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Abstract

We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and
jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and
frequency difference, GC¢) for real data sets under variable resampling strengths in three weighting schemes. We propose an
equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically,
for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of
real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC¢ always generated
more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife
methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious
groups for GC¢ than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable
resampling strengths qualitatively in the trajectories of ‘‘support’’ against resampling strength, and quantitatively with Kendall
coefficient values. We found fewer ranking inconsistencies for GC¢ than for F, and for bootstrap than for jackknife.
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Background: resampling methods and measures

When we make a phylogenetic reconstruction, we
want to know how well supported the groups we have
obtained are. For this purpose, there are methods that
assess the support of the groups obtained. Two resam-
pling methods used in assessing group support in a
cladogram are jackknife and bootstrap. Both are based
in matrix data perturbation by means of random
resampling of all or part of the characters, replicated a
number of times. The frequency with which a given
group is found in the trees obtained from these
resampled matrices is used as a measure of its support.

The bootstrap method (BT) was proposed by Efron
(1979) as a general-purpose statistical tool, and was first
applied to phylogenetics by Felsenstein (1985) to place
confidence intervals on phylogenies. Nowadays, BT is

widely used by systematists to test the level of support of
individual nodes in a phylogenetic tree. As noted by
Goloboff et al. (2003a), several interpretations ofBThave
been advanced by different authors (Efron, 1979; Felsen-
stein, 1985; Berry and Gascuel, 1996). A common
interpretation is that BT measures the probability of
recovering a given group if a data set for the same
organisms is to be sampled again from scratch. In
this way, BT is interpreted as a measure of stability under
specific circumstances. However, in this paper we have
used this method as a measure of support instead of a
measure of stability (for a discussion see Goloboff et al.,
2003a; Grant and Kluge, 2003; Ramı́rez, 2005).

The bootstrap method consists of obtaining new data
sets from the original one by means of random
resampling with replacement. The final size of the
resampled data set is set to be the same as in the
original data set, but some characters will not be
represented and others will be represented more than
once. The most parsimonious cladograms are then
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searched for each pseudoreplicate, and represented in
each case by their strict consensus (as implemented in
TNT) (De Laet et al., 2004). The process is repeated
many times (1000, for example) and the frequency with
which a group is found in the trees obtained from the
pseudoreplicates is interpreted as a measure of the
confidence level (Felsenstein, 1985) or support (Farris
et al., 1996; Goloboff et al., 2003a; Ramı́rez, 2005) of
that group. Well supported groups (favoured by many
characters) are frequently recovered, and poorly sup-
ported groups are represented few times.

Bootstrap frequencies for a group decrease with the
addition of informative characters that are compatible
but not informative for that group (Faith and Cranston,
1991), autapomorphies (Carpenter, 1992), or invariant
characters (Kluge and Wolf, 1993; Harshman, 1994).
The latter author argued that bootstrapping is only
slightly affected by the inclusion of irrelevant characters
(see also Felsenstein, 2004, p. 344); however, he
proposed that anyone concerned about the variation
in BT values due to irrelevant characters can equalize
the effect of irrelevant characters on all nodes by
adding a large number of invariant characters to the
matrix. This correction is equivalent to using a character
weight distribution with a Poisson distribution of
mean one (BP) (Farris, 1999; Goloboff et al., 2003a)
and the problem of having non-informative characters
disappears.

In jackknife resampling (JD), each character in the
original data set has a probability of being deleted
(without replacement), hence the pseudoreplicate data
sets are smaller than the original. Farris et al. (1996)
proposed a probability of deletion of e)1 � 0.36 to
produce JD group frequencies comparable to those
obtained under BT.

In order to avoid the distortion of frequencies under
BT or JD (either under- or overestimations of the actual
group support) that may occur under heterogeneous
prior weights or state transformation costs, Goloboff
et al. (2003a) have proposed symmetric resampling (JS)
where each character has a probability 2P to be
changed, and if changed, it can be duplicated or deleted
with equal probability. JS has the advantage that it can
be applied to any weighting scheme: successive weight-
ing (Farris, 1969), implied weighting (Goloboff, 1993),
or weighting of state transformations, including asym-
metries in transformation costs.

All the methods mentioned above are expected to
obtain meaningful frequencies above 50% which are
summarized in a majority rule consensus tree. Below this
threshold, frequencies may not be correlated with
support, as in the example given in Goloboff et al.
(2003a, fig. 7), where a supported group has lower
frequency than a contradicted one. For this study we
have computed group frequencies even below 50%, as
shown in Figs 1–3.

Goloboff et al. (2003a) proposed that what actually
measures the support is not the absolute frequency (F),
but the difference in frequency between a group and its
most frequent contradictory group (GC, for ‘‘group
present ⁄contradicted’’). GC values of )1, 0 and 1
indicate maximum contradiction, indifference, and max-
imum support, respectively. GC is useful to measure
strength of contradiction and to obtain support values
for groups with positive but low support, which are
otherwise not reported by methods using absolute
frequencies (real groups with frequencies below 50%
that are not retained in the majority consensus tree).

It is known that resampling methods may produce
spurious results, especially in weakly supported groups.
For example, a measure should never indicate a group
contradicted by the data as ‘‘better supported’’ than a
group supported by the data (Goloboff et al., 2003a;
implicit in Farris et al., 1996), but this situation can occur
in real data sets (for example, see the thicker broken line in
Figs 2 and 3, and Appendix S1: Fig. S1). In this contri-
bution we use the terms ‘‘real’’ for those groups present in
the strict consensus of the unaltered data set, and
‘‘spurious’’ for the opposite situation. The most evident
way to detect artefacts with support methods is by
comparison with the strict consensus tree, looking for
spurious groups appearing as supported, and real groups
that appear to lack support.

In addition, the trajectories of group frequencies
against resampling strength are also informative for
detecting problems with the resampling methods
(Goloboff et al., 2003a). If a group is better supported
than another under a given resampling probability P,
but the situation is reversed under other probability P ¢,
then the method is internally inconsistent (Ramı́rez,
2005). If the frequency is taken as an indication of
support, the trajectories should not cross each other in
the range of reasonable probabilities of up- or down-
weighting (e.g. 0 < P < 0.5). When two trajectories
intersect, it means that the ranking of the two groups is
inverted before and after the point of intersection (for
example see Fig. 2 and the three thicker profiles in
Appendix S1: Fig. S2a,b), which means that the method
produces different rankings at different resampling
strengths (Ramı́rez, 2005). The crossing of trajectories
occurs across all the examined range of resampling
strengths, which suggests that the problem described
here is intrinsic to the methods, rather than to a given
resampling strength.

Objectives

Our aim was to compare the performance of resam-
pling methods in real data sets, in terms of internal
consistency. In the following experiments, negative indi-
cators for a given method or measure are (i) spurious
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groups reported as supported; (ii) inversion of rankings of
group support under variable resampling strengths; and
(iii) real groups reported as unsupported or contradicted.
We evaluated these parameters by tracing group frequen-
cies over a range of resampling strengths.

Because JS was proposed to correct biases under
differential costs schemes, we also compared the
performance of methods and measures under implied
weights and differential transformation costs between
states.

In this work we focus on the groups present in the
strict consensus of the unaltered data set, the reference
against which the spurious results are defined. We do

not address here other interesting aspects related to
support measures, such as the detection of secondary
signals (e.g. Baker and DeSalle, 1997; Gatesy et al.,
1999), or comparisons between resampling methods and
Bremer support (Ramı́rez, 2005).

Methods

We analysed one hypothetical and 10 molecular data
sets deposited in TREEBASE (http://www.treebase.org)
or obtained from the authors (Lijtmaer et al., 2004;
Ramı́rez, 2005) (see Appendix 1).
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Fig. 1. (a) Hypothetical data sets without (left) and with (right) conflict. (b) Comparison between methods: bootstrap (grey line), bootstrap with
Poisson distribution (grey broken line), jackknife (black line), and symmetric resampling (black broken line), using frequency trajectories against
resampling strengths, in case of data without conflict. (c) Same as (b), for data with conflict.
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In order to examine a wide spectrum of cases, we have
chosen data sets with variable numbers of taxa (from
nine species in D01 and D02 to 85 in D06) and
characters (from 24 characters in D03 to 1785 in D07).
The data sets come from very different groups: birds
(Sporophila and Stercorariidae), primates, fungi (Peziza
and Ophiocera), insects (Holometabola and cynipid gall
wasps), spiders (Ctenidae), plants (Robinsonia), and
hypothetical data. Molecular data sets include both
coding and non-coding regions from ribosomal, nuclear,
and mitochondrial markers. We have also chosen data
sets with different degrees of conflict. For example, D01
and D02 have the same number of taxa and a similar
number of characters, but there is more character
conflict in D02 than in D01.

We analysed the data sets under equal weights
(EqWe), implied weights (ImWe) and, in molecular data
sets, different state transformation costs, with transi-
tion:transversion cost 1:10 (Ti:Tv). For ImWe we used a
constant of concavity k = 8, which produces a mild
weighting function. We were not able to analyse the
largest data set D06 for differential costs or ImWe
because the search is much more time-consuming under
these conditions.

We calculated both absolute frequency (F) and GC¢,
which is the difference between the frequencies obtained
for a group and its most frequent contradictory group
among the strict consensus trees of the pseudoreplicate
analyses (rather than the most frequent contradictory
group considering all the most parsimonious trees of the
resampled data set, as in the actual GC) (Goloboff
et al., 2003a). GC¢ is an estimation of the actual GC
value, and it was used here because it is much more
easily obtained and is already implemented in TNT.
Supplementary data for this paper can be found in
Appendix S1.

Variable bootstrap

In JD and JS analyses, we used deletion probabilities
(P) between 0.033 and 0.5 (Table 1). P = 0 is the
unaltered data set.

In data sets without conflict, the frequency for a
group G with a character deletion probability P in JD
and JS, is:

JD (G, P Þ ¼ 1� P r
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Fig. 2. Profiles of absolute frequency values as a function of different resampling strengths (0 £ P £ 0.5) with variable bootstrap (a), jackknife (b),
variable bootstrap with Poisson distribution (c), and symmetric resampling (d). Black continuous lines represent real groups; grey broken lines
represent spurious groups. The thicker black broken line is an example of a spurious group with F > 50% under some resampling strengths. Some
groups contradicted by the data are indicated as ‘‘better supported’’ than groups with positive support under some resampling strengths. Horizontal
broken line indicates the 50% frequency value; vertical broken line resampling strength 11, the one commonly used (see text for details). Data set
D04, equal weights.
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where r is the number of uncontradicted characters
supporting group G (Farris et al., 1996).

In BT, the probability of resampling a given character
is 1 ⁄n, where n is the total number of characters in the
data set. If there were r characters supporting a given
group G, the probability of resampling one of those
characters is r ⁄n. The probability of resampling a
character not relevant for the group is 1 ) r ⁄n. For the
group G being absent in the tree, neither of the r
characters must be resampled, which occurs with a
probability (1 ) r ⁄n)n.

Then the BT frequency of group G will be:

BT(G) ¼ 1� ð1� r=nÞn ðHarshman, 1994Þ:

In order to compare BT with JD and JS through a
range of resampling strengths, we calculated a variable

bootstrap (BT*), which consists of a BT with vari-
able final data set size. In this method, the BT frequency
is:

BT*(G,mÞ ¼ 1� ð1� r=nÞmn ð1Þ

where mn is the final size of the resampled data set. As n
increases, BT and BT* very quickly approach their
limits, as:

BT ¼ 1� e�r

BT* ¼ 1� e�mr ð2Þ

We used this limit (Equation 2), which is simpler to
compute than Equation 1. For n = 30 the differences in
BT values between Equations 2 and 1 are in the third
decimal.

Table 1
Jackknife–bootstrap resampling strength equivalencies

Resampling strength 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P 0.033 0.066 0.1 0.13 0.16 0.2 0.23 0.26 0.3 0.33 0.36 0.4 0.43 0.46 0.5
m 3.40 2.71 2.30 2.01 1.79 1.61 1.45 1.32 1.20 1.09 1.00 0.91 0.83 0.76 0.69

Resampling strength 11 (bold) corresponds to the values commonly used in jackknife and bootstrap.

P, Character deletion probability in jackknife; m, factor defining the ‘‘size’’ of the resampled data set. See text for details.
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Fig. 3. Profiles of GC¢ values as a function of different resampling strengths (0 £ P £ 0.5) with variable bootstrap (a), jackknife (b), variable
bootstrap with Poisson distribution (c), and symmetric resampling (d). Black continuous lines represent groups with actual support; grey broken lines
represent spurious groups. The thicker broken line is an example of a spurious group with a positive GC¢ value under some resampling strengths.
Data set D04, equal weights. See Fig. 2 for conventions.
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To make JD comparable with BT in the case of data
sets without conflict:

BT* ¼ JD

1� e�mr ¼ 1� P r

e�mr ¼ P r

e�m ¼ P

ln e�m ¼ ln P

m ¼ �ln P ð3Þ

By using Equation 3 we calculated the values of m for
the different resampling strengths under BT*, being in
this way comparable with the resampled strength used in
JD and JS (Table 1).

Note that our 11th resampled strength corresponds to
m = 1, thus mn = n, as in traditional BT, where the
final size of the resampled data set is the same as the size
of the original data set (n) (Table 1). Similarly for JD,
our 11th strength is P = 0.3667, close to the value
established by Farris et al. (1996) (P = 0.36) to make it
comparable with the traditional BT.

To obtain a variable bootstrap using a Poisson
distribution (BP*) we simply assigned weights with a
Poisson distribution with mean m (Appendix 2).

As BT* and BP* are novel ways to evaluate support
by BT, we analysed two hypothetical data sets, one with
conflict and the other without conflict (Fig. 1a) in order
to check the equivalences between the four resampling
methods. We obtained good correspondences between F
and GC¢ values in the case without conflict (Fig. 1b),
but the equivalences are only approximate in the
presence of some conflict (Fig. 1c).

This behaviour occurs in real data sets as well
(Appendix S1: Fig. S3). Data sets D01 and D02 both
had nine taxa and almost the same number of charac-
ters (486 and 446 characters, respectively). As there is
low conflict in data set D01, the F and GC¢ values are
equivalent across the resampling methods analysed
(Appendix S1: Fig. S3a), but this is not true for data
set D02 (Appendix S1: Fig. S3b), where extensive
conflict does exist in the data.

Analyses

For each resampling method (BT*, BP*, JD and JS)
and weighting scheme considered (EqWe, Ti:Tv, and
ImWe with k = 8), we used 15 resampling strengths.
For each strength we made 5000 pseudoreplicates
(except for large data sets D04 and D05 under

Ti:Tv, only 1000) and assessed F and GC¢ values
(Figs 1–3).

For each pseudoreplicate we:
1. analysed one to five replicates of random addition

sequence Wagner trees (RAS) followed by TBR swap-
ping, with more replicates for larger data sets (Appen-
dix 1)—in this way every pseudoreplicate obtained trees
that were close to the optimum;

2. retained up to five different trees (different as
collapsed with TBR) for each RAS + TBR obtained in
(1) (we retained only the shortest trees); and

3. saved the strict consensus of each pseudoreplicate.
Upon completion of the 5000 pseudoreplicates for a

given combination of measure, resampling method and
weighting scheme, we:

4. saved the majority rule consensus tree and the
frequency difference tree.

After all the combinations of resampling methods and
weighting schemes were evaluated, we:

5. considered all the candidate groups appearing in at
least one of the majority rule consensus trees of step (4),
and for each group assigned a unique identifier number;
and,

6. computed the support measures (GC¢ and F) for
each of the sets of 5000 trees saved in step (3).

All these analyses were made with TNT (Goloboff
et al., 2003b) using custom scripts (available in Sup-
porting information).

To evaluate differences in frequency rankings, we
computed the Kendall coefficient (Ke) (Daniel, 1978) for
each combination of data set, method, measure, and
weighting scheme. Kendall coefficient values were cal-
culated using SPSS 12.0 (http://www.spss.com/spss).

Sources of error

We identified several sources of error that might bias
the results presented here, and present a description of
how far we went in controlling them.

Aggressiveness of search routines

If the search algorithms applied to each pseudo-
replicate are not exhaustive enough, the optimal trees
will not be found, and the results may be biased in
complex ways. Also, data sets producing large poly-
tomies may be resolved in arbitrary ways if the tree
buffer is not large enough. We have used search routines
that very often reached optimal trees, but a small tree
buffer that may over-resolve the consensus. For certain
sensitive results we have increased the tree buffer size
(see below) to check against such bias. For the
most complex data sets, we invested about 50 h in
completing 5000 pseudoreplicates using a personal
computer.
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Precision

We have used 5000 pseudoreplicates, but frequency
functions built in TNT reports truncate percentages. For
F we used our scripts to count exact frequencies. For
GC¢, which is much more complex to calculate, we relied
on the truncate percentages built in TNT.

Sampling error

The standard deviations of frequencies follow a
binomial distribution, with a standard deviation sP =
(PQ ⁄ (n ) 1))0.5, where n is the number of pseudorepli-
cates, and P and Q are the frequency and its comple-
ment, respectively. For 5000 replicates, the worst-case
scenario is s50% = 0.7%. (For the two large data sets
where we used 1000 replicates under Ti:Tv,
s50% = 1.6%.) Such a small error, combined with the
fact that our conclusions are drawn not from one
point estimation, but from a sequence of resampling
strengths each with 5000 pseudoreplicates, implies that
sampling error is adequately controlled in our experi-
ments.

Estimation of frequency differences

The measure GC¢ is an approximation of the fre-
quency difference GC, using the consensus of each
pseudoreplicate instead of all the possible resolutions
(Goloboff et al., 2003a,b). The computation of GC is
not available in current software. In summary, we have
controlled several sources of error, except those from
computational power for larger data sets (‘‘Aggressive-
ness of search routines’’ above) and implementation of
algorithms in current software [‘‘Precision’’ (in part) and
‘‘Estimation of frequency differences’’]. It might happen
that some of our results come from biased estimations,
but even in that case we believe our results are useful.
First, they can be used as an indication of methodolog-
ical problems and so may lead to the development of
more refined algorithms or implementations. Second,
they show the performance of current algorithms and
implementations, which are the only tools available for
empirical systematists.

Recovered groups

As expected, GC¢ recovered more groups than F,
because the former recovers groups with low but
actual support that are not recovered by computing F
only.

We have analysed which method recovered more
groups and which method recovered fewer groups in
each of the weighting schemes. JD is the method that
recovered more groups across all cases. BT*, and to a

lesser degree BP*, are the methods that recovered fewer
groups across all the resampling strengths analysed
(Table 2). In general, JD recovered more groups under
mild resampling strengths, switching to more groups for
JS under stronger resampling strengths, but there is no
clear association between the low resolution of BT* or
BP* in recovering groups, and resampling strength. For
details in different weighting schemes analysed see
Table 2 and text in Supporting information.

Spurious groups

We calculated the number of spurious groups gener-
ated by each method ⁄measure. GC¢ always generated
more spurious groups than F (Table 3) and the general
tendency is that methods derived from bootstrap (B
methods: BT* and BP*) generated more spurious
groups than those derived from jackknife (J methods:
JD and JS). In particular, JD is the method that
generated fewest spurious groups (Table 3). These
tendencies still occur (but to a lower degree) when only
the groups with support above 5% are considered
(results not shown).

We report the first examples of spurious groups with
absolute frequencies above 50%, even under symmetri-
cal resampling (Fig. 2). In this example we have
increased the tree buffer of each pseudoreplicate and
obtained similar results, which suggests that this is a real
phenomenon; those spurious groups also have a positive
GC¢ value (Fig. 3). Unsupported groups with positive
GC have been already reported by Goloboff et al.
(2003a, fig. 11).

We expected that JS would generate fewer spurious
groups than JD, because it was proposed as an
improvement of JD (Goloboff et al., 2003a). However,
this tendency was not observed here. On the other hand,
the number of spurious groups did not differ consis-
tently among the weighting schemes analysed.

Spurious groups are (as shown in Fig. 2 for J
methods) easy to identify in curves of frequency against
resampling strengths, because they have a positive slope
at weak resampling strengths (at P = 0, F = 0), while
real groups have a negative slope (at P = 0, F = 1)
(Goloboff et al., 2003a,b). However, we should be
careful with these generalizations because frequency
slopes can change drastically at very low resampling
strengths (Ramı́rez, 2005).

We have also computed an estimation of the error
rate as E = S ⁄R, where S is the number of spurious
groups, and R the number of real groups recovered.
Then we expected low error rates for methods (BT*,
BP*, JD, JS) and measures (F, GC¢) that did not
generate many spurious groups and are efficient in
recovering real groups. In general, we have shown that
error rates for GC¢ were higher than or equal to those
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obtained for F (Table 4; Fig. 4), and that BT* had the
highest error rates, followed by BP*, JS and JD, in that
order (Table 4). All weighting schemes presented the
highest error rate for B* methods (Appendix S1:
Table S1). See also tendencies considering only the
11th resampling strength at Appendix S1 text and
Table S2.

In general, the spurious groups have low support values
(Fig. 4; see also Figs 2 and 3 and Supporting Informa-
tion). Counting over all resampling strengths and treat-
ments, the mean F of spurious groups was 57%, and the
mean GC¢ was 11% (see Supporting information). These
values are nearly the same when only the 11th strength is
considered. For the 11th strength, real groups had mean
F = 65%, and mean GC¢ = 52%, although the fre-
quency distribution is not symmetrical (Fig. 4).

Contradictions in ‘‘support’’ rankings between different

resampling strengths

We have plotted group frequencies against resampling
strengths (like those in Figs 1–3) for all the data sets,
methods, measures and resampling strengths (available
in Supporting information). These plots were inspected
visually for qualitative differences in rankings of group
frequencies in different analysis situations.

In order to evaluate differences in frequency rankings
that we assessed qualitatively in the graphics, we
calculated and compared the Kendall coefficient (Ke)
for the ranking of groups across resampling strengths.
Comparisons are limited to a given data set because Ke

is dependent of the number of groups and, as different
data sets had different number of groups, they are not
comparable.

We evaluated whether the GC measure reduces the
crossing trajectories as resampling strengths vary. We
found a corroborating tendency, with higher Kendall
coefficient values for GC¢ (for all groups, KeGC¢ higher in
68, KeF higher in 48 cases; for not spurious groups,
KeGC¢ higher in 62, KeF higher in 54 cases; see Support-
ing information), and this situation is reflected in the
fewer crossing trajectories for GC¢ than for F in the
graphics.

When we compared methods, we found that BT* had
a greater proportion of higher Ke values (fewer crossing
trajectories in the graphics) in all weighting schemes,
followed by BP*, JS, and JD, in that order (Figs 2, 3
and 5). This was true both for F and GC¢ measures,
considering all groups or not spurious groups only.

When we checked which method had a higher
proportion of low values of Ke (more crossing trajec-
tories in the graphics), we found that it was clearly JD
(Fig. 5; cf. Fig. 2b with 2a,c,d; cf. Fig. 3b with 3a,c,d).
The same tendency occurs within each weighting scheme
(Table 5), except in the Ti:Tv weighting scheme (GC¢
measure), where JS also had low values.

Because JS is a modified version of JD, and BP* is a
modified version of BT*, we compared values of Ke for
JD against JS, and for BT* against BP*, separately. We
have found that JS had consistently higher values than
JD, and BP* had more higher values than BT*, but the
tendency is not so clear as when comparing JD with JS
(for details see Appendix S1: Table S3).

Table 2
Methods recovering more (+) and fewer ()) groups according to F and GC¢ measures, under equal weights (EqWe), transition:transversion cost 1:10,
and implied weights

Resampling
strength

F G

EqWe Ti:Tv ImWe EqWe Ti:Tv ImWe

+ ) + ) + ) + ) + ) + )

1 JD BT JD BT JD BT BP JD JS BT JD BT BP JD BT BP
2 JD BT JD JS BP JD BT JD BT BP JD BT BP JD BP
3 JD BT JD BT JD BT JD BT JD BP JD BT
4 JD BT JD BT JD BT JD BT JD BT JD BT
5 JD BT JD JS BT JD BT JD BT BP JD BT JD BT
6 JD BT JD BT JD BT JD BT BP JD JS BT JD BT
7 JD BT BP JD BT JD BT BP JD BT JD BT JD BT
8 JD BT JD BT JD BT JD BT JD BT BP JD BT
9 JD BP JD BT JD BT JD BT JD BT BP JD BT
10 JD BT JD BT JD BT JD BT JD BT JD BT
11 JD JS BP JD BT JD BT JD JS BT JD BT JD JS BT BP

12 JS BP JD JS BT BP JD BP JD BT BP JD BT JD JS BP
13 JS BT BP JD BT BP JD BT JD BT JD BT JS BT
14 JS BT BP JD BT JD BT BP JD JS BT JD JS BT JD JS BP
15 JS BP JS BP JS BT BP JD BT BP JD JS BT JS BT

For resampling strengths values see Table 1. Resampling strength 11 (bold) corresponds to the values commonly used in jackknife and boot-
strap.

Abbreviations: BT, variable bootstrap; JD, jackknife; BP, variable bootstrap with Poisson distribution; JS, symmetric resampling.
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Conclusions

In this study we have analysed general tendencies of
resampling support values using (i) 15 resampling
strengths, (ii) three weighting schemes, (iii) four resam-
pling methods, and (iv) two measures. We compared the
methods traditionally used (BT and JD) and their
modified versions (BP and JS). We have also evaluated
different measures of frequency values: F, the one
traditionally used, and GC, which is experimental and
was proposed recently (Goloboff et al., 2003a). Also, in
order to make B methods comparable with J methods,
we have proposed a variable bootstrap (BT*), which has
a variable final data set size when varying the resampling
strength. All the methods and measures examined

produced spurious groups, although usually with low
‘‘support’’ values.

We have found a clear tendency showing that J
methods recovered more real groups, while producing
fewer spurious groups, thus having the lowest error rate.
However, JD is the method that produced more
inconsistencies in ranking of frequencies with variable
resampling strengths (more crossing trajectories in
frequency against resampling strength).

Goloboff et al. (2003a) have proposed JS to correct
the distortion of frequencies under BT or JD (either
under- or overestimations of the actual group support)
that may happen when character weights or state
transformation costs are heterogeneous. Hence we
might have expected that JS would recover more real

Table 3
Number of spurious groups generated by each resampling method with F and GC¢ measures, for the three weighting schemes analysed

Data set

F GC¢

Bootstrap Jackknife

Bootstrap
with Poisson
distribution

Symmetric
resampling Bootstrap Jackknife

Bootstrap
with Poisson
distribution

Symmetric
resampling

Equal weights
D01 0 0 0 0 0 0 0 0
D02 0 0 0 0 1 (0) 1 (0)
D03 0 0 0 0 0 0 0 0
D04 1 1 1 1 5 (3) (3) (3)
D05 3 (1) 3 (1) 10 (8) 10 (8)
D06 5 (2) 4 (2) (24) 28 (24) 25
D07 0 0 0 0 5 8 (4) 5
D08 0 0 0 0 0 0 0 0
D09 2 (0) 2 (0) (8) 9 (8) (8)
D10 0 0 0 0 3 3 3 3
D11 0 0 0 0 2 2 2 2

Transition:transversion 1:10
D01 0 0 0 0 0 0 0 0
D02 0 0 0 0 2 2 2 2
D04 1 1 1 1 6 6 6 6
D05 2 2 2 2 8 (5) 9 (5)
D07 (0) 1 1 1 (5) (5) (5) 6

D08 0 0 0 0 0 0 0 0
D09 0 0 0 0 5 (4) (4) (4)
D10 2 (0) 2 1 (7) 9 (7) 8
D11 0 0 0 0 0 0 0 0

Implied weights
D01 0 0 0 0 0 0 0 0
D02 0 0 0 0 2 2 2 2
D03 0 0 0 0 0 0 0 0
D04 4 (1) 2 (1) 6 (2) 4 (2)
D05 2 2 2 2 8 (5) 7 7
D07 0 0 0 0 4 (3) 5 (3)
D08 0 0 0 0 0 0 0 0
D09 (0) 1 1 1 3 3 3 3
D10 0 0 0 0 2 2 2 2
D11 0 0 0 0 0 0 0 0

Number of maximum 5 2 5 2 6 4 4 1
Number of minimum 2 (5) 0 4 4 (9) 7 8

For each data set, cells containing the highest numbers of spurious groups generated are in bold; cells containing the lowest values are in
parentheses. The two last rows summarize the number of cases in which we found the highest and the lowest number of spurious groups for each
method and for each measure.
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groups, generate fewer spurious groups, and exhibit
fewer crossing trajectories in frequency against resam-
pling strength, under Ti:Tv and ImWe weighting
schemes. We have not obtained a clear tendency
verifying this expectation.

JS always generated fewer group ranking differences
under different resampling strengths than JD, so we can
consider JS as more consistent than JD. However, JS did
not completely solve the problem of inconsistent rank-
ings between different resampling strengths. We also
present examples of spurious groups with frequencies
above 50% or positive GC¢ values under JS, indicating
that symmetric resampling is not enough to correct
against spurious groups.

B* methods produced fewer ranking inconsistencies
with variable resampling strength, but generated more
spurious groups and recovered fewer real groups (higher
error rate) than J methods, especially under weak
resampling strengths. This is reflected in flatter trajec-
tories in frequency against resampling strength graphics
(Figs 2 and 3).

We also wanted to assess whether BP* generated
fewer spurious groups than BT*, and whether JS
generated fewer spurious groups than JD, because they
were proposed as improvements of these resampling
methods. We could not find a clear tendency in our
experiments. We noticed, however, that JD and BT*
had lower Ke values than their improved versions JS and
BP*, as expected. There is a clear tendency showing that
JS produced fewer crossings than JD in the trajectories
of frequency against resampling strengths. However, the
differences were deeper for J methods than between B*
methods.

We have also found thatGC¢, designed to recovermore
real groups, does so at the expense of also recovering
more spurious groups, and having a higher error rate.

The tendencies in this study suggest that F values may
be better indicators of support than GC¢ values. Our
results also suggest that J methods produce better
indicators of support than B* methods, because they
show lower error rates. Contrary to our expectations, we
have not found clear interactions between weighting
schemes and resampling methods.
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Fig. 4. Count of real (white) and spurious (black) groups for all treatments under resampling strength 11, classified according to their absolute
frequency (F) and frequency difference (GC¢).

Fig. 5. Total number of matrices in which each method had the
highest and lowest value of Kendall coefficient (Ke) using absolute
frequency measure and considering all groups. Similar results were
obtained with GC¢, or considering not spurious groups only (data not
shown). References: BT*, variable bootstrap; JD, jackknife; BP*,
variable bootstrap with Poisson distribution; JS, symmetric resam-
pling.

Table 4
Number of maximum error rate values per method for all data set,
considering all the resampling strengths

Weighting
scheme ⁄measure

Total of maximum error rate
value for each method

BT JD BP JS

EqWe F 36 7 28 4
EqWe GC¢ 43 11 37 23
Iv1:10 F 31 7 31 8
Iv1:10 GC¢ 65 7 51 14
Pw F 27 0 13 3
Pw GC¢ 47 9 35 5
Total of máximum S ⁄R index
value for each method

249 41 195 56

Abbreviations—for weighting schemes: EqWe, equal weights;
Iv1:10, transition:transversion cost 1:10; Pw, implied weights; for
methods: BT, variable bootstrap; JD, jackknife; BP, variable bootstrap
with Poisson distribution; JS, symmetric resampling. For more details
see Appendix S1: Table S1.
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Total number of matrices in which each method had the highest ⁄ lowest value of Kendall coefficient, for each frequency measure, considering
weighting schemes separately (highest proportion of lowest Kendall coefficient in bold)

Methods Bootstrap Jackknife
Bootstrap with
Poisson distribution

Symmetric
resampling

Measures Weighting schemes
All
groups

Not spurious
groups

All
groups

Not spurious
groups

All
groups

Not spurious
groups

All
groups

Not spurious
groups

F Equal weights 7 ⁄2 5 ⁄1 1 ⁄8 1 ⁄9 7 ⁄0 7 ⁄0 1 ⁄1 2 ⁄1
Transition:transversion 1:10 4 ⁄3 4 ⁄0 1 ⁄5 1 ⁄5 3 ⁄3 3 ⁄2 2 ⁄1 1 ⁄2
Implied weights 6 ⁄0 5 ⁄0 1 ⁄8 1 ⁄7 5 ⁄1 6 ⁄1 1 ⁄1 0 ⁄2
Total 17 ⁄5 14 ⁄1 3 ⁄21 3 ⁄21 15 ⁄4 16 ⁄3 4 ⁄3 3 ⁄5

GC¢ Equal weights 6 ⁄1 8 ⁄1 1 ⁄10 0 ⁄10 5 ⁄0 4 ⁄0 1 ⁄0 2 ⁄0
Transition:transversion 1:10 5 ⁄0 5 ⁄0 1 ⁄5 3 ⁄3 4 ⁄0 2 ⁄1 2 ⁄5 0 ⁄5
Implied weights 6 ⁄0 6 ⁄0 0 ⁄7 0 ⁄7 5 ⁄1 6 ⁄0 2 ⁄2 1 ⁄3
Total 17 ⁄1 19 ⁄1 2 ⁄22 3 ⁄20 14 ⁄1 12 ⁄1 5 ⁄7 3 ⁄8
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Appendix 1

Sources, characteristics and accession numbers of the matrices used in this study

Data
set

Number of
taxa

Number of
characters

Number of
replicates Source

Treebase study
accession number

Treebase matrix
accession number

Type of
character

D01 9 486 1 Sang et al. (1995) S11·6·95c10c06c51 M57c11·6·95c10c09c35 DNA
D02 9 446 1 Huber et al. (1993) S11·16·96c22c02c22 M161c11·16·96c22c10c59 DNA
D03 13 24 1 Ramı́rez (2005) – – Hypothetical
D04 42 1070 2 Chen et al. (1999) S259 M299 DNA
D05 52 398 3 Whiting et al. (1997) S325 M419 DNA
D06 85 1016 5 Whiting et al. (1997) S325 M420 DNA
D07 24 1785 1 Norman and Egger (1999) S380 M526 DNA
D08 10 1020 1 Cohen et al. (1997) S428 M626 DNA
D09 22 381 1 Nylander et al. (2003) S970 M1611 DNA
D10 33 498 2 Lijtmaer et al. (2004) – – DNA
D11 12 898 1 Hayasaka et al. (1988) – – DNA

Appendix 2

Values of (1 ) P) · 1000 for bootstrap with Poisson distribution, where P = probability of receiving a certain
character weight (mean character weight = m as calculated for variable bootstrap)

Strength 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m 3.40 2.70 2.30 2.01 1.79 1.61 1.46 1.32 1.20 1.10 1.00 0.92 0.84 0.76 0.69

Character weight
0 333 667 1000 1333 1667 2000 2333 2667 3000 3333 3667 4000 4333 4667 5000
1 1467 2472 3303 4020 4653 5219 5729 6191 6612 6995 7345 7665 7957 8223 8466
2 3395 4917 5954 6726 7328 7809 8200 8521 8786 9007 9191 9344 9472 9579 9667
3 5581 7123 7988 8544 8926 9199 9398 9547 9659 9744 9808 9857 9895 9923 9944
4 7440 8617 9159 9460 9642 9758 9835 9886 9922 9946 9963 9975 9983 9989 9992
5 8704 9426 9699 9829 9898 9938 9961 9976 9985 9990 9994 9996 9998 9999 9999
6 9421 9791 9906 9953 9975 9986 9992 9996 9997 9999 9999 10000 10000 10000 10000
7 9769 9933 9974 9989 9995 9997 9999 9999 10000 10000 10000 10000 10000 10000 10000
8 9917 9980 9994 9997 9999 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
9 9973 9995 9999 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
10 9992 9999 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
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