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a b s t r a c t

In many situations, data follow a generalized partly linear model in which the mean
of the responses is modeled, through a link function, linearly on some covariates and
nonparametrically on the remaining ones. A new class of robust estimates for the smooth
function η, associated to the nonparametric component, and for the parameter β, related
to the linear one, is defined. The robust estimators are based on a three-step procedure,
where large values of the deviance or Pearson residuals are bounded through a score
function. These estimators allow us to make easier inferences on the regression parameter
β and also improve computationally those based on a robust profile likelihood approach.
The resulting estimates of β turn out to be root-n consistent and asymptotically normally
distributed. Besides, the empirical influence function allows us to study the sensitivity of
the estimators to anomalous observations. A robustWald test for the regression parameter
is also provided. Through a Monte Carlo study, the performance of the robust estimators
and the robust Wald test is compared with that of the classical ones.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The generalized linear model (McCullagh and Nelder, 1989) is a popular technique for modeling a wide variety of
data and assumes that the observations (yi, xi, ti), 1 ≤ i ≤ n, xi ∈ Rp, ti ∈ R, are independent with the same
distribution as (y, x, t) ∈ Rp+2 such that the conditional distribution of y|(x, t) belongs to the canonical exponential family
exp [yθ(x, t)− B (θ(x, t))+ C(y)], for known functions B and C . In this situation, themeanµ(x, t) = E(y|(x, t)) is modeled
linearly through a known link function, g , i.e., g(µ (x, t)) = θ(x, t) = β0 + xTβ + αt . Robust procedures for generalized
linear models have been considered among others by Stefanski et al. (1986), Künsch et al. (1989), Bianco and Yohai (1995),
Cantoni and Ronchetti (2001), Croux andHaesbroeck (2002) and Bianco et al. (2005). Recently, robust tests for the regression
parameter under a logistic model were considered by Bianco and Martínez (2009).
As is well known, semiparametric models may be introduced when the linear model is insufficient to explain the

relationship between the response variable and its associated covariates. This approach has been used to extend generalized
linear models to allow most predictors to be modeled linearly while one or a small number of them enter the model
nonparametrically. In this paper, we consider the semiparametric generalized partially linear model, denoted gplm, that
is, yi|(xi, ti) ∼ F(., µi)where Var (yi|(xi, ti)) = V (µi), with V a known function and µi = µ (xi, ti) such that

µ (x, t) = E (y|(x, t)) = H
(
η(t)+ xTβ

)
, (1)

where H = g−1 is a known link function, β ∈ Rp is an unknown parameter and η is an unknown continuous function. As is
usual in partially linearmodels, wewill assume that the vector 1n is not in the space spanned by the column vectors of x, that
is, we do not allow β to include an intercept so that the model is identifiable. Due to the generality of the semiparametric
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model (1), identifiability implies that only ‘‘slope’’ coefficients can be estimated. Moreover, we do not allow any linear
combination of x to be predicted by t , otherwise, the model will be purely nonparametric and β will not be identifiable
(see Robinson (1988)).
When H(t) = t , model gplm is simply the well known partly linear regression model that has been studied in great

depth. We refer, for instance, to Härdle et al. (2000) for a review, to Chang and Qu (2004) for an approach based on wavelets
and to Liang (2006) for a comparison of different procedures and a discussion regarding the rate of the smoothing parameter.
In a semiparametric setting, outliers can have a devastating effect, since the extreme points can easily affect the scale and
the shape of the function estimate of η, leading to possibly wrong conclusions on β. Robust proposals for this model were
introduced among others by Gao and Shi (1997), He et al. (2002) and Bianco and Boente (2004).
For generalized partly linear models, estimators based on the concept of generalized profile likelihood were considered

by Severini and Wong (1992) and Severini and Staniswalis (1994); see also Härdle et al. (2006) for a review. The sensitivity
to outliers of the classical estimates for these models was described in Boente et al. (2006) where a robust procedure
was introduced. On the other hand, a robust generalized estimating equations approach, for gplm models with clustered
data, using regression splines and Pearson residuals was given in He et al. (2005). A related approach for generalized
semiparametric mixed models for longitudinal data was considered in Qin and Zhu (2007). The main disadvantage of the
estimators proposed by Boente et al. (2006) is that, since they are based on a generalized profile likelihood approach, their
asymptotic covariance matrices depend on the derivatives of the robust profile regression function ηβ with respect to β
making difficult their estimation.
In this paper, we introduce a three-step robust procedure to estimate the parameter β and the function η, under a gplm

model, which is easier to compute than the one introduced by Boente et al. (2006) and that will allow to make inference
on the regression parameter. The proposal is a robustified version of the estimators considered in Carroll et al. (1997). It
is shown that the robust estimates of β are root-n consistent and asymptotically normal. Through a Monte Carlo study,
we compare the performance of these estimators with that of the classical ones. Besides, through their empirical influence
function we study the sensitivity of the estimators to anomalous observations. A robust procedure to test the hypothesis
H0 : β = β0 is also discussed. The paper is organized as follows. The robust proposal is given in Section 2, its consistency
is derived in Section 3. The asymptotic distribution of the regression estimators and a robust Wald test for the regression
parameter are provided in Section 4, while an expression for the empirical influence function is obtained in Section 5. The
results of a Monte Carlo study are summarized in Section 6.

2. The proposal

Let (yi, xi, ti) ∈ Rp+2 be independent observations such that yi|(xi, ti) ∼ F(·, µi) with µi = H(η(ti) + xTi β) and
Var (yi|(xi, ti)) = V (µi). Let η0(τ ) and β0 denote the true parameter values and E0 the expectation under the true model,
thus E0(y|(x, t)) = H(η0(t)+ xTβ0). Letw1 : Rp → R be a weight function to control leverage points on the carriers x and
ρ : R2 → R a loss function. Define

Sn(a,β, τ ) =
n∑
i=1

Wi(τ )ρ
(
yi, xTi β + a

)
w1(xi), (2)

S(a,β, τ ) = E0
[
ρ
(
y, xTβ + a

)
w1(x)|t = τ

]
, (3)

whereWi(τ ) are weights depending on the closeness of ti to τ and which will be taken as the kernel weights, for the sake
of simplicity, i.e.,

Wi(τ ) = K
(
τ − ti
h

){ n∑
j=1

K
(
τ − tj
h

)}−1
.

Let us assume that w1(·) and ρ(·) are such that S(η0(τ ),β0, τ ) = mina,β S(a,β, τ ), then in order to estimate η0(τ ) and β0
one can minimize Sn(a,β, τ ) that provides, under mild conditions, a consistent estimator of S(a,β, τ ). It is worth noting
that, with such a choice, the estimators of β0 will not have a root-n rate of convergence. In order to provide

√
n-consistent

estimators of β0, let us define for each β ∈ Rp and any continuous function v : R→ R,

Ln(β, v) =
1
n

n∑
i=1

ρ
(
yi, xTi β + v(ti)

)
w2(xi), (4)

L(β, v) = E0
[
ρ
(
y, xTβ + v(t)

)
w2(x)

]
, (5)

wherew2(·) is again a weight function decreasing the effect of high leverage points.
Throughout the paper, we will assume Fisher-consistency, i.e., that L(β0, η0) = minβ L(β, η0)β0 being the unique

minimum (see Remark 2.1 below). The estimators can thus be defined as
• Step 1: For each fixed τ , let(̃

η(τ), β̃(τ )
)
= argmin

a,β
Sn(a,β, τ ). (6)



Author's personal copy

2944 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

• Step 2: Define the estimator β̂ of β0 as

β̂ = argmin
β

Ln(β, η̃). (7)

• Step 3: Define the final estimator η̂(τ ) of η(τ) as

η̂(τ ) = argmin
a

Sn(a, β̂, τ ). (8)

Step 3 is introduced in order to improve the performance of the regression function estimator. In those cases in which
the regression function plays the role of a nuisance parameter, this last step can be avoided. This approach improves
computationally the proposal given by Boente et al. (2006). Effectively, these authors considered a robust profile likelihood
approach defining for each β ∈ Rp, η̂β(τ ) = argmina Sn(a,β, τ ). The final estimator of β satisfies β̂bhz = argminβLn(β, η̂β),
while that of η turns out to be η̂bhz = η̂β̂bhz

. Therefore, to compute the estimators defined in Boente et al. (2006) the
functions η̂β need to be computed at each data point of the sample ti over a set of candidates βj to compute the value of the
objective function Ln(βj, η̂βj) which increases the computing time. Note that the estimator computed in Step 3, is simply
η̂ = η̂β̂ . However, the estimator β̂ differs of β̂bhz since the first one is computed using an initial estimator of the regression
function ηwhile the latter uses an estimator of the least favorable function. For instance, if robustified Pearson residuals are
considered, our proposal computes pseudo-residuals using a preliminary estimator of η and then, fits the pseudo-residuals
versus xwhile the robust profile approach tries to fit simultaneously both components by fitting first the nuisance parameter
for each fixed β. Indeed, in our proposal the estimator η̃ is computed once in the first step and thus, a complete search over
a grid of values for β involving a minimization of Sn to compute η̂β for each of them is avoided. In this sense, our method
is based on the fact that conditionally on t , the model can be parametrized by a finite-dimensional parameter and so, we
have a conditionally parametric model as defined in Severini and Wong (1992). Instead of providing a consistent estimator
of the robustified least favorable curve ηβ to obtain a robust nearly efficient estimator of βmaximizing a robust version of the
generalized profile log-likelihood, our procedure takes advantage of the finite-dimensional structure conditional on t and
obtains a consistent estimator of the nuisance parameter that simplifies the numerical complexity. Our procedure can be
thought as a robust backfitting procedure related to the local linear backfittingmethod introduced by Opsomer and Ruppert
(1999) in partially linear additive models.
As in Boente et al. (2006), a robust cross-validation procedure to select the smoothing parameter h can also be considered.
When ρ is continuously differentiable, if we denote by Ψ (y, u) = ∂ρ(y, u)/∂u, (β0, η0(τ )) and (̃β(τ ), η̃(τ )) satisfy the

differentiated equations S1(a,β, τ ) = 0 and S1n(a,β, τ ) = 0, respectively, where

S1(a,β, τ ) = E0
(
Ψ
(
y, xTβ + a

)
w1(x)z|t = τ

)
, (9)

S1n(a,β, τ ) =
n∑
i=1

Wi(τ )Ψ
(
yi, xTi β + a

)
w1(xi)zi, (10)

and z = (1, xT)T. On the other hand, the regression estimator β̂, is a solution of L1n(β, η̃) = 0 while β0 solves L
1(β0, η0) = 0

where

L1(β, v) = E0
(
Ψ
(
y, xTβ + v(t)

)
w2(x)x

)
, (11)

L1n(β, v) =
1
n

n∑
i=1

Ψ
(
yi, xTi β + v(ti)

)
w2(xi)xi. (12)

When Ln(β, η̃) has only one critical point, i.e., when the equation L1n(β, η̃) = 0 has only one root, corresponding to the
minimum of Ln(β, η̃), the estimator β̂ can be computed using a Newton–Raphson approach and initiating the iterative
procedure with β̂ini =

∑n
i=1 β̃(ti)/n.

Boente et al. (2006) proposed two classes of loss functions ρ. The first one aims to bound the deviances, while the second
one introduced by Cantoni and Ronchetti (2001) bounds the Pearson residuals. For the sake of completeness, we recall their
definition.
The first class of loss function takes the form of

ρ(y, u) = φ[− ln f (y,H(u))+ A(y)] + G(H(u)), (13)

where φ is a bounded nondecreasing function with continuous derivative ϕ, and f (·, s) is the density of the distribution
function F(·, s)with y|(x, t) ∼ F

(
·,H

(
η0(t)+ xTβ0

))
. To avoid triviality, it is assumed that φ is non-constant in a positive

probability set. Typically, φ is a function performing like the identity function in a neighborhood of 0. The function A(y)
is typically used to remove a term from the log-likelihood that is independent of the parameter, and can be defined as
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A(y) = ln (f (y, y)) in order to get the deviance. The correction term G is used to guarantee the Fisher-consistency, and
satisfies

G′(s) =
∫
ϕ[− ln f (y, s)+ A(y)]f ′(y, s)dµ(y)

= Es
(
ϕ[− ln f (y, s)+ A(y)]f ′(y, s)/f (y, s)

)
,

where Es indicates expectation taken under y ∼ F(·, s) and f ′(y, s) is shorthand for ∂ f (y, s)/∂s.With this class ofρ functions,
we call the resulting estimator amodified likelihood estimator denotedmod. Note that, when considering generalized linear
models, the maximum likelihood estimator corresponds to the choice φ(t) = t, A(y) = ln (f (y, y)) ,G(u) = 0 and
w1 = w2 ≡ 1. The estimators based on this choice for the loss function ρ will be denoted as dev and may be considered as
the classical counterpart of the mod.
In a logistic regression setting, in order to guarantee existence of solution, Croux and Haesbroeck (2002) proposed using

the score function

φ(t) =
{
t exp(−

√
c) if t ≤ c

−2(1+
√
t) exp(−

√
t)+

(
2(1+

√
c)+ c

)
exp(−

√
c) otherwise.

It is worth noting that, when considering the deviance and a continuous family of distributions with strongly unimodal
density function, the correction term G can be avoided, as discussed in Bianco et al. (2005).
The second class of loss functions is based on the proposal given by Cantoni and Ronchetti (2001) for generalized

linear models, where they consider a general class of M-estimators of Mallows type, by bounding separately the influence
of deviations on y and (x, t). Their approach is based on robustifying the quasi-likelihood, which is an alternative
to the generalizations given for generalized linear regression models by Stefanski et al. (1986) and Künsch et al.
(1989). Let r(y, µ) = (y− µ) V−1/2(µ) be the Pearson residuals with Var (yi|(xi, ti)) = V (µi). Denote ν(y, µ) =
V−1/2(µ)ψc (r(y, µ)), withψc an odd nondecreasing score function with tuning constant c , such as the Huber function, and

ρ(y, u) = −
[∫ H(u)

s0
ν(y, s)ds+ G(H(u))

]
, (14)

where s0 is such that ν(y, s0) = 0. To ensure Fisher-consistency, the correction term G(s) satisfies G′(s) = −Es (ν(y, s)).
With such a ρ function, we call the resulting estimator a robust quasi-likelihood estimator. For the Binomial and Poisson fam-
ilies, explicit forms of the correction term G(s) are given in Cantoni and Ronchetti (2001). The classical counterpart of this
approach corresponds to the choice ψc(u) = u, w1 = w2 ≡ 1, and the estimators will be denoted as qal since they are
based on the quasi-likelihood.

Remark 2.1. Let T be the support of the random variable t . Under a logistic partially linear regression model, Fisher-
consistency can easily be derived for the loss function given by (13), when φ satisfies the regularity conditions stated in
Bianco and Yohai (1995) and

P
(
xTβ = α|t = τ

)
< 1, ∀(β, α) 6= 0 and τ ∈ T . (15)

Moreover, it is easy to verify that β0 is the unique minimizer of L(β, η0) in this case. The same assertion can be verified for
the robust quasi-likelihood proposal if ψc is bounded and increasing.

Condition (15) does not allow β0 to include an intercept, so that the model will be identifiable, as mentioned in the
Introduction.
Under a generalized partially linear model with the response having a gamma distribution with a fixed shape parameter,

Theorem 1 of Bianco et al. (2005) allows us to derive Fisher-consistency for the nonparametric and parametric components,
if the score function φ is bounded and strictly increasing on the set where it is not constant and if (15) holds.

Remark 2.2. As for generalized linear models, the correction factor, denoted G(s), is included to guarantee Fisher-
consistency under the true model. Otherwise, one can only ensure that the estimators will be consistent to the solution
(β(F), η(F , τ )) of the related functional equations. To be more precise, let (β?(F , τ ), η?(F , τ )) = argmina,βS(a,β, τ ) and
denote by β(F) = argminβL(β, η?(F , ·)) and η(F , τ ) = argminaS(a,β(F), τ )where S(a,β, τ ) and L(β, v) are defined in (3)

and (5), respectively. The results stated in Section 3 can be easily adapted to show that β̂
a.s.
−→ β(F) and ‖̂η−η(F , ·)‖0,∞

a.s.
−→

0 while the asymptotic distribution of β̂ can also be derived by centering with β(F). On the other hand, as it is well known,
when H(u) = u, i.e., under the partially linear model yi = xTi β + η(ti) + εi, Fisher-consistency holds if, for instance, the
errors εi have a symmetric distribution and the score function ψ is odd.

3. Consistency

In this section, we will derive, under some regularity conditions, the consistency of the estimators defined through (6)
and (7). Note that consistency of β̂ implies the consistency of η̂ using Theorem 3.1 of Boente et al. (2006). We will assume



Author's personal copy

2946 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

that t ∈ T ⊂ R. For any continuous function v : T0 → R denote ‖v‖0,∞ = supτ∈T0 |v(τ)| and ‖v‖∞ = supτ∈T |v(τ)|
where T0 ⊂ T is a compact set.

C1. The function ρ(y, a) is continuous and bounded, and the functionsw1(·) andw2(·) are non-negative bounded functions.
C2. The kernel K : R→ R is an even, non-negative, continuous and bounded function, with bounded variation, satisfying∫

K(u)du = 1,
∫
u2K(u)du <∞ and |u|K(u)→ 0 as |u| → ∞.

C3. The bandwidth sequence hn is such that hn → 0, nhn/ log(n)→∞.
C4. Themarginal density fT of t is a bounded function in T . Moreover, given any compact set T0 ⊂ T , there exists a positive
constant A1 (T0) such that A1 (T0) < fT (τ ) for all τ ∈ T0.

C5. The function S(a,β, τ ) satisfies the following equicontinuity condition: given T0 ⊂ T ,K ⊂ Rp compact sets, for any
ε > 0 there exists δ > 0 such that for any τ1, τ2 ∈ T0 and β1,β2 ∈ K ,

|τ1 − τ2| < δ and ‖β1 − β2‖ < δ ⇒ sup
a∈R
|S(a,β1, τ1)− S(a,β2, τ2)| < ε.

C6. The functions S(a,β, τ ) and η0(τ ) are continuous.

Lemma 3.1. Let K ⊂ Rp and T0 ⊂ T compact sets such that Tδ ⊂ T with Tδ the closure of a δ-neighborhood of T0. Assume
that C1 to C6 hold and that the family of functions F = {f (y, x) = ρ

(
y, xTβ + a

)
w1(x),β ∈ Rp, a ∈ R} has covering number

supQ N
(
ε,F , L1(Q)

)
≤ Aε−W for any 0 < ε < 1. Then, we have that ‖̃η − η0‖0,∞

a.s.
−→ 0 and ‖β̃ − β0‖0,∞

a.s.
−→ 0.

Theorem 3.1. Let β̂ be defined in (7). Assume that C1 holds, Ψ (y, u) = ∂ρ(y, u)/∂u is bounded and that η̃ verifies

‖̃η − η0‖0,∞
a.s.
−→ 0. (16)

Moreover, assume that the family of functionsH = {fβ(y, x, t) = ρ(y, xTβ+η0(t))w2(x),β ∈ Rp} has finite bracketing number,
N[ ]

(
ε,H, L1(P)

)
<∞, for any 0 < ε < 1, where P is the distribution of (y1, x1, t1) or that logN

(
ε,H, L1(Pn)

)
= oP(n)with

Pn the empirical distribution. Then,

(a) supβ∈Rp |Ln(β, η̃)− L(β, η0)|
a.s.
−→ 0.

(b) If L(β, η0) has a unique minimum in β0 and lim inf‖β‖→∞ L(β, η0) > L(β0, η0), then β̂
a.s.
−→ β0.

We omit the proofs of Lemma 3.1 and Theorem 3.1 since they follow arguing as in Boente et al. (2006) using Lemma A.1
in Carroll et al. (1997). Details can be found in Boente and Rodriguez (2008).

Remark 3.1. The condition that the family of functions F = {f (y, x) = ρ
(
y, xTβ + a

)
w1(x),β ∈ Rp, a ∈ R} has

covering number N
(
ε,F , L1(Q)

)
≤ Aε−W is fulfilled for the estimators defined through (13) if the function φ(s) and

G(H(s)) are of bounded variation and if the densities are such that the covering number of the class F0 = {g(y, x) =
ln f

(
y,H

(
xTβ + a

))
,β ∈ Rp, a ∈ R} grows at a polynomial rate, i.e., it is boundedbyAε−W . For the score functionsφ usually

considered in robustness, such as Tukey’s biweight function or the score function introduced in Croux andHaesbroeck (2002)
for the logistic model, φ and G(H(s)) have bounded variation. On the other hand, for the logistic and Gamma model to be
considered below, it is easy to see that for r ≥ 1,N (ε,F0, Lr(P)) grows at polynomial rate, since the family of functions
{xTβ + a,β ∈ Rp, a ∈ R} has finite dimension. Using that N (ε,H1 +H2, Lr(P)) ≤ N (ε,H1, Lr(P))N (ε,H2, Lr(P)), the
desired result is easily derived. On the other hand, since N[ ]

(
ε,H, L1(P)

)
≤ N (ε,H, L∞(P)), using similar arguments one

can derive that the conditions required in Theorem 3.1 are usually fulfilled.

4. Asymptotic distribution and tests on the regression parameter

In this section, we derive under mild conditions the asymptotic distribution of the regression parameter estimator
defined in Section 2. The obtained asymptotic distribution can be used to construct aWald-type statistic to make inferences
on the regression parameter, that is, when we want to test H0 : β = β0.

4.1. Asymptotic normality

Throughout this section we will assume that T is a compact set. We begin by fixing some notation. For any symmetric
matrix B ∈ Rq×q, we denote by λ1(B) ≥ λ2(B) ≥ · · · ≥ λq(B) the eigenvalues in decreasing order. Let (y, x, t) be a random
vector with the same distribution as (y1, x1, t1) and denote

χ(y, a) =
∂

∂u
Ψ (y, u) and χ1(y, a) =

∂2

∂u2
Ψ (y, u) .

LetΣ ∈ Rp×p be defined as

Σ = E0
{
Ψ 2

(
y, xTβ0 + η0(t)

)
[w2(x)x+ D(x, t)γ(t)fT (t)] [w2(x)x+ D(x, t)γ(t)fT (t)]T

}
,
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where γ(τ ) = E0(χ
(
y, xTβ0 + η0(t)

)
w2(x)xf −1T (t)|t = τ),D(x, τ ) is the first element of A(τ )−1w1(x)z, with A(τ ) =

E0
(
χ(y, xTβ0 + η0(t))w1(x)zzT|t = τ

)
and z = (1, xT)T. Denote by Gi(τ ) = G(yi, xi, τ ) = Ψ (yi, xTi β0+ η0(τ ))D(xi, τ ), i.e.,

the first element of A(τ )−1Ψ (yi, xTi β0 + η0(τ ))w1(xi)zi.

N1. η0 and η̃ are continuously differentiable functions, such that ‖̃η′ − η′0‖∞
p
−→ 0.

N2. The functions Ψ , χ, χ1,w1,w2, ψ1(x) = xw1(x) and ψ2(x) = xw2(x) are bounded and continuous. Besides,w1(·) and
w2(·) are non-negative functions.

N3. (a) The matrix A = E0
[
χ
(
y, xTβ0 + η0(t)

)
xxTw2(x)

]
is non-singular.

(b) The matrix A(τ ) defined above is non-singular. Moreover, infτ∈T λp+1(A(τ )) > 0.
N4. Σ is a positive definite matrix.
N5. E0

{
Ψ
(
y, xTβ0 + η0(t)

)
|(x, t)

}
= 0.

N6. E0
(
w2(x)‖x‖2

)
<∞.

N7. fT the marginal density of t is bounded continuously differentiable with bounded continuous derivative. Besides,
infτ∈T fT (τ ) > 0.

N8. (a) m1(τ1, τ2) = E0(G1(t2)|t1 = τ1, t2 = τ2),m′1(τ1, τ2) = ∂m1(τ1, τ2)/∂τ2 and m′′1(τ1, τ2) = ∂2m1(τ1, τ2)/∂τ 22 are
bounded continuous functions.

(b) mis(τ1, τ2, τ3, τ4) = E0([Gi(tj) − Gi(ti)][Gs(t`) − Gs(ts)]|ti = τ1, tj = τ2, ts = τ3, t` = τ4),m′is,`(τ1, τ2, τ3, τ4) =
∂mis(τ1, τ2, τ3, τ4)/∂τ` andm′′is,`r(τ1, τ2, τ3, τ4) = ∂

2mis(τ1, τ2, τ3, τ4)/∂τ`∂τr are bounded continuous functions.
(c) γ(τ ) is continuously differentiable with continuous derivative.

N9. The kernel K : R → R is an even non-negative bounded function with bounded variation. Moreover, it satisfies a
Lipschitz condition of order one and

∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
u2K(u)du <∞.

In order to show that β̂ is asymptotically normally distributed, we will need the following lemma whose proof can be
found in the Appendix.

Lemma 4.1. Assume that N1, N2, N3, N7 and N9 hold. If in addition,w1(x)‖x‖3 is bounded, nh4 → 0, limn→∞ nh2/ log2(1/h)
= +∞, we have that

(a) n
1
4 ‖β̃ − β0‖∞

p
−→ 0 and n

1
4 ‖̃η − η0‖∞

p
−→ 0.

(b) supτ∈T |̃η(τ) − η0(τ ) − (nfT (τ ))
−1∑n

j=1 Kh(τ − tj)Gj(τ )| = op(n−1/2), where Gj(τ ) is defined above and Kh(u) =
(1/h)K(u/h).

Remark 4.1.
• In Lemma 4.1, the assumption that w1(x)‖x‖3 is bounded can be relaxed by requiring that, for some s >
4, Ews1(x)‖x‖

3s < ∞ and that the kernel K has bounded support, by using similar arguments to those considered in
Mack and Silverman (1982).
• It is worth noting that if A(τ ) is non-singular, thus, the condition infτ∈T λp+1(A(τ )) > 0 will be fulfilled if A(τ ) is a
continuous function of τ .
• On the other hand, the continuous differentiability of the kernel K and the implicit function theorem entail that η̃(τ ) and

β̃(τ ) are continuously differentiable functions of τ . Moreover, using that S1n (̃η(τ ), β̃(τ ), τ ) = 0, we get that

Ãn(τ )
(
η̃′(τ )

β̃
′

(τ )

)
= −

1
nh2n

n∑
i=1

K ′
(
τ − ti
hn

)
Ψ

(
yi, xTi β̃(τ )+ η̃(τ )

)
zi,

where

Ãn(τ ) = −
1
nhn

n∑
i=1

K
(
τ − ti
hn

)
χ
(
yi, xTi β̃(τ )+ η̃(τ )

)
zizTi ,

and so, the uniform consistency required in N1 to η̃′(τ ) can be derived through analogous arguments to those considered
in Theorem 3.1, if the following requirements hold
(a) K is continuously differentiable with derivative K ′ bounded and with bounded variation
(b) for any compact setsK ∈ Rp andK1 ∈ R

sup
τ∈T
E

(
sup

β∈K,a∈R
|χ
(
y, xTβ + a

)
‖x‖ |t = τ

)
<∞,

sup
τ∈T
E

(
sup

β∈K,a∈R
|χ1

(
y, xTβ + a

)
‖x‖ |t = τ

)
<∞,

inf
β∈K,a∈K1

τ∈T

E
(
χ
(
y, xTβ + a

)
|t = τ

)
> 0.

• Assumptions N2–N4 are standard conditions on the score function, in particular, N3 is a standard requirement in robust
regression in order to get root-n estimators of β. As noted in Boente et al. (2006), for the score functions considered by
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Bianco and Yohai (1995), Croux andHaesbroeck (2002) and Cantoni and Ronchetti (2001), N5 is satisfied. This condition is
the conditional Fisher-consistency property as stated in the generalized linear regression model by Künsch et al. (1989).
• It is worth noting that N6 can be replaced by E

(
supβ∈K,a∈R |χ1

(
y, xTβ + a

)
|‖x‖2w2(x)

)
<∞.

• Finally, N7–N9 and the convergence requirement in N1 are standard conditions in nonparametric estimation.

Theorem 4.1. Let us assume that ti have compact support T and that N1–N9 hold. Let β̂ be a solution of (12) providing a
consistent estimator of β. If nh4 → 0, and the conclusion of Lemma 4.1 holds, we have that

n
1
2

(
β̂ − β0

)
D
−→ N

(
0,A−1ΣA−1

)
.

4.2. Tests on the regression parameter

In many situations we are interested in finding out the impact of the covariates x on the response variable y. That is, we
need to make inference on the slope parameter β or on some of its components. In this section, we focus on the problem
of testing, under model (1), the parametric hypothesis H0β : β = β0. It seems natural to test H0β through the Wald-type
statistic

D(̂β, Σ̂β̂,H0β) = (̂β − β0)
TΣ̂
−1
β̂ (̂β − β0), (17)

where Σ̂β̂ is an estimate of Σβ0 = A−1ΣA−1. To define estimators of Σ and A, let us denote by Σ̂(β, η) and Â(β, η) the
matrices

Â(β, η) =
1
n

n∑
i=1

χ
(
yi, xTi β + η(ti)

)
w2(xi)xixTi , (18)

Σ̂(β, η) =
1
n

n∑
i=1

{
Ψ 2

(
yi, xTi β + η(ti)

)
ûi(β, η)̂ui(β, η)T

}
, (19)

ûi(β, η) = w2(xi)xi + D̂i(ti,β, η)̂γ(ti,β, η)̂f (ti),

γ̂(τ ,β, η) =

n∑
i=1

Wi(τ )χ
(
yi, xTi β + η(ti)

)
w2(xi)xîf −1(ti), (20)

Â(τ ,β, η) =
n∑
i=1

Wi(τ )χ(yi, xTi β + η(ti))w1(xi)ziz
T
i , (21)

where f̂ (τ ) is a kernel estimate of the density fT (τ ), D̂i(τ ,β, η) denotes the first element of Â(τ ,β, η)−1w1(xi)zi. The
following two estimates of Σ and Amay be considered, Σ̂ = Σ̂(̂β, η̂) and Â = Â(̂β, η̂) or Σ̂ = Σ̂(̂β, η̃) and Â = Â(̂β, η̃),
where η̃ and η̂ are the estimators defined in Step 1 and Step 3, respectively.
Likelihood ratio-type tests based on the robust quasi-likelihood as described in Boente et al. (2006) are another

possibility. Themain disadvantage of robust quasi-likelihood tests is that they behave asymptotically as a linear combination
of independent chi-square random variables with one degree of freedom and thus, p-values are not easily derived.
In regression, one of the most frequent hypothesis testing problems involves only a subset of the regression parameter.

Let β = (βT(1),β
T
(2))

T, β̂ = (̂β
T
(1), β̂

T
(2))

T and x = (xT(1), x
T
(2))

T, where β(1) ∈ Rq. In order to test H0β(1) : β(1) = β(1),0,β(2)
unspecified, one may use the statistic

D1(̂β(1), Σ̂β̂,H0β(1)) = (̂β(1) − β(1),0)
TΣ̂
−1
11 (̂β(1) − β(1),0), (22)

where Σ̂11 denotes the q× q submatrix of Σ̂β̂ = Â−1Σ̂Â−1, corresponding to the coordinates of β(1).
In the next theorem, we derive the asymptotic distribution of the Wald statistic (17), under the null hypothesis H0β :

β = β0 and under a sequence of contiguous alternatives.

Theorem 4.2. Let (yi, xTi , ti)
T, 1 ≤ i ≤ n be independent random vectors satisfying (1). Let us assume that ti have compact

support T and that N1–N9 hold. Let β̂ be a solution of (12) providing a consistent estimator of β. If nh4 → 0, and the conclusion
of Lemma 4.1 holds, we have that

(i) under H0β : β = β0,Wn = nD(̂β, Σ̂β̂,H0β)
D
−→ χ2p

(ii) under H1β : β 6= β0,Wn
p
−→∞, for any fixed β

(iii) under H1β(c) : β = β0 + cn−1/2,Wn
D
−→ χ2p (θ), where θ = cTΣ−1β0

c, if, in addition, for any c ∈ Rp, η̃(τ ) is such that

‖̃η − η0‖∞
p
−→ 0 when model (1) holds with β = β0 + cn−1/2.

From Theorem 4.2, to test H0β at a given significance level α, the robust Wald test rejects H0β ifWn > χ2p,α .
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A similar result to that given in the previous theorem can be derived for the robust statistic (22) used to test H0β(1) , i.e.,
when the null hypothesis involves only a subset of q parameters. In Theorem 4.3, we state the asymptotic distribution of the
Wald-type statistic. Its proof is similar to that of Theorem 4.2.

Theorem 4.3. Let (yi, xTi , ti)
T, 1 ≤ i ≤ n be independent random vectors satisfying (1). Let us assume that ti have compact

support T and that N1–N9 hold. Let β̂ be a solution of (12) providing a consistent estimator of β. If nh4 → 0, and the conclusion
of Lemma 4.1 holds, we have that N1–N6 hold, we have that

(i) under H0β(1) : β(1) = β(1),0,W1,n = nD1(̂β(1), Σ̂β̂,H0β(1))
D
−→ χ2q

(ii) under H1β(1) : β(1) 6= β(1),0,W1,n
p
−→∞

(iii) under H1β(1)(c(1)) : β(1) = β(1),0 + c(1)n−1/2,W1,n
D
−→ χ2q (θ1), where θ1 = cT(1)Σ

−1
β0,11

c(1), if, in addition, for any

c(1) ∈ Rq, η̃(τ ) is such that ‖̃η−η0‖∞
p
−→ 0whenmodel (1) holds with β = (βT(1),β

T
(2))

T where β(1) = β(1),0+c(1)n−1/2.

5. Empirical influence function

Robust procedures seek for estimates less sensitive to outliers than the classical ones. To measure robustness with
respect to single outliers, the empirical influence function has shown to be useful, see Tukey (1977), since it reflects the
behavior of the estimator when we change one element of the sample by a new observation that does not follow the
original model. Statistical diagnostics and graphical displays for detecting outliers can be built based on empirical influence
functions. Mallows (1974) considered an influence function for small samples related to the influence function defined
by Hampel (1974) (see Hampel et al., 1986) computed at the sample empirical distribution. In parametric models this
topic is widely developed, however, less attention has been given in the nonparametric literature. A smoothed functional
approach to nonparametric kernel estimators was introduced by Aït Sahalia (1995) and used by Tamine (2002) to define
a smoothed influence function in nonparametric regression assuming that the smoothing parameter is fixed. On the other
hand, Manchester (1996) introduced a graphical method to display sensitivity of a scatter plot smoother.
Tomeasure the influence of outlying observations on the proposed estimators, wewill follow an approach similar to that

given byManchester (1996). However, instead of considering the finite-sample version of the influence function introduced
by Tukey (1977), wewill give an approach related to the empirical influence function defined byMallows (1974), which is the
influence function of the functional under study computed for the empirical distribution. Given a data set {(yi, xi, ti)}1≤i≤n,
let β̂ be the regression parameter estimator based on this data set. Denote Pn the empirical measure that gives weight 1/n
to each sample point, thus, β̂ = β̂(Pn). On the other hand, let Pn,0 the empirical measure that gives mass (1− ε)/n to each
(yi, xi, ti), 1 ≤ i ≤ n, and ε to the observation (y0, x0, t0). Denote β̂0,ε the regression parameter estimator for this new
sample. We can thus define the empirical influence function (EIF) of β̂ at (y0, x0, t0) as

EIF(̂β; (y0, x0, t0)) = lim
ε→0

β̂0,ε − β̂

ε
.

Assume that χ(y, u) = ∂Ψ (y, u)/∂u exists, in the Appendix it is shown that,

EIF(̂β; (y0, x0, t0)) = −

{
1
n

n∑
i=1

χ
(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xixTi

}−1 {
Ψ

(
y0, xT0β̂ + η̃(t0)

)
w2(x0)x0

+
1
n

n∑
i=1

χ
(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xiEIF(̃η; (y0, x0, t0))(ti)

}
, (23)

where EIF(̃η; (y0, x0, t0))(τ ) =
(
∂η̃0,ε(τ )/∂ε

)
|ε=0 and η̃0,ε(τ ) is the regression function estimator obtained in Step 1 with

the new sample. Moreover, EIF(̃η; (y0, x0, t0))(τ ) is the first element of the vector

v0(τ ) = −Â0(τ )−1K
(
τ − t0
h

)
Ψ

(
y0, xT0β̃(τ )+ η̃(τ )

)
w1(x0)z0, (24)

with

Â0(τ ) =
1
n

n∑
i=1

K
(
τ − ti
h

)
χ
(
yi, xTi β̃(τ )+ η̃(τ )

)
w1(xi)zizTi . (25)

A similar expression for EIF(̂η; (y0, x0, t0))(τ ) can be obtained by replacing in (24) and (25), β̃(τ ) and η̃ by β̂ and η̂(τ ),
respectively.
To study the behavior of the estimators, we have considered a logistic and a Gamma model. For the logistic model, we

generate a sample (yi, xi, ti), 1 ≤ i ≤ n, of size n = 200where the response variable yi is such that yi|(xi, ti) ∼ Bi(1, p(xi, ti))
where log (p(x, t)/ (1− p(x, t))) = x/2+ t − 0.5+ sin(4π t), i.e., β0 = 0.5, η0(t) = (t − 1/2)+ sin(4π t). The covariates
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Fig. 1. Empirical influence function of β̂ and its absolute value, when y0 = 1.

are such that (xi, ti) ∼ N((0, 1/2),Σ), 1 ≤ i ≤ n, with Σ =
(

1 1/(6
√
3)

1/(6
√
3) 1/36

)
and the variable t was truncated so that

t ∈ [1/4, 3/4]. We select a grid of values (y0, x0, t0) defined by y0 = 0 or y0 = 1, (t0, x0) taking values on a equidistant grid
on each axis of size 23× 40 on [0.28, 0.72] × [−10, 10]. Thus, for y0 = 1 and y0 = 0, we have a grid of 920 points (x0, t0)
and for each of them we have computed the empirical influence function, EIF(̂β, (y0, x0, t0)), given by (23). The influence
function was computed for both the classical and robust estimators. The classical procedure corresponds to select the quasi-
likelihood in Steps 1 to 3, i.e., with Ψ (y, a) = −(y− H(a))H ′(a)/V (H(a)) and w1 = w2 ≡ 1. Under the logistic model, the
robust proposal was computed by bounding the deviance as defined in (13) using the score function φ proposed by Croux
and Haesbroeck (2002) with tuning constant c = 0.5. Besides, the weight functions w1 and w2 were chosen as Tukey’s
biweight function with tuning constant c = 4.685

w1(xi) = w2(xi) =


(
1−

[
xi −Mn
4.685

]2)2
|xi −Mn| ≤ 4.685

0 |xi −Mn| ≥ 4.685,

with Mn the median of xi since we have considered xi ∈ R. The kernel was the Epanechnikov kernel, K(t) =
(3/4)

(
1− t2

)
I[−1,1](t) and the bandwidthwas h = 0.1. The bandwidth choicewas based in the fact that this bandwidthwas

selected by Boente et al. (2006) in their simulation study. Moreover, in Section 6, we report the results when the estimators
are computed using different bandwidths. The best performance was obtained for h = 0.1, when no outliers are present,
both for the classical and robust estimators of β.
Figs. 1 and 2 give the plots for y0 = 1. The corresponding ones for y0 = 0 are quite similar and can be found in

Boente and Rodriguez (2008). Note that for the classical estimators under a logistic model Ψ (y, a) = H(a) − y and so
χ(y, a) = H(a)(1 − H(a)) which implies that EIF is unbounded for large values of the covariates x since we are assuming
that t has compact support. In fact, the plots given show that the absolute value of the influence function of the classical
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Fig. 2. Empirical influence function of η̂ and its absolute value, when y0 = 1.

estimators increases as x increase. Negative values with large absolute value are extremely influential for the estimation of
β when y0 = 1. On the other hand, the robust estimator has a bounded empirical influence function. For both models, the
minimum value for the EIF is attained for values of x close to−10 when y0 = 1. This influence is negative, i.e., it produces a
negative bias in the estimators. On the other hand, points in a neighborhood of t = 0.3 and x = 10, when y0 = 1, correspond
to the maximum of the empirical influence function, this maximum being also the maximum of the absolute value of |EIF|.
Therefore, for small contaminations the more dangerous contaminations correspond to values close to x = 10 and t = 0.3
when y0 = 1 producing the larger bias in the estimation, this bias being positive. Similar conclusions can be obtained for
the estimation of η.
As mentioned above, we have also studied the behavior of the estimators under a Gamma model. For 1 ≤ i ≤ n, we

generated covariates (xi, ti) independent of each other such that xi ∼ N(0, 1), ti ∼ U(0, 1). The response variable was
generated as yi|(xi, ti) ∼ Γ (3, λi), where E (yi|(xi, ti)) = 3/λi = exp{β0xi + η0(ti)}, with β0 = 2, η0(t) = sin(2π t), i.e.,
H(a) = exp(a). The sample size equals n = 100 and the empirical influence function EIF, given by (23) was computed
over a grid of values (y0, x0, t0) defined by t0 ∈ {0.2, 0.4, 0.6, 0.8} and (y0, x0) taking values on a equidistant grid on each
axis of size 40 × 40 on [0.2, 10] × [−10, 10]. As for the logistic case, we have considered the Epanechnikov kernel in the
smoothing procedure and the bandwidth equals h = 0.15. The robust estimators corresponds to those controlling large
values of the deviance, d(y, a) = y/H(a)− ln(y/H(a))− 1, and were computed using Tukey’s biweight score function with
tuning constant c = 2. The weight functions w1 and w2 used to control high leverage points were taken as in the previous
example. We only show the obtained surfaces for t0 = 6, for other values of t0 see Boente and Rodriguez (2008). For the
selected Gamma model, the classical estimators considered are not based on the quasi-likelihood but on the deviance, i.e.,
they correspond to the choice φ(t) = t in (13) and w1 = w2 ≡ 1. Thus, Ψ (y, a) = 1 − y/H(a), χ(y, a) = y/H(a) and so,
the empirical influence function will be unbounded for each fixed t0, when y0 → ∞ for fixed x0 and when x0 → −∞ for
fixed y0. Note that since Ψ (y0, x0β + υ)x0 = (1− y0 exp(−x0β − υ)) x0, the empirical influence function of the classical
estimators will still be unbounded when x0 → +∞, but at a smaller rate than when x0 → −∞. Figs. 3 and 4 show that,
for large negative values of x and large values of y, the absolute values of the empirical influence function of the classical
estimators takes very large values. The worst effect being observed for high leverage points. On the other hand, the robust
procedure lead to more stable estimators.



Author's personal copy

2952 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

Classical Estimator Robust Estimator

Fig. 3. Empirical influence function of β̂ and its absolute value, under a Gamma model when t = 0.6.

In this situation, the classical estimator of the regression function η can be extremely influenced by an anomalous
observation. Note that the maximum value of the |EIF| is attained for large negative values of the covariates x (x0 = −10)
combined with large values of the responses (y0 = 10). This corresponds also to the maximum of the empirical influence
function, showing that in these regions the estimatorswill have a huge positive bias. The bias both for the classical regression
estimators β̂ or the classical regression function estimators η̂ is of order 1010 and so it is 108 times larger than in the logistic
setting. The huge effect of outliers can be explained by the fact that under a Gamma model, the response variables can
attain large values. As mentioned in Boente et al. (2006), for unbounded response variables y, bounded score functions
allow us to deal with large residuals, while, for models with a bounded response, such as the logistic one, the score
functions introduced in the robust procedure protects against outliers with large Pearson residuals that for binary responses
y correspond only when to contaminated points in which the variances are close to 0. This fact explains the large influence
observed under a Gamma model for the regression function. To give an example of this behavior we have computed the
values of the empirical influence function at large values of x or y, for the classical estimators, EIF(̂β; (100, 2, 0.6)) =
4.149, EIF(̂β; (1000, 2, 0.6)) = 61.926, EIF(̂β; (2, 100, 0.6)) = −133.562 and EIF(̂β; (2, 1000, 0.6)) = −1339.309 while
for the robust procedure, EIF(̂β; (100, 2, 0.6)) = 2.974, EIF(̂β; (1000, 2, 0.6)) = 0, EIF(̂β; (2, 100, 0.6)) = 2.974 and
EIF(̂β; (2, 1000, 0.6)) = 0. The effect of outliers in the covariates x seems to be larger when estimating the function
η since in this situation for the classical estimators, EIF(̂η; (100, 2, 0.6)) = 2.485, EIF(̂η; (1000, 2, 0.6)) = 45.273,
EIF(̂η; (2, 100, 0.6)) = 286.125 and EIF(̂η; (2, 1000, 0.6)) = 2934.640while for the robust procedure, EIF(̂η; (100, 2, 0.6))
= 5.967, EIF(̂η; (1000, 2, 0.6)) = 0, EIF(̂η; (2, 100, 0.6)) = 5.967 and EIF(̂η; (2, 1000, 0.6)) = 0. This behavior can
be related to the fact that locally the regression function η acts like an intercept when estimating it and outliers affect
considerably the intercept in generalized linear models.
It is worth noting that, due to the scale of Figs. 3 and 4, the |EIF| of the classical estimators seems to be equal to 0 for

values of x larger than−9. To avoid this masking effect, Fig. 5 give the plots of the EIF for the classical and robust procedures
for a reduced range of values of x and t , to compare the behavior of both methods. These plots show that the shape of both
surfaces is similar in the central part, i.e., for values of x in the range of [1.5, 3] and [1, 3] for EIF(̂β) and EIF(̂η), respectively.
Beyond that range the EIF(̂β) of the classical estimators decrease while that of the robust procedure remains bounded.
Similar conclusions hold for EIF(̂η). In fact, when t0 = 0.6, the 25% quantile of the computed values of |EIF(̂β)| and |EIF(̂η)|
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Fig. 4. Empirical influence function of η̂ and its absolute value, under a Gamma model when t = 0.6.

are equal to 6.115 and 6.220, respectively for the classical estimators. On the other hand, for the robust estimators, large
absolute values of the covariates x combined with any value of the response will lead to a null value of the EIF since leverage
points are penalized with a null weight when computing the robust estimators. Moreover, when t0 = 0.6, the maximum
values of |EIF| for the robust estimators of β and η equal 1.640 and 9.791, respectively. Fig. 6 plots the values of the empirical
influence function of β̂ and η̂, when y = 3 and t0 take values on a grid of equidistant points in [0, 1] of length 40. The same
conclusions described above remain valid in this situation.

6. Monte Carlo study

6.1. Behavior of the estimators

6.1.1. Logistic model
This section contains the results of a simulation study conducted with the aim of comparing the performance of the

proposed estimators with the classical one and with those defined in Boente et al. (2006) under a logistic partially linear
model. The estimators considered are those defined in Section 2, denoted mod in Tables and Figures, and the classical
estimators, denoted by qal, as defined in Carroll et al. (1997) and described in Sections 2 and 5, which are an alternative to
those, based on profile likelihood, considered in Severini and Staniswalis (1994).
The estimators mod corresponds to those controlling large values of the deviance and they were computed using the

score function defined in Croux and Haesbroeck (2002) with tuning constant c = 0.5. The weight functions w1 and w2
used to control high leverage points were taken as Tukey’s biweight function with tuning constant c = 4.685, as in
Section 5. The central model denoted C0 in Tables and Figures corresponds to (yi, xi, ti) such that (xi, ti) ∼ N((0, 1/2),Σ)
and y|(x, t) ∼ Bi(1, p(x, t)) as in Section 5, i.e.,β0 = 0.5, η0(t) = (t−0.5)+sin(4π t).We have considered 1000 replications
of samples of size n = 200 and, as in Section 5, the Epanechnikov kernel K(t) = (3/4)(1− t2)I[−1,1](t)was selected in the
smoothing procedure. Several bandwidths were chosen under C0 to compute the new robust estimators. Fig. 7 gives the
boxplots of the qal and mod estimators of β for different smoothing parameters. The selection h = 0.1 made by Boente
et al. (2006) gives also the best results in this case. Thus, we only report the results corresponding to h = 0.1.
For each sample generated, we have considered the following contamination labeled C1 in Tables and Figures. We have

first generated a sample ui ∼ U(0, 1), 1 ≤ i ≤ n, and then, the contaminated sample, denoted (yi,c, xi,c, ti), is defined as
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Classical Estimator Robust Estimator

Fig. 5. Empirical influence function of β̂ and η̂, under a Gamma model when t = 0.6.

Table 1
Summary results for the estimators of β0 and η0 under a logistic model.

Estimator Bias (β̂) SD (β̂) MSE (β̂) MSE (̃η) MSE (̂η)

C0 qal pro 0.0171 0.2175 0.0475 0.1164
mod bhz 0.0176 0.2222 0.0497 0.1197
qal 0.0144 0.2113 0.0426 0.1657 0.1158
mod 0.0217 0.2058 0.0428 0.2069 0.1190

C1 qal pro −0.7194 0.0658 0.5219 0.2341
mod bhz 0.0212 0.2354 0.0559 0.1803
qal −0.7198 0.0648 0.5222 0.2211 0.2277
mod 0.0260 0.2185 0.0484 0.2069 0.1992

follows (yi,c, xi,c) = (yi, xi) if ui ≤ 0.90 and (yi,c, xi,c) = (yi,new, xi,new) if ui > 0.90, where xi,new is a new observation from a
N(10, 1) and yi,new is a new observation from a Bi(1, 0.05). Table 1 summarizes the results obtained. The estimators defined
in Boente et al. (2006) are indicated as modbhz and those introduced in this paper mod. Besides, the classical counterpart
of the profile estimators considered in Boente et al. (2006) are indicated as qalpro , since they correspond to the choice
Ψ (y, a) = −(y − H(a))H ′(a)/V (H(a)) and w1 = w2 ≡ 1. For the estimators of β0, we have considered the following
summary measures: bias, standard deviation (SD) and mean square errors (MSE) computed over replications. To study the
performance of the estimators of the regression function η0, denoted by η̃ and η̂, we have considered the mean square error
(MSE), i.e.,

MSE(̃η) =
1
n

n∑
i=1

[̃η(ti)− η(ti)]2.

The estimator defined of β0 in Section 2 shows a larger bias than that considered in Boente et al. (2006) and also than the
classical one. This fact may be explained by the fact that the design for the variables t is not equispaced. Thus, a bandwidth
depending on the designmay show its advantage under thismodel. However, themean square error of the robust estimators



Author's personal copy

G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966 2955

Classical Estimator Robust Estimator

Fig. 6. Empirical influence function of β̂ and η̂, under a Gamma model when y = 3.

Classical Estimator Robust Estimator

Fig. 7. Boxplots of β̂ for different bandwidths h, for the logistic model.

is only slightly larger than that of the classical estimator under C0, while under C1, the situation is reversed being the mean
square error of the classical procedure more than ten times larger than that of the robust ones. It is worth noting that
the standard deviation of the quasi-likelihood estimator is reduced considerably under C1, so that a test for the regression
parameter will reject the null hypothesis β0 = 0.5, as we will see later. Finally, with respect to the estimators defined in
Boente et al. (2006), the regression estimators introduced in Section 2 show a slight improvement both in variance and in
mean square error, both under C0 and C1, while under C0, they show a larger bias.
With respect to the estimation of η, the first step estimators show a poor behavior compared to those considered in

Boente et al. (2006) since their mean square error is much larger (more than the double for the robust ones). It is worth
noting that even if the target in this paper is the estimation of β and η can be considered as a nuisance parameter, we have
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Table 2
Summary results for the estimators of β0 and η0 under a Gamma model with c = 2.

Estimator Bias (β̂) SD (β̂) MSE (β̂) MSE (̃η) MSE (̂η)

C0 dev −0.0017 0.0618 0.0038 0.0288 0.0280
mod −0.0015 0.0625 0.0039 0.0304 0.0287

C1 dev −0.5600 0.2103 0.3578 0.0961 0.0638
mod −0.0004 0.0741 0.0055 0.0659 0.0307

C2 dev −1.4127 1.1147 3.2381 45.8904 54.1543
mod 0.0000 0.0675 0.0046 0.0325 0.0307

C3 dev −1.8129 0.3661 3.4206 14.6368 20.5997
mod 0.0023 0.0745 0.0056 0.0333 0.0312

introduced Step 3 to improve the performance of the first step estimator. Effectively, η̂ improves the mean square error of
η̃ and is less expensive computationally than the procedure introduced in Boente et al. (2006). Besides, it is worth noting
that, all procedures are quite stable to estimate the nonparametric component since the size of the outlying observation is
bounded in this case.

6.1.2. Gamma model
In this section we summarize the results of a simulation study designed to compare the performance of the proposed

estimators with the classical ones under a model with unbounded responses such as the Gamma model. In Tables and
Figures, the estimators in this paper are indicated as mod while their classical counterparts are indicated as dev, since
they correspond to the estimators based on the deviance. To be more precise, the robust estimators correspond to those
controlling large values of the deviance as described in Bianco et al. (2005) and they were computed using Tukey’s biweight
score function with two tuning constants c = 1.5 and c = 2. The weight functionsw1 andw2 used to control high leverage
points were taken as in the previous section. On the other hand, the classical estimators correspond to the choice φ(t) = t
in (13) and w1 = w2 ≡ 1. We have performed NR = 1000 replications with samples of size n = 100 and we have used as
bandwidth h = 0.15. Other bandwidth values were tested and they give quite similar results.
The central model denoted C0 in Tables and Figures corresponds to select (xi, ti) independent of each other such that

xi ∼ N(0, 1), ti ∼ U(0, 1). The response variable was generated as yi|(xi, ti) ∼ Γ (3, λi), where E (yi|(xi, ti)) = 3/λi =
exp{β0xi + η0(ti)}, with β0 = 2, η0(t) = sin(2π t). As in Section 5, we have considered the Epanechnikov kernel in the
smoothing procedure with h = 0.15.
For each sample generated we have considered three contaminations labeled C1, C2 and C3 in Tables and Figures that

lead to contaminated samples (yi,c, xi,c, ti). We have first generated a sample ui ∼ U(0, 1) for 1 ≤ i ≤ n and then, we have
considered the following contamination scheme
• C1 introduces bad high leverage points in the carriers x, without changing the responses already generated, i.e., yi,c =
yi, 1 ≤ i ≤ n, while

xi,c =


xi if ui ≤ 0.90

a new observation x?i from a N
(
5,
1
16

)
if ui > 0.90.

• C2 introduces outlying observations in the responses generated according to the model but with an incorrect carrier x.

yi,c =
{
yi if ui ≤ 0.90
a new observation y?i such that y

?
i ∼ Γ (3, λ

?
i ) if ui > 0.90

where 3/λ?i = exp{β0x
?
i +η0(ti)} and x

?
i is a newobservation fromaN

(
5, 116

)
. Note that the carriers are not contaminated

in this situation, i.e., xi,c = xi.
• C3 corresponds to increasing the variance of the carriers x and also to introduce large values on the responses

xi,c =
{
xi if ui ≤ 0.90
a new observation from a N(0, 25) if ui > 0.90,

and

yi,c =
{
yi if ui ≤ 0.90
a new observation from a Γ (3, 3/1000) if ui > 0.90.

Table 2 summarize the results obtained when c = 2. We have considered the same summary measures as in the logistic
case. As expected the robust estimators computed with c = 2 are more efficient and they lead to similar results under both
contaminations than those computed with c = 1.5. Therefore, they should be preferred. The behavior of the estimators
when c = 1.5 can be found in Boente and Rodriguez (2008).
The classical estimator shows its sensitivity under all contaminations, the effect beingworst in this case on the estimation

of the regression function ηwhen contaminating the responses as in C2 or C3. For these two contamination themean square
errors of the classical estimators of η are more than one thousand or five hundred times, respectively, those obtained by
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Table 3
Observed frequencies of rejection under the null hypothesis under C0 for the logistic model.

h 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25

qal 0.059 0.054 0.052 0.053 0.052 0.053 0.061 0.072
mod 0.045 0.039 0.040 0.039 0.041 0.043 0.053 0.062

Table 4
Observed frequencies of rejection under the null hypothesis under C0 for the Gamma model when c = 2.

0.10 0.15 0.20 0.25

C0 dev 0.086 0.079 0.075 0.083
mod 0.079 0.070 0.073 0.073

the robust procedure that are quite close to the corresponding ones under C0. On the other hand, contaminating only on the
carriers triplicates of the mean square error of the classical estimators η̂. Therefore, as expected large responses affect the
estimators of the nonparametric componentmore than leverage points. It isworth noting that for the studiedGammamodel,
both the bias and the standard deviation of the classical estimators of β are increased under C2 and so, they both enlarge
the mean square error. On the other hand, the increased mean square error obtained under C3 is mainly due to the bias.

6.2. Performance of the tests

We have also performed a simulation study to compare the behavior of the proposed tests with respect to the classical
ones, both based on the three-step procedure described in Section 2. For the twomodels considered below,we are interested
in testing H0 : β = β0 against H1 : β 6= β0, where β0 = 0.5 and β0 = 2 for the logistic and Gamma models, respectively.
We studied the behavior of the tests under the null hypothesis and under contiguous alternatives by reporting the relative
frequencies of rejection.

6.2.1. Logistic model
The simulation conditions were analogous to those described in Section 6.1.1, but we have also considered a second

contamination indicated as C2 and defined as follows. Let p?i = H (−0.5xi + η0(ti)). As above, we have generated a sample
ui ∼ U(0, 1) and then, we have defined the contaminated sample (yi,c, xi,c, ti) as

xi,c =
{
xi if ui ≤ 0.90
a new observation from a N(5, 1) if ui > 0.90,

yi,c =
{
yi if ui ≤ 0.90
a new observation from a Bi(1, p?i ) if ui > 0.90.

In Table 3, we present the observed frequencies of rejection under the null hypothesis the non-contaminated case C0, for
the classical and robust procedure using different smoothing parameters. It is worth noting that, for the test based on the
classical estimators the observed frequencies are higher than the nominal values, while this phenomenon is not observed
for the robust Wald statistic. For the remaining of this Monte Carlo study we considered a nominal level α = 0.05 and the
bandwidth equal to h = 0.18 and h = 0.23, for the classical and robust procedures, respectively.
Fig. 8 presents the relative frequencies of rejection π for the classical and robust Wald test. The thick line correspond

to the values of the observed frequencies under C0, while the filled diamonds and the triangles to those observed under C1
and C2, respectively. The selected alternatives correspond to β = β0 + ∆n−1/2 where β0 = 0.5 and ∆ taking values over
a non-equidistant grid of points, i.e., the null hypothesis was H0 : β = 0.5. The grid chose was ∆ = 0, 0.2, 0.4, 0.8, 1.2,
from 2.4 to 33.6 the grid has a step of 1.2 and finally, the values ∆ = 42, 50.4, 58.8 were also included. This Figure shows
that the classical test is non-informative under C1 and that it is also extremely sensitive under C2, leading to a decreasing
frequency of rejection as∆ increases. On the other hand, the robust Wald test is stable under C1 and C2.

6.2.2. Gamma model
The simulation conditions were analogous to those described in Section 6.1.2 and we present the results for the robust

estimators computed with c = 2. As for the logistic model, Table 4 present the observed frequencies of rejection under the
null hypothesis the non-contaminated case C0, for the classical and robust procedure using different smoothing parameters.
It is worth noting that, for the both tests the observed frequencies are higher than the nominal values and this can be
explained by the sample size which is n = 100 while for the logistic model we considered n = 200. For the remaining of
this Monte Carlo study we considered a nominal level α = 0.05 and the bandwidth equal to h = 0.15 both for the classical
and robust procedure.
Fig. 9 presents the relative frequencies of rejection π for the classical and robust Wald test. The thick line correspond to

the values of the observed frequencies under C0, while the filled diamonds, triangles and stars to those observed under C1, C2
and C3, respectively, as described in Section 6.1.2. The selected alternatives correspond to β = β0 ± ∆n−1/2 where β0 = 2



Author's personal copy

2958 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

Classical Estimator Robust Estimator

Fig. 8. Relative frequencies of rejection π for the classical and robust Wald test, under C0 (thick line), C1 (diamonds) and C2 (triangles). The horizontal
lines indicate the nominal level α = 0.05.

Classical Estimator Robust Estimator

Fig. 9. Relative frequencies of rejection π for the classical and robust Wald test for the Gamma model, under C0 (thick line), C1 (diamonds), C2 (triangles)
and C3 (stars). The horizontal lines indicates the nominal level α = 0.05.

and∆ takes values 0, 0.2, 0.4, 0.8, 1.2 while from 2.4 to 6.0 the grid has a step of 1.2, i.e., the null hypothesis was H0 : β = 2.
Fig. 9 shows that the classical test has different behaviors depending on the contamination considered. Contamination C3
has the same effect for the Gammamodel than that observed for the logistic model under contamination C1, the test is non-
informative. Under C3, the test leads to a decreasing frequency of rejection as ∆ increases. Besides, under C2 the classical
test losses his power while the empirical level under C2 is increased. The observed behavior under the null hypothesis for
this contamination can be explained by the fact that, as observed in Table 2, not only the bias but also the standard deviation
of the classical estimator is increased and so we do not observe the same behavior as in the other two contaminations.
As for the logisticmodel, the robustWald test is stable under contamination, showing only a small loss of power under C3.

7. Concluding remarks

The problem of estimating robustly the regression parameter and the nonparametric component under a generalized
partially linear model has been considered recently. In this paper, we have introduced a family of estimators that allows
us to define a resistant procedure to test hypotheses on the parametric component. Our proposal tends to overcome the
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sensitivity of the classical procedure by considering a robust Wald test based on estimators that penalize observations with
large Pearson residuals or large deviances and also high leverage points. The tests statistics have a limiting χ2-distribution
under the null hypothesis and under contiguous alternatives.
The simulation study confirms the expected inadequate behavior of the classical Wald test in the presence of outliers.

All methods are sensitive to the choice of the smoothing parameter. Under a partially linear regression model, this fact was
also noticed by González Manteiga and Aneiros Pérez (2003), who deal with classical procedures under dependent errors
and by Bianco et al. (2006) who considered a robust test for the regression parameter. As mentioned by these authors, more
research in this direction is necessary.
The proposed robust procedure for the regression parameter are quite stable under contamination, leading to almost the

same level and power either under the central model or under the contaminations studied.
We introduced an empirical influence measure, related to the notion introduced by Mallows (1974), that allows us to

evaluate on a givendata set the sensitivity of the regressionparameter and regression function estimators to anomalous data.
It turns out that, under a generalized partially linear model, the classical approach is not robust, since it leads to unbounded
empirical influence functions. On the other hand, our proposals have bounded empirical influence.
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Appendix

Proof of (23). For the sake of simplicity, we will denote β̂0,ε as β̂ε keeping in mind that we have a new sample with the
original data set representing an 1 − ε proportion and the new observation an ε proportion. Since EIF(̂β; (y0, x0, t0)) =(
∂β̂ε/∂ε

)
|ε=0, in order to derive EIF(̂β; (y0, x0, t0)) for the proposed estimator let us compute

(
∂β̂ε/∂ε

)
|ε=0. Note that β̂ε

satisfies

(1− ε)
n

n∑
i=1

Ψ

(
yi, xTi β̂ε + η̃0,ε(ti)

)
w2(xi)xi + εΨ

(
y0, xT0β̂ε + η̃0,ε(t0)

)
w2(x0)x0 = 0, (A.1)

where (̃β0,ε(τ ), η̃0,ε(τ )) are the estimators obtained with the new sample in Step 1, i.e., we have that

0 =
1− ε
n

n∑
i=1

K
(
τ − ti
h

)
Ψ

(
yi, xTi β̃0,ε(τ )+ η̃0,ε(τ )

)
w1(xi)zi

+ εK
(
τ − t0
h

)
Ψ

(
y0, xT0β̃0,ε(τ )+ η̃0,ε(τ )

)
w1(x0)z0. (A.2)

Hence, differentiating (A.1) with respect to ε, evaluating at ε = 0 and using that (̂β, η̃) solve (12), we get

0 = −
1
n

n∑
i=1

Ψ

(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xi + Ψ

(
y0, xT0β̂ + η̃(t0)

)
w2(x0)x0

+
1
n

n∑
i=1

χ
(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xi[xTi EIF(̂β; (y0, x0, t0))+ EIF(̃η; (y0, x0, t0))(ti)]

=
1
n

n∑
i=1

χ
(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xi[xTi EIF(̂β; (y0, x0, t0))+ EIF(̃η; (y0, x0, t0))(ti)]

+Ψ

(
y0, xT0β̂ + η̃(t0)

)
w2(x0)x0. (A.3)

Therefore, to compute the empirical influence function of β̂ we need an expression for EIF(̃η; (y0, x0, t0))(ti), 1 ≤ i ≤ n. To
that purpose, let us differentiate (A.2) with respect to ε and evaluate at ε = 0. We easily obtain that

0 =
1
n

n∑
i=1

K
(
τ − ti
h

)
χ
(
yi, xTi β̃(τ )+ η̃(τ )

)
w1(xi)zizTi

EIF(̃η; (y0, x0, t0))(τ )
∂
∂ε

β̃0,ε(τ )

∣∣∣∣
ε=0


+ K

(
τ − t0
h

)
Ψ

(
y0, xT0β̃(τ )+ η̃(τ )

)
w1(x0)z0,
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and so, EIF(̃η; (y0, x0, t0))(τ ) is the first element of the vector v0(τ ) defined in (24). The result follows now easily using
(A.3). �
In order to prove Lemma 4.1, we will need the following lemma.

Lemma A.1. Let (t1, Z1), . . . , (tn, Zn) be i.i.d. random vectors, where Zi are scalar random variables such that |Zi| ≤ A. Let K
be a bounded positive function, satisfying a Lipschitz condition of order one and such that

∫
K(u)du = 1. Assume that T , the

support of t, is compact and that the density fT of t is bounded.
(a) For any ε > 0 and n large enough such that θn ≤ 1, we have that

P

(
θ−1n sup

τ∈T

∣∣∣∣∣1n
n∑
i=1

Kh(τ − ti)Zi − E (Kh(τ − ti)Zi)

∣∣∣∣∣ > 2ε
)
≤ 2C1δ−1n exp{−(4C2)

−1A21ε
2nhnθ2n },

where δn < εθnh2n/(2ACK ), C2 = 2
(
1+ 1

3εA1
)
A2‖K‖∞‖fT‖∞, C1 = diam(T )+ 1 and CK denotes the Lipschitz constant of

the kernel K .
(b) If, in addition, nh4 → 0 and nh2n/ log

2(1/h)→∞, then

n1/4 sup
τ∈T

∣∣∣∣∣1n
n∑
i=1

Kh(τ − ti)Zi − E (Kh(τ − ti)Zi)

∣∣∣∣∣ p
−→ 0.

It is worth noting that Lemma A.1 allows us to show that supτ∈T
∣∣∑n

j=1 K
(
(τ − tj)/h

)
/(nh)− fT (τ )

∣∣ p
−→ 0, if

nh/ log(1/h) → ∞. However, it is well known that using results in Dvoretzky et al. (1956), this result can be derived
under the assumption that nh2n →∞; see for instance, Theorem 2.1.3 in Prakasa Rao (1983).
Proof of Lemma A.1. (a) Let us denote by Yi(τ ) = {Kh(τ − ti)Zi − E (Kh(τ − ti)Zi)} /n and Un(τ ) =

∑n
i=1 Yi(τ ). Then, we

have that |Yi(τ )| ≤ 2A‖K‖∞/(nhn) = Mn and

Var (Yi(τ )) ≤
E(K 2h (τ − ti)Z

2
i )

n2
≤
A2

n2h2n

∫
K 2
(
τ − u
hn

)
fT (u)du

≤
A2‖K‖∞‖fT‖∞

n2h2n

∫
K
(
τ − u
hn

)
du =

A2‖K‖∞‖fT‖∞
n2hn

,

which implies that,
∑n
i=1 Var (Yi(τ )) ≤ A

2
‖K‖∞‖fT‖∞/(nhn) = Vn. Therefore, using Bernstein’s inequality, we get easily

that

P (|Un(τ )| > εθn) ≤ 2 exp

{
−
1
2
(εθn)

2
(
Vn +

1
3
εθnMn

)−1}
.

Note thatMnV−1n = 2‖K‖∞/(A‖fT‖∞) = A1 therefore, using that θn ≤ 1, we obtain

P (|Un(τ )| > εθn) ≤ 2 exp

{
−
1
2
(εθn)

2V−1n

(
1+

1
3
εθnA1

)−1}

≤ 2 exp

{
−

1
2
(
1+ 1

3εA1
) (εθn)2V−1n

}
= 2 exp

{
−
1
C2
ε2θ2n nhn

}
. (A.4)

Denote by Vi, 1 ≤ i ≤ `n a finite covering of T where Vi are closed balls centered at points τi ∈ T with radius
δn < εθnh2n/(2ACK ). Hence, `n ≤ C1δ

−1
n and for any τ ∈ Vj, we have that

|Un(τ )− Un(τj)| ≤
A
h

(
1
n

n∑
i=1

∣∣∣∣K (τ − tih
)
− K

(
τj − ti
h

)∣∣∣∣+ E ∣∣∣∣K (τ − t1h
)
− K

(
τj − t1
h

)∣∣∣∣
)

≤ 2ACK
δn

h2n
< εθn,

which implies that
sup
τ∈T
|Un(τ )| ≤ max

1≤j≤`n
|Un(τj)| + max

1≤j≤`n
sup
τ∈Vj

|Un(τ )− Un(τj)| ≤ εθn + max
1≤j≤`n

|Un(τj)|,

and so, using (A.4), we get

P
(
θ−1n sup

τ∈T
|Un(τ )| > 2ε

)
≤ P

(
θ−1n max

1≤j≤`n
|Un(τj)| > ε

)
≤ 2`n exp

{
−
1
C2
ε2θ2n nhn

}
,

concluding the proof of (a).
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(b) The proof of (b) follows easily by applying (a) with θn = n−1/4. Effectively, given ε > 0, we have that δn = h3n <
εθnh2n/(2ACK ) for n large enough, since nh

4
→ 0. Then,

P

(
n1/4 sup

τ∈T

∣∣∣∣∣1n
n∑
i=1

Kh(τ − ti)Zi − E (Kh(τ − ti)Zi)

∣∣∣∣∣ > 2ε
)
≤ 2C1

1
h3n
exp

{
−(4C2)−1A21ε

2nhnn−
1
2

}
≤ 2C1 exp

{
3 log(1/hn)− (4C2)−1A21ε

2n
1
2 hn
}
,

which concludes the proof since n
1
2 hn/ log(1/hn)→∞. �

Proof of Lemma 4.1. Let∆n(τ ) =
(
η̃(τ )−η0(τ )

β̃(τ )−β0

)
, then, we have that S1n (̃β(τ ), η̃(τ ), τ ) = 0. A Taylor expansion of order two

at (β0, η0(τ )) lead to 0 = Wn(t)+ Ãn(t)∆n(t)where Ãn(t) = An(t)+ Bn(t)

Wn(t) =
1
n

n∑
i=1

Ψ (yi, xTi β0 + η0(t))Kh(t − ti)w1(xi)zi,

An(t) =
1
n

n∑
i=1

χ(yi, xTi β0 + η0(t))Kh(t − ti)w1(xi)zizi
T,

Bn(t) =
1
2n

n∑
i=1

χ1(yi, ξi(t))(∆n(t)Tzi)Kh(t − ti)w1(xi)zizTi ,

with ξi(τ ) an intermediate point between zTi
(
η̃(τ )

β̃(τ )

)
and zTi

(
η0(τ )
β0

)
.

Let us show that,

(i) ‖Bn‖∞ = OP(‖∆n‖∞),
(ii) supτ∈T |An(τ )− fT (τ )A(τ )| = OP(h2)+ op(n−1/4),

where A(τ ) = E0
(
χ(y, xTβ0 + η0(t))w1(x)zzT|t = τ

)
.

(i) Using N2, the fact that λ1(x) = ‖x‖3w1(x) is bounded, we obtain that

|Bn(τ )| ≤
1
2
‖∆n(τ )‖ ‖χ1‖∞max{‖w1‖∞, ‖λ1‖∞}

1
nh

n∑
i=1

K
(
ti − t
h

)
.

Then, as T is a compact set, fT is bounded and nh2n →∞, we get that

sup
τ∈T

1
nh

n∑
i=1

K
(
τ − ti
h

)
= Op(1),

since supτ∈T
∣∣∑n

j=1 K
(
(τ − tj)/h

)
/(nh)− fT (τ )

∣∣ p
−→ 0, which concludes the proof of (i).

To derive (ii), applying Lemma A.1 to each component of An(τ ), we get that An(τ ) = E0(An(τ )) + oP(n−1/4), uniformly
for τ ∈ T . Let us compute E0(An(τ )),

E0(An(τ )) =
1
nh

n∑
i=1

E0

(
K
(
τ − ti
h

)
χ(yi, xTi β0 + η0(τ ))w1(xi)zizi

T
)

=
1
nh

n∑
i=1

E0

(
K
(
τ − ti
h

)
E0
(
χ(yi, xTi β0 + η0(τ ))w1(xi)zizi

T
|ti
))

= E
(
1
h
K
(
τ − t
h

)
A(t)

)
.

Through a change of variables in the integrand, using a Taylor expansion and the fact that the kernel is even, straightforward
calculations lead to supτ∈T |E (K ((τ − t)/h)A(t)) /h−A(τ )fT (τ )| = O(h2) and so, An(τ ) = fT (τ )A(τ )+OP(h2)+op(n−1/4),
concluding the proof of (ii). In particular, An(τ ) = fT (τ )A(τ )+ op(1).
Let us begin by proving (a). From (i) and (ii), and the fact that infτ∈T λp+1(A(τ )) > 0,we obtain that Ãn(τ ) is non-singular and
thus to show that n

1
4 ‖∆n‖∞

p
−→ 0, it suffices to show that n

1
4 ‖Wn‖∞

p
−→ 0. Applying Lemma A.2 to the bounded variables

Zi = Ψ (yi, xTi β0 + η0(t))w1(xi)(zi)j, where (zi)j denotes the jth component of zi, we get that n
1
4 ‖Wn − E(Wn)‖∞

p
−→ 0.



Author's personal copy

2962 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

Besides, note that, since N5 implies that E0Ψ (y, xTβ0 + η0(t))Kh(τ − t)w1(x)z = 0, using a Taylor’s expansion of order one
we get

E(Wn(τ )) = E0Ψ (y, xTβ0 + η0(τ ))Kh(τ − t)w1(x)z
= E0χ(y, xTβ0 + ξ(τ ))(η0(τ )− η0(t))Kh(τ − t)w1(x)z,

where ξ(τ ) is an intermediate point between η0(t) and η0(τ ). The Lipschitz continuity of η0 implies that

sup
τ∈T
|n
1
4 E(Wn(τ ))| ≤ Cη0‖χ‖∞‖ψ1‖∞‖η

′

0‖∞n
1
4 sup
τ∈T
E|(τ − t)Kh(τ − t)|,

where Cη0 stands for the Lipschitz constant of η0. Denote by K1(u) = |u|K(u), then, we get that n
1
4 E|(τ − t)Kh(τ − t)| ≤

n
1
4 h
∫
K1(u)fT (τ − uh)du ≤ ‖fT‖∞n

1
4 h
∫
K1(u)duwhich together with the fact that nh4 → 0 concludes the proof of (a).

Similarly, to obtain (b) we notice that using (i) and (ii), we get that

0 = Wn(τ )+ fT (τ )A(τ )∆n(τ )[1+ OP(h2)+ op(n−1/4)] + OP(‖∆n(τ )‖2),

which implies that

∆n(τ )+ [fT (τ )A(τ )]−1Wn(τ ) = ∆n(τ )(OP(h2)+ op(n−1/4))+ OP(‖∆n(τ )‖2).

Therefore, using that from (a), n1/4‖∆n‖∞
p
−→ 0 and the fact that nh4 → 0, we conclude the proof. �

The following lemma is needed for the proof of Theorem 4.1.

Lemma A.2. Let us assume that ti have compact support T and that N2 and N6 hold. Let β̂ be any consistent estimator of β and
η̃ be uniform consistent estimators of η, i.e., ‖̃η − η‖∞

p
−→ 0. Then, we have that

Â(̂β, η̃)
p
−→ A,

where Â(β, η) is defined in (18).

Proof of Lemma A.2. It is easy to see that Â(̂β, η̃) can be written as

Â(̂β, η̃) =
1
n

n∑
i=1

χ
(
yi, xTi β̂ + η0(ti)

)
w2(xi)xixTi +

1
n

n∑
i=1

χ1

(
yi, xTi β̂ + ξni

)
w2(xi)xixTi (̃η(ti)− η0(ti))

= A(1)n + A(2)n ,

with ξni = θnĩη(ti)+ (1− θni)η0(ti) and intermediate point, 0 ≤ θni ≤ 1. N2, N6 and the fact that ‖̃η − η‖∞
p
−→ 0 entails

that A(2)n
a.s.
−→ 0. On the other hand, N2 implies that λ(β) = E0(χ(y, xTβ + η0(t))w2(x)xxT) is a continuous function, and

thus, from the fact that β̂
p
−→ β0 we obtain that

E0
[
χ
(
y, xTβ̂ + η0(t)

)
w2(x)xxT

]
− E0

[
χ
(
y, xTβ0 + η0(t)

)
w2(x)xxT

] p
−→ 0.

Therefore, it is enough to show that

1
n

n∑
i=1

χ
(
yi, xTi β̂ + η0(ti)

)
w2(xi)xixTi − E0

[
χ
(
y, xTβ̂ + η0(t)

)
w2(x)xxT

]
p
−→ 0.

Define the following class of functionsH = {χ
(
y, xTβ + η0(t)

)
w2(x)xxT,β ∈ K}withK a compact neighborhood of β0.

Using analogous arguments to those considered in Lemma 1 from Bianco and Boente (2002), we obtain that A(1)n
p
−→ A. �

Proof of Theorem 4.1. Let β̂ be a solution of L1n(β, η̃) = 0 defined in (12). Using a Taylor expansion of order one, we get

0 =
1
n

n∑
i=1

Ψ

(
yi, xTi β̂ + η̃(ti)

)
w2(xi)xi

=
1
n

n∑
i=1

Ψ
(
yi, xTi β0 + η̃(ti)

)
w2(xi)xi +

1
n

n∑
i=1

χ
(
yi, xTi β

∗
+ η̃(ti)

)
w2(xi)xixTi

(
β̂ − β0

)
,

with β∗ an intermediate point between β0 and β̂. Lemma A.2 entails that

An =
1
n

n∑
i=1

χ
(
yi, xTi β

∗
+ η̃(ti)

)
w2(xi)xixTi

p
−→ A,
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so, the proof will be concluded if we show that

Bn =
√
n
n

n∑
i=1

Ψ
(
yi, xTi β0 + η̃(ti)

)
w2(xi)xi

D
−→ N (0,Σ) ,

where A andΣ are defined in Section 4. Let

Cn =
√
n
n

n∑
i=1

[
Ψ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xi + γ(ti)Gi(ti)fT (ti)

]
.

Since, N5 entails that Cn is asymptotically normally distributed with covariance matrix Σ, it will be enough to show that
Bn − Cn

p
−→ 0. It is easy to see that Bn − Cn = B(1)n − B(2)n + B(3)n where

B(1)n =
1
√
n

n∑
i=1

χ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xi [̃η(ti)− η0(ti)] ,

B(2)n =
1
√
n

n∑
i=1

γ(ti)Gi(ti)fT (ti),

B(3)n =
1
2n

n∑
i=1

χ1
(
yi, xTi β0 + ξni

)
w2(xi)xi

(
n
1
4 [̃η(ti)− η0(ti)]

)2
,

with ξni = θnĩη(ti)+ (1− θni)η0(ti), 0 ≤ θni ≤ 1, an intermediate point. Using N1 and N2, we get that B
(3)
n

p
−→ 0 and so, to

conclude the proof it will be enough to show that B(1)n − B(2)n
p
−→ 0. The conclusion of Lemma 4.1 entails that

B(1)n =
1
√
n

n∑
i=1

χ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xi

{
1

nhfT (ti)

n∑
j=1

Gj(ti)K
(
ti − tj
h

)
+ op(n−1/2)

}

= h−1n−
3
2

n∑
i=1

n∑
j=1

χ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xif −1T (ti)Gj(ti)K

(
ti − tj
h

)
+ op(1)

= B(4)n + op(1),

and so, it is enough to show that B(4)n − B(2)n
p
−→ 0.

Let R(yi, xi, ti) = χ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xif −1T (ti). Straightforward calculations lead to B

(4)
n − B(2)n = B(5)n + B(6)n +

B(7)n + B(8)n where

B(5)n =
1
√
n

n∑
i=1

1
nh

n∑
j=1

K
(
ti − tj
h

) [
R(yj, xj, tj)− γ(tj)

]
Gi(tj),

B(6)n =
1
√
n

n∑
i=1

1
nh

n∑
j=1

K
(
ti − tj
h

) [
γ(tj)− γ(ti)

]
Gi(tj),

B(7)n =
1
√
n

n∑
i=1

1
nh

n∑
j=1

K
(
ti − tj
h

)
γ(ti)

[
Gi(tj)− Gi(ti)

]
,

B(8)n =
1
√
n

n∑
i=1

[
1
nh

n∑
j=1

K
(
ti − tj
h

)
− fT (ti)

]
γ(ti)Gi(ti).

Note that N5 entails that E0(G1(t1)|t1) = 0, thus, using N7, the fact that

sup
τ∈T

∣∣∣∣∣ 1nh
n∑
j=1

K
(
τ − tj
h

)
− fT (τ )

∣∣∣∣∣ p
−→ 0,

and Lemma 6.6.7 in Härdle et al. (2000), we get that B(8)n
p
−→ 0.

To obtain that B(7)n
p
−→ 0, we will compute its expectation and variance. Let m1(τ1, τ2) be the function defined in N8.

Note N5 entails that m1(τ1, τ2) = E0 (G1(t2)− G1(t1)) |t1 = (τ1, t2 = τ2). Besides, the independence between (y1, x1, t1)
and t2 implies thatm1(τ , τ ) = 0 and so, we get that

E0(B(7)n ) =
n(n− 1)
n
√
n
E
(

γ(t1)m1(t1, t2)
1
h
K
(
t1 − t2
h

))
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=
n− 1
√
n

∫
T

γ(τ1)fT (τ1)
∫

T

m1(τ1, τ2)
1
h
K
(
τ1 − τ2

h

)
fT (τ2)dτ2dτ1.

Using N7, N8 and N9, we get that∫
m1(τ , τ2)

1
h
K
(
τ − τ2

h

)
fT (τ2)dτ2 =

∫
m1(τ , τ − uh)K(u)fT (τ − uh)du

=

∫
[−uhm′1(τ , τ )+ u

2h2m′′1(τ , ξ1)]K(u)[fT (τ )− uhf
′

T (ξ2)]du

= h2
[
m′1(τ , τ )

∫
u2K(u)f ′T (ξ2)du+ fT (τ )

∫
u2K(u)m′′1(τ , ξ1)du− h

∫
u3K(u)m′′1(τ , ξ1)f

′

T (ξ2)du

]
= O(h2),

which entails that ‖E0(B
(7)
n )‖ = ((n − 1)/

√
n)O(h2) = O(n1/2h2)→ 0 since N2 holds and T is a compact set. To compute

the variance of each component of B(7)n , the derivations are quite similar. First notice that

B(7)n =
1
n3/2

∑
i6=j

1
h
K
(
ti − tj
h

)
γ(ti)[Gi(tj)− Gi(ti)] =

1
n3/2

∑
i6=j

Vij,

then,

Cov (B(7)n , B
(7)
n ) =

1
n3
∑
i6=j

Cov (Vij,Vij)+
1
n3
∑
i6=j

∑
l6=s

Cov (Vij,Vls)

=
n(n− 1)
n3

Cov (V12,V12)+
n2(n− 1)
n3

[Cov (V12,V13)+ Cov (V12,V32)].

On the other hand, using thatmis(u1, u2, u, u) = 0 andmis(u, u, u3, u4) = 0, we have that

tr(Cov (V12,V12)) ≤
1
h2
E0

(
K 2
(
t1 − t2
h

)
tr(γ(t1)γT(t1))[G1(t1)− G1(t2)]2

)
=
1
h2
E0

(
K 2
(
t1 − t2
h

)
tr(γ(t1)γT(t1))m11(t1, t2, t1, t2)

)
=
1
h

∫
K 2(z)tr(γ(u)γT(u))m11(u, u− zh, u, u− zh)fT (u)fT (u− zh) du dz

=
1
2h

∫
K 2(z)tr(γ(u)γT(u))m′′11,44(u, u− zh, u, ξ)h

2z2fT (u)fT (u− zh) du dz,

which entails that tr(Cov (V12,V12)) = O(h). Therefore, n(n− 1)tr(Cov (V12,V12))/n3 → 0. Let us compute Cov (V12,V13).
Note that

E0(V12) =
∫
1
h
K
(
u− v
h

)
γ(u)m1(u, v)fT (u)fT (v) du dv

=

∫
K(z)γ(u)m1(u, u− zh)fT (u)fT (u− zh) du dz

= O(h),

tr(E0(V12VT13)) =
∫
1
h2
K
(
u− v
h

)
K
(
u− z
h

)
tr(γ(u)γT(u))m11(u, v, u, z)fT (u)fT (v)fT (z) du dv dz

=

∫
K(z)K(v)tr(γ(u)γT(u))m11(u, u− hv, u, u− hz)fT (u)fT (u− hv)fT (u− hz) du dv dz

= O(h2),

and so, we obtain that tr(Cov (V12,V13)) = O(h2). In an analogous way, we get that tr(Cov (V12,V32)) = O(h2) which
implies that

tr(Cov (B(7)n , B
(7)
n )) =

n− 1
n2
tr(Var (V12))+

n− 1
n
tr[Cov (V12,V13)+ Cov (V12,r ,V32)] = O(hn−1 + h2).

The convergence of B(5)n and B
(6)
n are obtained straightforwardly using similar arguments to those considered with B

(7)
n . Let

us compute their expectation.
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E0(B(6)n ) =
n(n− 1)
n
√
n
E0

(
1
h
K
(
t1 − t2
h

)
[γ(t2)− γ(t1)]G1(t2)

)
=
(n− 1)
√
n
E
(
1
h
K
(
t1 − t2
h

)
[γ(t1)− γ(t2)]m1(t1, t2)

)
=
n− 1
√
n

∫
1
h
K
(
u− v
h

)
[γ(u)− γ(v)]m1(u, v)fT (u)fT (v)dudv.

Through a Taylor expansion of order one and using thatm1(u, u) = 0, we get

E0(B(6)n ) =
n− 1
√
n
K(z) [γ(u)− γ(u− hz)]m1(u, u− hz)fT (u)fT (u− zh)dudz

=
n− 1
√
n

∫
fT (u)

∫
K(z)γ ′(ξ1)hz

(
−hzm′1(u, ξ2)

)
fT (u− hz)dzdu.

Thus, using N8, we get that E0(B
(6)
n ) = O(n1/2h2). Using analogous arguments to those considered above, it is easy to show

that the trace of its covariance matrix converges to 0, which entails that B(6)n
p
−→ 0.

Finally, let us show that E0
(
B(5)n

)
= 0 since R(y, x, t) = χ

(
y, xTβ0 + η0(t)

)
w2(x)xf −1T (t) and γ (τ) = E0(R(y, x, t)|t) =

τ . Effectively,

E0(B(5)n ) =
n(n− 1)
n
√
n
E0

(
1
h
K
(
t1 − t2
h

)
[R(y2, x2, t2)− γ(t2)]G1(t2)

)
=
n− 1
√
n
E0

(
1
h
K
(
t1 − t2
h

)
G1(t2)E0(R(y2, x2, t2)− γ(t2)|x1, y1, t1, t2)

)
=
n− 1
√
n
E0

(
1
h
K
(
t1 − t2
h

)
G1(t2)[E0(R(y2, x2, t2)|t2)− γ(t2)]

)
= 0.

Using analogous arguments, it is easy to see that the covariance terms appearing in the expansion of the variance are 0 and
that tr(Var (B(5)n )) = O((nh)−1), concluding the proof. �

Proof of Theorem 4.2. Analogous arguments to those considered in Lemma A.2 allow us to show that, when β =

β1, Σ̂β̂

p
−→ Σβ1 and so, (i) and (ii) follow easily from Theorem 4.1.

In order to prove (iii), we will use Theorem 6.6 in Van der Vaart (1998). Therefore, we need to obtain the asymptotic
distribution of (

√
n(̂β−β0), ln(qn(y,X, t)/pn(y,X, t))), where pn(y,X, t) is the joint density under the null hypothesis and

qn(y,X, t) is the corresponding one under the alternative, y = (y1, . . . , yn)T,X = (x1, . . . , xn) and t = (t1, . . . , tn)T.
Let θn(xi, ti) = xTi β0 + η0(ti)+ xTi cn

−1/2
= θ(xi, ti)+ xTi cn

−1/2 and we consider

qn(y,X, t)
pn(y,X, t)

=

n∏
i=1

exp
{
yiθ(xi, ti)+ yixTi cn

−1/2
− B(θ(xi, ti)+ xTi cn

−1/2)+ C(yi)
}

exp {yiθ(xi, ti)− B(θ(xi, ti))+ C(yi)}

=

n∏
i=1

exp
{
yixTi cn

−1/2
+ B(θ(xi, ti))− B(θ(xi, ti)+ xTi cn

−1/2)
}
,

then

ln
qn(y,X, t)
pn(y,X, t)

=
1
√
n

n∑
i=1

yixTi c−
n∑
i=1

B′(θ(xi, ti))xTi cn
−1/2
−
1
2n

n∑
i=1

B′′(θ(xi, ti))(xTi c)
2

−
1
2n

n∑
i=1

[
B′′(ξi)− B′′(θ(xi, ti))

]
(xTi c)

2.

Since B′(θ(xi, ti)) = H(xTi β0 + η0(ti))we have that,

ln
qn(y,X, t)
pn(y,X, t)

=
1
√
n

n∑
i=1

[
yi − H(xTi β0 + η0(ti))

]
xTi c−

1
2n

n∑
i=1

H ′(xTi β0 + η0(ti))(x
T
i c)
2

−
1
2n

n∑
i=1

[
B′′(ξi)− B′′(θ(xi, ti))

]
(xTi c)

2.

It is easy to see that ln (qn(y,X, t)/pn(y,X, t))
D
−→ N(−σ 2/2, σ 2)with σ 2 = cTE(H ′(xTi β0 + η0(ti))xix

T
i )c.



Author's personal copy

2966 G. Boente, D. Rodriguez / Computational Statistics and Data Analysis 54 (2010) 2942–2966

In the proof of Theorem 4.1 we obtained that
√
n(̂β − β0) = −A−1Cn + op(1), where A is defined in N3 and

Cn =
√
n
n

n∑
i=1

[Ψ
(
yi, xTi β0 + η0(ti)

)
w2(xi)xi + γ(ti)Gi(ti)fT (ti)]

=

√
n
n

n∑
i=1

Ψ
(
yi, xTi β0 + η0(ti)

)
[w2(xi)xi + w1(xi)D1(xi, ti)b(ti)],

with D1(xi, ti) the first component of A(ti)−1zi and b(ti) = E0(χ(y, xTβ0 + η0(ti))xw2(x)|t = ti).
Then, to derive the joint asymptotic distribution of (

√
n(̂β − β0)

T, ln(qn(y,X, t)/pn(y,X, t)))T, it is enough to compute
the covariance between−Cn and R1 =

∑n
i=1[yi − H(x

T
i β0 + η0(ti))]x

T
i c/
√
n. Using N5, we get that

Cov (−Cn, R1) = Cov (−Ψ
(
yi, xTi β0 + η0(ti)

)
[w2(xi)xi + w1(xi)D1(xi, ti)b(ti)], [yi − H(xTi β0 + η0(ti))]x

T
i c)

= −E0[(yi − H(xTi β0 + η0(ti)))Ψ
(
yi, xTi β0 + η0(ti)

)
[w2(xi)xixTi + w1(xi)D1(xi, ti)b(ti)x

T
i ]]c.

It is easy to see that N5 entails that

E0[(y1 − H(xT1β0 + η0(t1)))Ψ
(
y1, xT1β0 + η0(t1)

)
|(x1, t1)] = −E0χ(y1, xT1β0 + η0(t1)),

and so, Cov (−Cn, R1) = Ac+Bcwith B = E0[χ(y1, xT1β0+η0(t1))w1(x1)D1(x1, t1)b(t1)x
T
1]. Denote by a

(1)(t1), . . . , a(p)(t1)
the rows of A(t1)−1. Therefore, we have that

E0
(
χ(y1, xT1β0 + η0(t1))w1(x1)D1(x1, t1)b(t1)x

T
1

)
= E0

(
b(t1)a(1)(t1)E

(
χ(y1, xT1β0 + η0(t1))w1(x1)zix

T
1

∣∣∣∣t1)) .
The proof follows using straightforward calculations that lead to a(1)(t1)E

(
χ(y1, xT1β0 + η0(t1)w1(x1)zix

T
1|t1)

)
= 0 and so,

B = 0. �
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