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Abstract

We show that if E is a real Banach space such that E′ has the approximation
property and such that `1 6↪→

⊗̂
n,s,εE then the set of extreme points of the unit ball

of PI(nE) is equal to {±φn : φ ∈ E′, ‖φ‖ = 1}. Under the additional assumption
that E′ has a countable norming set we see that the set of exposed points of the
unit ball of PI(nE) is also equal to {±φn : φ ∈ E′, ‖φ‖ = 1}.

1 Introduction

The isometric study of Banach spaces tells us that there are certain subsets on the unit

sphere of a Banach space which are fundamental in our understanding of the geometry of

Banach spaces. Such sets include the set of extreme and exposed poits, the set of weak∗-

exposed and strongly exposed points and the set of denting points. We denote these

sets by Ext(E), Exp(E), w∗Exp(E), sExp(E), and Dent(E) respectively. These sets are

used in the definition of such concepts as smoothness and strict convexity and in our

understanding of concepts such as Fréchet differentiablility and Gâteaux differentiability.

In the 1980’s Ruess and Stegall published a series of papers where the geometric struc-

ture of duals of spaces of linear operators and of projective tensor products is investigated.

In particular given Banach spaces E and F such that either E ′ or F ′ has the approxima-

tion property and either E ′ or F ′ has the Radon-Nikodym property, it is shown in [11] that

the extreme points of the unit ball of the projective tensor product of the duals, E ′⊗̂πF ′,
is the set {x⊗ y : x ∈ Ext(E ′), y ∈ Ext(F ′)}. In [12] they prove that the analogous result

holds for Ext(E ′) replaced with Exp(E ′), w∗Exp(E ′), sExp(E ′) and Dent(E ′).

The theory of tensor products is also important in the study of spaces of homogeneous

polynomials on Banach spaces. Here however, it is the space of symmetric tensors which

we need to investigate. The geometric structure of these spaces is very different to that

of the ‘ordinary’ tensor products.
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Perhaps some definitions are in order. A point x is said to be an extreme point of

the (closed) unit ball of a Banach space E, BE if x cannot be written as the midpoint

of a line segment which is entirely contained in BE. We recall that a unit vector x in a

Banach space E is exposed if there is a unit vector φ ∈ E ′ so that φ(x) = 1 and φ(y) < 1

for y ∈ BE \ {x}. When E = F ′ is a dual space and φ is in F we shall say that x is

weak∗-exposed. A point x in the unit ball of E is said to be a strongly exposed by φ in

SE′ if whenever (xk) is a sequence in E so that φ(xk) converges to 1 then (xk) converges

to x in norm.

Given a Banach space E a point x in the closed unit ball of E is said to be a denting

point if for every ε > 0, x does not belong to Γ(BE \B(x, ε)), the closure of the absolutely

convex hull of BE \B(x, ε). This is equivalent to the condition that x is contained in slices

of the unit ball of E which have arbitrary small diameter.

In [13] Ryan and Turett show that if E is a real finite dimensional Banach space

and n > 1 is a positive integer then the extreme points of the unit ball of
⊗̂

n,s,πE

is {±x ⊗ · · · ⊗ x : x ∈ E, ‖x‖ = 1}. In [3] an upper bound for the set of extreme

points of the unit ball of PI(nE), the space of n-homogeneous integral polynomials on

E, is given by {±φn : φ ∈ E ′, ‖φ‖ = 1}. When E ′ has the approximation property

and
⊗̂

n,s,εE does not contain a copy of `1 a lower bound is also obtained. Specifi-

cally it is shown in [3] that the set of extreme points of the unit ball PI(nE) contains

{±φn : φ ∈ E ′, ‖φ‖ = 1 and φ attains its norm}. Hence if E is a real reflexive Banach

space and n is an integer which is greater than or equal to 2 then the set of extreme

points of the unit ball of PI(
nE) is precisely the set {±φn : φ ∈ E ′, ‖φ‖ = 1}.

In this note we show that given E a real Banach space and fixed n > 1 a positive

integer, such that
⊗̂

n,s,εE does not contain a copy of `1 then the set of extreme points of

the unit ball of PI(nE) is {±φn : φ ∈ E ′, ‖φ‖ = 1}.
The extreme points of the unit ball of the space of n-homogeneous integral polynomials

on complex Banach spaces are studied by Dineen in [8]. For further reading on polynomials

on infinite dimensional Banach spaces we refer the reader to [7].

2 Extreme and exposed points

We begin by introducing some topologies on the space of symmetric tensor products and

their relations with different spaces of polynomials. Given a tensor u in
⊗

n,sE we define

the symmetric projective norm of u indicated with π to be

‖u‖π = inf{
k∑
i=1

‖xi‖n : u =
k∑
i=1

λixi ⊗ . . .⊗ xi, λi = ±1, xi ∈ E}.
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We denote the completion of
⊗

n,sE with respect to the projective symmetric norm by⊗̂
n,s,πE. The dual of

⊗̂
n,s,πE is the space P(nE) of all continuous n-homogeneous

polynomials on E endowed with the norm ‖P‖ = sup‖x‖≤1 |P (x)|.
An n-homogeneous polynomial P on E is said to be nuclear if there is a bounded

sequence (φj)
∞
j=1 ⊂ E ′ and a sequence (λj)

∞
j=1 in `1 such that

P (x) =
∞∑
j=1

λjφj(x)n

for every x in E. The space of all nuclear n-homogeneous polynomials on E is denoted

by PN(nE) and becomes a Banach space when the norm of P is given as the infimum of∑∞
j=1 |λj| ‖φj‖n taken over all representations of P of the form described above. This norm

is called the nuclear norm of P and is denoted by ‖P‖N . Given φ in E ′ we denote by φn

the n-homogeneous polynomial which takes x to φ(x)n. When E ′ has the approximation

property PN(nE) is isometrically isomorphic to
⊗̂

n,s,πE
′ under the map induced by φn →

φ⊗ · · · ⊗ φ.

A polynomial P on E is said to be integral if there is a regular Borel measure µ on

(BE′ , σ(E ′, E)) such that

P (x) =

∫
BE′

φ(x)n dµ(φ) (1)

for every x in E. We write PI(nE) for the space of all n-homogeneous integral polynomials

on E. We define the integral norm of an integral polynomial P , ‖P‖I , as the infimum of

‖µ‖ taken over all regular Borel measures which satisfy (1). This space is the dual of the

symmetric injective tensor product. Given an n-fold symmetric tensor u =
∑k

i=1 λixi ⊗
· · · ⊗ xi on E its symmetric injective norm indicated with ε is defined as

‖u‖ε = sup
φ∈BE′

∣∣∣∣∣
k∑
i=1

λiφ(xi)
n

∣∣∣∣∣ .
We denote the completion of

⊗
n,sE with respect to this norm by

⊗̂
n,s,εE. It follows from

[6] that the dual of
⊗̂

n,s,εE is isometrically isomorphic to (PI(nE), ‖ . ‖I).
Given a Banach space E the space of n-fold symmetric tensors

⊗
n,sE may be consid-

ered as a subspace of
⊗̂

n,s,π`∞(BE′). We let
⊗

n,s,ηE denote
⊗

n,sE with the topology

induced from
⊗̂

n,s,π`∞(BE′). The completion of
⊗

n,s,ηE is denoted by
⊗̂

n,s,ηE. The

space `∞(BE′) may be replaced by C(BE′ , w∗) in the construction of
⊗̂

n,s,ηE. Since the

projective tensor product does not respect subspaces there is no Hahn-Banach Theorem

for n-homogeneous polynomials when n is at least 2. In [10] Kirwan and Ryan introduce

the space of all extendible n-homogeneous polynomials as those polynomials which extend

continuously to every superspace and show that this subclass is isometrically isomorphic

to the dual of
⊗̂

n,s,ηE.
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Although the class of integral polynomials is embedded in the class of exendible polyno-

mials there are extendible non-integral polynomials, for example c0 contains non-integral

extendible polynomials (see [5]). However, we shall see that the study of the geometry

of
⊗̂

n,s,ηE reveals information about the geometry of the spaces of integral polynomials

and n-fold symmetric tensors.

Lemma 1 Let E be a real Banach space and n > 1 be a positive integer. Then {xn :

‖x‖ = 1} ⊆ Ext
(⊗̂

s,n,ηE
)

.

Proof: From the inclusion
⊗̂

s,n,ηE ↪→
⊗̂

s,n,π`∞(BE′) and the fact that Ext(B)∩A ⊂
Ext(A) whenever A ⊂ B we have that

Ext
(⊗̂

s,n,π`∞(BE′)
)⋂⊗̂

s,n,η E ⊆ Ext
(⊗̂

s,n,ηE
)
.

On the other hand, as `∞(BE′) has the approximation property
⊗̂

s,n,π`∞(BE′) =

PN
(n
`1(BE′)

)
. By [3, Proposition 1], the extreme points of the unit ball of PI

(n
`1(BE′)

)
are all nuclear polynomials, therefore Ext

(
PI
(n
`1(BE′)

))
⊆ Ext

(
PN
(n
`1(BE′)

))
. Apply-

ing [3, Proposition 5], we have that

{±φn : φ ∈ `∞(BE′); ‖φ‖ = 1;φ is norm attaining} ⊆ Ext
(
PI
(n
`1(BE′)

))
⊆ Ext

(⊗̂
s,n,π`∞(BE′)

)
.

Use x̂ to denote the canonical image of x ∈ E in `∞(BE′). Since x̂ is norm attaining,

{x̂n : ‖x‖ = 1} ⊆ Ext
(⊗̂

s,n,π`∞(BE′)
)

.

Finally, {xn : ‖x‖ = 1} ⊆ Ext
(⊗̂

s,n,π`∞(BE′)
)
∩

⊗̂
s,n,η E, and therefore

{xn : ‖x‖ = 1} ⊆ Ext
(⊗̂

s,n,η E
)

. �

This result is the key to classify the extreme points of the space of n-homogeneous

integral polynomials when `1 is not a subspace of
⊗̂

n,s,εE.

Theorem 2 Let E be a real Banach space so that E ′ has the approximation property.

Let n > 1 be a positive integer and suppose that
⊗̂

n,s,εE does not contain a subspace

isomorphic to `1. Then the set of extreme points of the unit ball of PI(nE) is equal to

{±φn : φ ∈ E ′, ‖φ‖ = 1}.

Proof: Since `1 6↪→
⊗̂

n,s,εE and E ′ has the approximation property it follow from [3,

Theorem 2] (or [4, Theorem 1.5]) that PI(nE) is isometrically isomorphic to
⊗̂

n,s,πE
′.

By [9, 18.3.7], the mapping
⊗̂

s,n,π E
′ ↪→

⊗̂
s,n,ε E

′ is injective, whenever E ′ has the

approximation property. Hence, the canonical mapping j :
⊗̂

s,n,π E
′ ↪→

⊗̂
s,n,η E

′ is also

injective.
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Let φn be in
⊗̂

s,n,π E
′ with ‖φ‖ = 1. Since, ‖φn‖π = ‖φn‖η = ‖φ‖n, then, by Lemma 1,

φn ∈ Ext
(⊗̂

s,n,η E
′
)

.

In order to prove that φn is an extreme point of the unit ball of
⊗̂

s,n,π E
′ suppose

that is not the case. Then we can find u ∈
⊗̂

s,n,π E
′, u 6= 0 so that ‖φn± u‖π ≤ 1. Thus

‖j(φn ± u)‖η ≤ 1 and j(u) = 0 in
⊗̂

s,n,η E
′; which leads us into a contradiction since j

is injective.

The reverse inclusion is a consequence of the fact that PI(nE) =
⊗̂

s,n,π E
′ together

with [3, Proposition 1]. �

Since the injective tensor product of Asplund spaces is Asplund and Asplund spaces

cannot contain a copy of `1 we obtain the following corollary:

Corollary 3 Let E be a real Banach space. Suppose that E is Asplund and that E ′ has

the approximation property. Then the set of extreme points of the unit ball of PI(nE) is

equal to {±φn : φ ∈ E ′, ‖φ‖ = 1}, for any n > 1 a positive integer.

In the course of proving Theorem 2 we have also proved the following result.

Corollary 4 Let E be a real Banach space. Then, for any n > 1 a positive integer, the

set {±xn : x ∈ E, ‖x‖ = 1} is contained in the set of extreme points of the unit ball of⊗̂
s,n,πE.

Let us now investigate the exposed points of the space of integral polynomials.

Lemma 5 Let E be a real Banach space such that E ′ has a countable norming set. Let

n > 1 be a positive integer. Then {xn : ‖x‖ = 1} ⊆ Exp
(⊗̂

s,n,ηE
)

.

Proof: Let x be a point of E with ‖x‖ = 1. Choose φ in E ′ so that φ(x) = 1. Let K be

a countable norming subset of E ′ and define Kx to be K ∪ {φ}. Applying an analogous

argument to that given at the beginning of Lemma 1 we see that

Exp
(⊗̂

s,n,π`∞(Kx)
)⋂⊗̂

s,n,η E ⊆ Exp
(⊗̂

s,n,η E
)
.

Since every exposed point of the unit ball of PI(n`1(Kx)) is also an exposed point of

PN(n`1(Kx)) we get that

Exp
(
PI
(n
`1(Kx)

))
⊆ Exp

(
PN
(n
`1(Kx)

))
= Exp

(⊗̂
s,n,π`∞(Kx)

)
.

Using [3, Theorem 8] and the fact that weak∗-exposed points are exposed points we have

{±φn : φ ∈ `∞(Kx), ‖φ‖ = 1, φ is norm attaining} ⊆ Exp
(
PI
(n
`1(Kx)

))
⊆ Exp

(⊗̂
s,n,π`∞(Kx)

)
.
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Consider x̂, the image of x in `∞(Kx). Then x̂ attains its norm at the point δφ where

δφ(ψ) =

{
1 if φ = ψ,

0 if φ 6= ψ.

Therefore we see that {x̂n : ‖x‖ = 1} ⊆ Exp
(⊗̂

s,n,π`∞(Kx)
)

. The remainder of the proof

follows as in Lemma 1. �

Theorem 6 Let E be a real Banach space such that E ′ has the approximation property

and a countable norming set. Let n > 1 be a positive integer and suppose that
⊗̂

n,s,εE

does not contain a subspace isomorphic to `1. Then the set of exposed points of the unit

ball of PI(nE) is equal to {±φn : φ ∈ E ′, ‖φ‖ = 1}.

Proof: Since `1 is not a subspace of
⊗̂

n,s,εE it follows from [3, Theorem 2] or [4, The-

orem 1.5] that PI(nE) is isometrically isomorphic to
⊗̂

s,n,πE
′. Since ‖ · ‖η ≤ ‖ · ‖π each

exposed point of the unit ball of
⊗̂

s,n,ηE
′ is also an exposed point of the unit ball of⊗̂

s,n,πE
′. (Simply restrict the exposing functional to

⊗̂
s,n,πE

′.) Thus the exposed points

of the unit ball of PI(nE) contains {±φn : φ ∈ E ′, ‖φ‖ = 1}. The reverse inclusion is

immediate. �

The above result applies to all real Asplund Banach spaces E such that E ′ has the

approximation property and a countable norming set. In particular, it holds for all real

separable Asplund Banach spaces E such that E ′ has the approximation property.

The methods used in this paper to give that the extreme and exposed points of the

space of integral polynomials are, up to multplication by±1, a power of a linear functional,

will not work for denting or strongly exposed points. To see this we note that both

methods are based on embedding the space of symmetric n-tensors of E in the space of

symmetric n-tensors of `∞(BE′) or `∞(Kx) for some countable norming subset Kx of E ′.

However, it is shown in [1, Proposition 2.2] (see also [2]) that if K is an infinite compact

Hausdorff topological space then every slice of the unit ball of
⊗̂

n,s,πC(K) has diameter

2. Hence the unit ball of
⊗̂

n,s,πC(K) has no denting points and therefore no strongly

exposed points. On the other hand [3, Section 4] gives examples of Banach spaces E

where each xn is a strongly exposed point of
⊗̂

n,s,πE.
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