outcrops. b) Total magnetmmaiies (TMA) image superimposed on a
digital elevation model (SRTM). 4V vertical exaggeon. There is a clear contrast in the magnetic
signal between the San Luis Shear System and thiax@dvietamorphic Complex. The limit occurs

along the rectilinear Rio Guzméan Shear Zone.

Fig. 14: Results of the inversion model for thethetn sector. a) 3D model for the southern sector.

b) Distribution of the geological units in the canitsections. c¢) Final density cube. d) High densit
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values. e) Final magnetic susceptibility cube. iytHmagnetic susceptibility values. Modified from
Christiansen (2019) and Christiansen et al. (2019).

Fig. 15: Results of the inversion model for thethem sector. a) 3D model for the northern sector.
b) Distribution of the geological units in the canitsections. c¢) Final density cube. d) High densit

values. Modified from Christiansen (2019).

Fig. 16: 3D inversion model of the SGSL. a) Enset of units. b) All units without sedimentary
cover. ¢) Model without the Pringles Metamorphicn@aex, Las Higueras Complex and San Luis
formation. The bodies of mafic-ultramafic rocks tile San José Complex (central area of the
double-vergent structure) are shown. d) Model withthe Conlara and Nogoli metamorphic
complexes and the plutonic rocks. e) Model shovivegmagmatic rocks. f) 3D view of the double-
vergent structure (northward). The units are irdinglized and separated from each other for a

better visualization.

Fig. 17: a) Three-dimensional shape of the eassam Luis Formation and structural relationships
with the other units. b) 3D morphology of the eastSan Luis Formation with the structural
interpretation of its internal domain. c¢) Inter@gdn of the non-outcroping limits of the double-
vergent structure. The interpretation on the kefomly compatible with the characteristics observed
to the north of the inflection zone of the La Escidla pluton.

Fig. 18: a) Map of the southwestern sector of tleSE showing the transpressive deformation in
the La Escalerilla pluton during the constructidrttee San Luis Shear System. b) Different views
of the three-dimensional shape of the La Escadepiliton. c) Interpretative geological profile bése

on the 3D model and structural surface data. Nusmb&licate the shear zones: 6) La Arenilla, 7)
San Pedro - El Volcan, 8) La Escalerilla, 9) PateanLa Carolina, 10) El Realito - Rio de La
Quebrada, and 11) Rio de Los Bayos - Funes.

Fig. 19: a) P-T diagram and location of the therarometry samples. b) Paleo-depth profile (in
km) calculated according to the data set. The Wata projected on a line of equal latitude from the
original position of each sample, and consideringapproximately N-S arrangement of isobars.
Numbers indicate the shear zones: 1) Rio Guzmadntidluasi, 4) La Troya, 6) La Arenilla, 7) San
Pedro - El Volcan, 8) La Escalerilla, 9) Pancantha- Carolina, 10) El Realito - Rio de La
Quebrada, and 11) Rio de Los Bayos - Funes. c)afyeepaths of K-Ar ages determined for Hbl,
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Ms and Bt for the Conlara Metamorphic Complex (CMBJjingles Metamorphic Complex (PMC)
and northern portion of the Nogoli Metamorphic Céerp(NMC) (taken from Steenken et al.,
2008).

Fig. 20: a) Map of the main shear zones in ther&ePampeanas Orientales (modified from
Otamendi et al., 2020, and reference therein). d) Buis Shear System. 2) Guacha Corral,
Pachango and Los Tuneles shear zones (Sierra dmlia)r 3) Rio Las Cafias and Ulapes shear
zones (Sierra de Chepes and Ulapes). 4) Vallel Fé&di Huerta and La Arenosa shear zones (Sierra
de Valle Feértil - La Huerta). 5) Paganzo shear z@ierra de Paganzo). 6) Cordén de la Cumbre
and Chuschin shear zones (Sierra de Famatina)eir3le la Punta - EI Candelero, Antinaco -
Sanagasta, La Horqueta and Paluqui shear zonesa(8&Velasco). 8) La Florida and TIPA shear
zones (Sierras de Fiambala, Tinogasta and PaifBamp Chilca (Sierra de Ambato). The yellow
arrows represent an interpretation shortening péages for different latitudes, based on the
different distances between the suture area anbatkstop. b) Schematic images of the Famatinian
geotectonic evolution in the studied segment. I)straction of the Famatinian island arc (and
backarc). 2) collision of the Cuyania/Precordillenaicrocontinent and construction of the
Famatinian orogen (At this time the double-vergstructure of the SGSL was created). c)
Interpretation of the collisional scenario and palsetting elements. 1) before the indentatiomef t
Cuyania/Precordillera microplate. 2) after the m@éion. The indenter morphology determined the
deformation style (exhumation and shortening). hrs tschematic model, the protrude of the
indenter is approximately equivalent to the shongrproduced. In addition, an interpretation of
how the indenter morphology produces rotations ted horizontal deviatoric stresses on the

indented margin is shown.



Table 1: Main characteristics of the shear zones in the SGSL.

Extension Smy Ly ) . .
Shear Zone length / width strike / dip dip dir. / dip Sense of movement Deformation conditions Affected units
Rio Guzmén _ N15°/ 80°SE ~170°/ 65° . i ~450-350C Las Aguadas Group (hanging wall).
1 average average greenschist facies Eastern San Luis Formation (footwall).
60 km / ~800 m oblique reverse-sinistral hist faci S . ion (f I
San Martin - N15°/75SE ~85°/ 50° . i} ~550%450C Las Aguadas Group (hanging wall).
2 35 km/~400 m (average) (average) oblique reverse-dextral high-greenschis facies Las Higueras Complex (footwall).
~N5°/ 55W ~275°/ 70°
Inti Huasi (southern part) (southern part) reverse (southern part) ~450-350C Eastern Micaschist Group (hanging
3) 60 km / ~400 m obligue reverse-sinistral greenschist facies wall). Eastern San Luis Formation
~N30°/ 84NW ~320°/ 70NW q (footwall).
(northern part) (central part) (central and northern part)
~N40°/ 84NW ~10°/5° sinistral strike-slip
La Troya 62 km / ~400 m (northern part) (northern part) (northern part) ~550-500C San José Complex (hanging wall).
~NO0°/ 55 ~ 5 oblique reverse-sinistra ) :
4) 0°/ 55W 200°/ 52° bli inistral high-greenschis facies Eastern Micaschist Group (footwall)
(southern part) (southern part) (southern part)
Quebrada ~235°/ 46° ~550-500C San José Complex (hanging wall). Las
Escondida 30 km/~500 m N40°/68NW oblique reverse-dextral ; . . - )
®) (average) high-greenschis facies Higueras Complex (footwall).
~760-600C
amphibolite facies
105 km /400 m _ o o o o oblique reverse-sinistral (initial conditions of
La Arenilla to 3 km >$§‘\2N /(ggofn;g (Z:eO gr:dlslgn/t;zo (general movement), one deformation) Internal shear zone of the San José
(6) (depends on the on the brarF:ch) braﬁch) branch has oblique normal- Complex. Form a horst pop-up
branch) sinistral movement. ~450C
greenschist facies
(retrograde conditions)
~160°/ ~60° oblique reverse-sinistral
San Fedo = | o3km/~300m | ~N10°/-~73E (south stretch) (south stretch) ~550-450C San José Complex (hanging wall).
) ~280°/ 5° dextral strike-slip high-greenschis facies Western Micaschist Group (footwall).
(north end) (north end)
~N10°/ ~65E
63 km/~400 m (average of main ~155°/ ~50° obligue reverse-sinistral
L (main branch) branch) (main branch) q ~600-550C . . .

a . (main branch) amphibolite facies Western Micachist Grqup (hangllng
Escalerila | 7y m/-30m | ~N3450/-80SW | ~5°/ ~155 N o (initial conditions of wall). Western San Luis Formation
(8) (synthetic or NE (synthetic sinistral strike-slip deformation) and La Escalerilla pluton (footwall)

br)f;nches) (synthetic br);nches) (synthetic branches)

branches)




38km/~200m | ~N25°/ ~80NW . . -
. . ~220°/ ~30° The main branch is located within the
Pancanta — (main branch) (main branch) (main branch) oblique reverse-dextral to ~450C Western San Luis Formation. The
La Carolina R dextral strike-slip (both . . secondary branch separates the San
5km/~100 m ~N85°/ ~77N o o greenschist facies - . .
9) (secondary (secondary ~280°/ ~50 branches) Luis Formation from a block of Nogoli
branch) branch) (secondary branch) Metamorphic Complex.
~N15°/ ~88W ) . .
(northern part) ~970°/ 80° Icr:1 the north: No_goll Metamorphic
omplex (hanging wall). Western San
(northern part bii d | . - d Mi hist G
Realito — 62 ki / 500 ~N25°/ ? ﬂﬁe reve:ts)e- extra I(_fwst;olrll)natlon and Micaschist Group
p m/~ m o A AMO ] ARO northern pa ey ootwall).
gll?eg(real(_ji (for each ?cseri?;ll\l g\ért) (ct:grélélp?art) . . h%i(-)gfesgrgchis facies .
branch) oblique reverse-sinistral In the south: La Escalerilla pluton
(10
~N20°/ ~120°/ 45° (central and southern part) (hanging wall). Nogoli Metamorphic
58%70SE (southern part) Complex (footwall).
(southern part)
. ~180°/ 44° oo P
Rio de Los 50 km/~500m | ~N10°/80E or (southern part) oblique reverse-sinistral amphlpo||te facies (|n|t|e}l .
Bayos - . - conditions) to greenschist Internal shear zones of the Nogoli
(for each 80w (predominance in high . .
Funes . o) Eoo . facies (retrograde Metamorphic Complex.
branch) (subvertical) 345°/ 53 temperature deformation) .
(11) deformation)

(northern part)




Table 2. Fabric summary of the differerntu ueiurnauuriar stayes i uie urnis ui tie SooL.

Deformation | Conlara Metamorphic Nogoli Metamorphic Pringles Metamorphic Las Higueras San Luis Eormation
phases Complex Complex Complex Complex
S; schistosity or compositional | S; schistosity or stromatitic S: schistosity or compositional | S; schistosity or slaty cleavage | S; slaty cleavage parallel or
D1 banded parallel to the S banded parallel to the S banded parallel to So parallel or subparallel to So subparallel to S sedimentary
sedimentary bedding. sedimentary bedding. sedimentary bedding. sedimentary bedding. bedding.
Open to isoclinal F» folds Tight to_isoclinal agymmetric F2 Tight to open F» folds of class Tight to closeq decametric F
. N . . . folds, with predominantly . : folds, predominantly
predominantly asymmetric, of Isoclinal to tight decametric to o ) ; 1C and 3 (Fig. 11e), with B> .
L . cylindrical hinges (Fig. 11c). B; . asymmetric, of class 1C and 3.
class 1C and 2. S; foliations metric F»folds, of class 1C and ? - axes vertical or steeply .
: . S hinge lines plunge moderately . Z, S and M minor folds are
represented by NNE axial 3. The S, axial plane foliation ) plunging toward N, NE or W. . :
. X . to NNE or SSW (Fig. 9¢). The . . . present in all scales (Fig. 11f).
plane surfaces are upright to has of NE or NW strike, with - The S; crenulation schistosity . .
D2 moderately incline high-angle dipping towards the S; axial surfaces have NNE strikes NE or NNE, and have Sz (crenulation cleavage) is
redominayntl tow’ard east. B N\?V or SE Trl?g Bg fold axes strike, are upright or steeply moderately to stee’ ly incline upright or steeply inclined
P! . y - b2 : 2 inclined toward WNW or ESE ely ply toward west or east. The B,
hinges lines are horizontal to plunge moderately towards the ' p predominantly toward the NW, ! .
. - (in San José Complex), or . hinge lines plunge gently
moderately plunging toward NE, E or S (Fig. 9b). e \ but also toward the SE (Fig.
. moderately inclined (in towards the NNE and SSW
NE, SE and SSW (Fig. 9a). . ) 9d). X
Micaschist Group). (Fig 9e).
Associated to the SLSS. Itis Associated to the SLSS. The
Spaced and non-penetrative Sz | represented by Ssmy mylonitic f Samy shear planes strikes NNE,
axial plane with NW, NNE and | surfaces with NNE strike. Local gﬁgﬁ;ﬁ?i:&i&ii.ir;rcrl]i?\estjmy and dip steeply to the ESE or
Ic:l[JEezt:Icl)( iylogseenlige}lc?lldfle\t/ﬁiéo ggﬁtr)pgcg?I%;fnrglsds'l'ﬁ%pggtao& Aqitard WNW or ESE (Fig. 9c). Associated to SLSS. Metric \c/\rltle\lr:/l\jlfgi(l?ﬁ ?O?i)e'\tﬁ; ?;
overprint tight or isocli’nal F and Bz hinge Iines'are arallel A not penetrative S; surface, Samy shear planes héve NNE associated with developed of
foldsp Bs hi%ge axes incline2 with rr?ode?ately to steepply represented by a localized stsrrinlz,e and sFt)eepIy inclined localized F3 drag-folds €vith Bs
: > . - crenulation cleavages striking : . .
randomly (Fig. 9a), and its plunging toward the NNE or A toward WNW or ESE (Fig. 9d). | hinge axes gently plunging
D3 greater dip direction dispersion | NE, and evidence type 3 NE to NNW and dipping to the Fz drag-folds and occasionally | toward S or N. Sometimes type
robably is due to the fact that intérference atterns (Fi NW or NE, is associated with a Sscrenulation cleavage with 3 interference. atterns (highl
Itohe Fs fc)flds have been 11b). The Sgphinge plang'has thg d_evelopment Of Samy ste;p dip to the E are ’ localized and opnly on the o
. S ) . foliations. Bs drag-fold axes . : )
recognized in isolated and NNE to NE strike, steeply associated with S foliation associated with the Szmy metric scale) are observed
spaced outcropping. Complex inclined towards NW or SE dip toward NNE Oiméw AlSo shears. within folded domains limited
interference patterns (variants (Fig. 9b). F3 folds are located . ) by discrete shear belts. These
. i ; - vertical sheath folds are
of type 3) are recognized at in internal domains (of various common at some sites are produced by the
different scales (Fig. 11a). hundred meters scale) limited ' superposition of Fs over F»
by parallel shear branches. folds.
Discrete Samy shear planes alﬁﬁtiert:dsw (;??#yefgg;egnd Non-penetrative apd spaced g‘f n_gﬁggrggﬁz \?vrlltﬂ ?\lpEaced Non-penetrative and spaced
. m D ! Samy Shear belts with NE w . Samy shear belts with NE
associated to SLSS, mainly in underpowered (metric) shear strikes and steeply inclined strikes. Local S4 crenulation strikes and steeply inclined
its western boundary, in zones, which intercept and ; surfaces developed due to the -
D4 towards NW or SE (Fig. 9c). towards NW or SE (Fig. 9e).

contact to Las Higueras
Complex and eastern belt of
San Luis Formation.

displace high temperature Szmy
shear zones. Samy foliations
usually show NW strikes, and
sinistral strike-slip movement.

These shears displace the Szmy
shear zones through dextral
strike-slip sense.

forced emplacement of the
Devonian plutons. The Sy
surfaces are parallel to the
edges of the plutons.

These shears displace the Samy
shear zones through dextral
strike-slip sense.
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4 Neogene volcanites
Famatinian late to post-orogenic plutons (Devonian)

Acidic rocks (S
[ Acidic rocks (S-type) } Famatinian magmatism

B Intermediate rocks (I-type) 1t
Il Basic-ultrabasic rocks {Qrdavician)

Metamorphic units of SGSL
San Luis Formation (SLF)
Las Higueras Complex (LHC)

Pringles Metamorphic Complex (PMC):
b) San José Complex, ¢) Micaschist Group

Nogoli Metamarphic Complex (NMC)

Conlara Metamorphic Complex (CMC):
&) San Martin Group, f) Las Aguadas Group

|1 Strike-slip component sense indicator of shears
8. Lineations in secondary shear zones (L.,.,} with dip angle
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Magmatic rocks of the SGSL
=2 Neogene volcanites
I Famatinian late to post-orogenic plutons
[ Acidic rocks (S-type)
[ Intermediate rocks (I-type)
Il Basic-ultrabasic rocks
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Metamorphic units of the SGSL
[ San Luis Formation
[ Las Higueras Complex
Pringles Metamorphic Complex

a)San Jose Complex b)Micaschist Group
1 Nogoli Metamorphic Complex

Conlara Metamorphic Complex
a)San Martin Group b)Las Aguadas Group
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Highlights

e The main features of a shear system located in the Sierra de San Luis are detailed
e Theresults of a3D litho-constrained geophysical model are presented
e Metamorphic conditions and deformation mechanisms on an orogenic scale are eval uated

e A double-vergent structureis produced by the backarc closing due to the push of an indenter
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