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a b s t r a c t

Detecting outlying observations is an important step in any analysis, even when robust
estimates are used. In particular, the robustified Mahalanobis distance is a natural mea-
sure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known
that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis dis-
tance based on several robust estimates (like the minimum volume ellipsoid, the mini-
mum covariance determinant and the S-estimators) is not adequate for detecting atypical
observations in small samples from the normal distribution. In the multi-population set-
ting and under a common principal components model, aggregated measures based on
standardized empirical influence functions are used to detect observations with a signifi-
cant impact on the estimators. As in the one-population setting, the cutoff values obtained
from the asymptotic distribution of those aggregated measures are not adequate for small
samples. More appropriate cutoff values, adapted to the sample sizes, can be computed by
using a cross-validation approach. Cutoff values obtained from a Monte Carlo study using
S-estimators are provided for illustration. A real data set is also analyzed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Detecting outlying observations is an important step in any analysis, evenwhen robust estimates are used, either because
there is some specific interest in finding anomalous observations or as a pre-processing task before the application of some
multivariate method, in order to preserve the results from possible harmful effects of those observations. If one focuses on
ellipsoidal distributions, the robustified Mahalanobis distance (Rousseeuw and van Zomeren, 1990) is a natural measure of
outlyingness which is generally used to detect outliers from the central normal distribution. More recently, Filzmoser et al.
(2008) introduced a computationally fast procedure for identifying outliers based on a principal component analysis that
is particularly effective in high dimensions while Hubert et al. (2009) considered the situation of skewed distributions. We
refer the reader to Serneels and Verdonck (2008) and Chen et al. (2009) for some recent proposals on principal component
analysis and outlier detection for data sets with missing observations. On the other hand, as is well known, influence
functions can be used to detect influential/outlying observations. It is worth noticing that, in general, an outlier may not be
an influential observation for the estimation of the parameter of interest but an influential observation is usually an outlier.
An influential observation can be described as an observation with high influence on something, usually an estimate of the
parameters of interest. For the one-population case, Croux and Haesbroeck (1999) discussed the use of empirical influence
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functions of the eigenvalues and eigenvectors of the sample covariance matrix (Critchley, 1985; Shi, 1997) and those of
the one-step reweighted minimum covariance determinant estimator (Rousseeuw, 1985). As expected, empirical influence
functions of the robust estimators hardly changewhen contaminated data points are included in the sample, because outliers
usually have small influence on robust estimators, while, if we consider the empirical influence of the classical estimators,
a masking effect may appear, preventing the detection of outlying observations. An alternative approach, in order to avoid
masking, is to consider robust empirical influence functions for the classical estimators but with the parameters estimated
through a robust procedure (see Pison et al., 2000). This procedure is analogous to the use of the robustified version of
the Mahalanobis distance introduced by Rousseeuw and van Zomeren (1990). Usually, the cutoff values are computed
assuming implicitly that the researcher is interested in detecting just one independent observation as an outlier, i.e., a new
observation independent of the sample at hand. Instead, Becker and Gather (2001) consideredmultivariate outlier detection
rules based on Mahalanobis-type distances such that, for a multivariate normal sample of size n, no observation within the
sample is identified as an outlier with probability 1 − α. Considering xj ∼ Np(µ,6), and tn and Vn the robust location
and scatter estimators of (µ,6), the observation x is declared an outlier relatively to the observed sample if the squared
Mahalanobis distance,MD2(x, tn,Vn), is greater than a detection limit cMD2 . If the goal is to detect just one new independent
observation, xnew , as an outlier, cMD2 satisfies P(MD2(xnew, tn,Vn) < cMD2) = 1− α. On the other hand, for the experiment
for which ‘‘no observation, in a sample of size n, is identified as an outlier’’, the cutoff value cMD2 should be calculated as
P(max1≤j≤nMD2(xj, tn,Vn) < cMD2) = 1−α. For large samples the value cMD2 can be approximated by its asymptotic value,
i.e., by the chi-square percentile, χ2p,β , where β = 1 − α in the first approach and β = (1 − α)

1
n in the latter. For not very

large samples, and depending on the estimators tn and Vn, the exact cutoffs may be quite different from the asymptotic
values. Becker and Gather (2001) studied this effect for the minimum volume ellipsoid estimator (Rousseeuw, 1985), the
minimum covariance determinant estimator (Rousseeuw, 1985) and the S-estimator (Rousseeuw and Yohai, 1984) based on
Tukey’s biweight function. Those authors suggest that more reliable cutoff values can easily be determined by simulation,
taking into account the dimension and the sample size of the data set. Besides, the rule based on the S-estimator leads to
the best results in most situations. Hardin and Rocke (2005) also considered the robustified Mahalanobis distance using the
minimum covariance determinant estimator, usually denoted as theMCD-estimator.
As mentioned above, an influential observation is an observation with high influence on an estimator of some of the

parameters of interest. This has motivated the introduction of detection measures under a Common Principal Components
(cpc) model. This model (Flury, 1984) deals with several populations with a common scatter structure, i.e. assumes that
independent observations xij, 1 ≤ j ≤ ni, 1 ≤ i ≤ k, from k independent samples of size ni in Rp, are identically distributed
within each sample, with location parameter µi and scatter matrix 6i such that

6i = β3iβ
T, 1 ≤ i ≤ k, (1)

where β =
(
β1, . . . ,βp

)
is the orthogonal matrix of the common eigenvectors and3i = diag(λi1, . . . , λip) are the diagonal

matrices containing the eigenvalues for each population. Boente et al. (2002) proposed using aggregated measures based
on standardized empirical influence functions in trying to detect observations with a significant impact on the estimators
of the parameters of the cpc model for k multivariate normal samples. This is a natural approach as not all the outliers
detected by the Mahalanobis distance have a high influence on those estimators and downweighting only the observations
which are influential avoids efficiency losses. If, on the other hand, interest is in finding anomalous observations (relatively
to the model distribution or the majority of the data) without reference to a specific parameter, this procedure may also
be interesting because unlike the usual outlyingness measures it gives additional information on the reasons why the
highlighted observations differ from the bulk of the data. The proposed summary diagnostic measures can also be applied
when dealing with just one multivariate population.
The cutoff values used in Boente et al. (2002) were asymptotic approximations for detecting a new observation as

influential. As for the Mahalanobis distance, more reliable cutoff values can be obtained taking into account the number
of populations and the sample sizes. Following these ideas, in this paper we propose an adaptive method for computing
the cutoff values for detecting influential/outlying observations in the cpc setting. In Section 2 we describe the method. A
procedure for computing the cutoff values is given in Section 3. An example is studied in Section 4. Finally, some conclusions
are given in Section 5.

2. The proposal

Let us consider the multi-population setting under a cpc model. As mentioned in Becker and Gather (1999), ‘‘the
identification of outliers heavily relies on the assumption of some underlying model for the data. An observation can finally only be
considered as an outlier in respect to such amodel inmind’’. The same arguments applywhen detecting influential observations
for the principal axis and their sizes. For this reason, throughout this paper, we will assume that the multivariate normal
distribution is the central model (the onewewant to detect deviations from). Thus, letXi =

(
xi1, . . . , xini

)
be k independent

samples of independent observations such that xi1 ∼ Np(µi,6i) where the scatter matrices 6i satisfy the model (1). Let β̂
and 3̂i be robust equivariant estimators of the commondirections and the related eigenvalues of the i-th population based on
X1, . . . ,Xk. Instead of considering standardized robust scores or separate influence plots for each parameter, Boente et al.
(2002) consider just two aggregated influential measures, one for the eigenvalues and one for the eigenvectors, denoted
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Table 1
Cutoff values of G2λ and G

2
β , G

2
λ,γ and G

2
β,γ , corresponding to γ = 1− (1− α)

1
n for different values of n and p.

p α n = 1 n = 20 n = 30 n = 40 n = 50 n = 100
0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

2 G2λ 8.545 24.526 44.496 75.946 52.022 83.374 57.630 90.555 61.463 93.845 75.651 105.692
2 G2β 9.551 25.971 46.791 78.395 53.971 88.187 59.376 94.539 63.780 98.461 78.083 112.122

3 G2λ 12.384 30.841 53.382 86.052 61.267 96.590 66.387 103.545 71.211 106.273 85.646 119.657
3 G2β 25.604 57.154 92.133 144.302 102.886 159.032 113.349 168.621 120.640 174.086 143.618 191.238

5 G2λ 18.713 40.629 66.002 102.818 73.414 110.641 80.084 118.871 85.543 123.156 102.463 136.284
5 G2β 71.523 135.376 202.789 297.667 222.477 317.571 237.229 328.862 251.843 340.909 295.580 380.688

10 G2λ 31.378 58.626 88.323 131.911 97.871 141.301 105.050 147.906 110.452 149.943 131.505 164.678
10 G2β 253.343 408.048 557.683 739.712 602.753 791.481 635.780 814.346 664.542 834.136 736.033 909.870

as IML and IMB (short for influence measure for λ and influence measure for β), respectively. To avoid the problem of the
different sizes of the eigenvalues, those measures are defined using the standardized robust empirical functions leading to
the following simple functions of the standardized robust scores:

IML2i (x, β̂, 3̂i) =
p∑
r=1

{(
β̂
T
r (x− µ̂i)

)2
− λ̂ir

}2
2̂λ2ir

,

IMB2i (x, β̂, 3̂i) =
p∑
r=1

∑
s6=r

{(
β̂
T
r (x− µ̂i)

) (
β̂
T
s (x− µ̂i)

)}2
λ̂ir λ̂is

,

where µ̂i is a robust equivariant estimator of the location µi of the i-th population, β̂ = (̂β1, . . . , β̂p) and 3̂i =
diag(̂λi1, . . . , λ̂ip), 1 ≤ i ≤ k. In this way, the eigenvector diagnostics, IMB2i , turn out to be invariant through orthogonal
transformations. As mentioned in the introduction, robust estimators need to be considered in the estimation of the
unknown parameters in order to avoid masking and/or swamping effects (see, for instance, the discussion in Hardin and
Rocke, 2005). As pointed out by Boente et al. (2002), to detect influential observations with respect to the multivariate
normal distribution, one must compare the observed values of IML2 and IMB2 with high percentiles of the distribution
functions of the random variables G2λ =

∑p
r=1

(
z2r − 1

)2
/2 and G2β =

∑p
r=1

∑
s6=r z

2
r z
2
s , respectively, where z1, . . . , zp are

independent and identically distributedN(0, 1) random variables. These (asymptotic) percentiles, denoted as G2λ,α and G
2
β,α ,

were obtained through a simulation study.
The previous approach has fixed cutoff values and does not account for the sample size ni and/or the number of

populations k of the data structure. However, as argued before, it is better to adjust them to the data set at hand. As in
Becker and Gather (2001), one possibility is to consider the following measures:

ALi(Xi, β̂, 3̂i) = max
1≤j≤ni

IML2(xij, β̂, 3̂i),

ABi(Xi, β̂, 3̂i) = max
1≤j≤ni

IMB2(xij, β̂, 3̂i),

where Xi =
(
xi1, . . . , xini

)
is the sample of the i-th population. Due to the equivariance of the estimators, the cutoff values

aIML2,α and aIMB2,α depend only on the sample sizes and not on the estimated eigenvalues of each population. Therefore, they
can be chosen such that

P(AL1(X1, β̂, 3̂1) < aIML2,α) = 1− α P(AB1(X1, β̂, 3̂1) < aIMB2,α) = 1− α,

for different values of ni and they may be easily derived through a Monte Carlo study with the selected robust location and
scatter estimation procedure. However, when considering the Donoho (1982), Stahel (1981) and S-estimators, a simulation
study showed that IML2 and IMB2 have very heavy tailed distributions, leading to extremely large values of aIML2,α and aIMB2,α
when α = 0.01 or even α = 0.05. This fact may be explained by the behavior of the random variables Gλ and Gβ . Effectively,
the cutoff values computed taking into account the sample sizes but not the estimation of 3i and β, that is the percentiles
γi = 1− (1− α)1/ni of Gλ and Gβ (Table 1), increase considerably with the sample size, especially as dimension increases.
The cutoff values reported in Boente et al. (2002) correspond to the choice n = 1 and are also given, for comparison. It is
worth noticing that as dimension increases, with large sample sizes, the observations influential for the common directions
are those more difficult to detect if the asymptotic cutoff values are considered.
For the sake of simplicity, from now on, the subscript α in cutoff values will be omitted whenever the meaning is clear.
Another approach for obtaining cutoff values adapted to the sample sizes and the estimation is to consider a procedure

related to a leave-one-out cross-validationmethod. Given the cutoff constants cIML2i and cIMB2i , an observation xij is influential
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for the i-th population if

IML2i (xij, β̂
(−j)
, 3̂

(−j)
i ) > cIML2i or IMB2i (xij, β̂

(−j)
, 3̂

(−j)
i ) > cIMB2i ,

where β̂
(−j)
and 3̂

(−j)
i are the estimates computed without the observation xij. We have to repeat this process for all

observations of all populations, like in a leave-one-out cross-validation procedure.
Since the observation to be detected is independent of those used for computing the estimates, the cutoff values can be

defined as follows. For 1 ≤ i ≤ k, denote by xnewi a new independent observation from the i-th population, Xi, and compute
IML2i (x

new
i , β̂, 3̂i) and IMB2i (x

new
i , β̂, 3̂i). The cutoff values cIML2i and cIMB2i are defined as the values satisfying

P(IML2i (x
new
i , β̂, 3̂i) ≤ cIML2i |(̂β, 3̂i)) = 1− α (2)

and

P(IMB2i (x
new
i , β̂, 3̂i) ≤ cIMB2i |(̂β, 3̂i)) = 1− α, (3)

with xnewi ∼ Np(µi,6i).
As mentioned in the Introduction, the influential measures, IMLi and IMBi, may give additional information on the type of

outlyingness of a detected observation. If IMBi(x, β̂, 3̂i) is large itmeans that x is distant from the center of the i-th population
on a diagonal direction relatively to some of the principal axes, i.e., those with the largest contributions to IMBi(x, β̂, 3̂i).
Also, if IMLi(x, β̂, 3̂i) is large, it means that x has a large score on some of the common principal components, i.e., those
with the largest contribution to IMLi(x, β̂, 3̂i). In contrast, if the Mahalanobis distance is large, we only know that the point
is distant from the center of the data. Therefore, if an observation x is detected as an outlier and it also has a large value
of IMLi(x, β̂, 3̂i) but a small value of IMBi(x, β̂, 3̂i), one can suspect that this point might be influential when estimating
the size of the components. On the other hand, if x is an outlier with a large value of IMBi(x, β̂, 3̂i) and a small value of
IMLi(x, β̂, 3̂i), x might be distant from the center of the i-th population on a diagonal direction relatively to some of the
principal axes. This is especially interesting if the common principal components have a meaningful interpretation.

3. Computation of the adaptive procedure

To compute the cutoff points defined in (2) and (3), we can proceed as follows.

Step 1. Generate independent observationsxi1, . . . , xini , 1 ≤ i ≤ k, such thatxi1 ∼ Np(0p,6i). Compute the robust estimates
of the common directions and their sizes β̂ and 3̂.

Step 2. Generate a new independent observation from the i-th population, xnewi .
Step 3. Compute IML2i (x

new
i , β̂, 3̂i) and IMB2i (x

new
i , β̂, 3̂i). Call the value of interest u.

Step 4. Repeat Step 1 to Step 3 N times, saving the value u at each step.
Step 5. Sort the values obtained, {uj}1≤j≤N , as u(1) ≤ · · · ≤ u(N). The (1− α)-th quantile, u(N (1−α)), gives an approximation

to the cutoff points cIML2i or cIMB2i .

It should be noticed that the diagnostic measures are invariant for translations and orthogonal transformations. Hence,
since the observations are centered using an equivariant location estimator, we can assume that µi = 0 and β = Ip when
generating the data for computing the cutoff values. Therefore, given k independent samples of independent observations
Yi =

(
yi1, . . . , yini

)
, let us denote by β̂

(Y)
and 3̂

(Y)
i the robust estimators of the common directions and the related

eigenvalues of the i-th population based on the samplesY1, . . . , Yk. In order to detect influential observations in the samples,
we perform a parametric bootstrap using Steps 1 to 5 by taking 6i as the diagonal matrix 3̂

(Y)
i . To stabilize the variability

one might perform NR replications.
To illustrate the procedure, we have computed the cutoff values for k = 2 populations in dimensions p = 2 and 5

as described above. We have also considered a situation in dimension p = 10, to be described below. In dimension 2,
we generated normal data with covariance matrices 61 = diag(14, 4) and 62 = diag(12, 2), which have well separated
eigenvalues, to avoid consistency problems with the projection-pursuit estimators. In dimension 5, we have considered
as scatter matrices 61 = diag(33.849, 7.375, 2.472, 2.061, 0.764) and 62 = diag(85.613, 21.085, 3.820, 1.130, 0.986)
that correspond to the estimated eigenvalues in the example below. To center the observations, the location estimate, tni ,
obtained using S-estimators was used, while to estimate robustly 3̂i and β̂, the projection-pursuit procedure defined in
Boente et al. (2006) was used with f (t) = ln(t) and an M-scale estimator. Tables 2–4 give the resulting cutoff values
computed using N = 5000 and NR = 10 when ni ≤ 50, i = 1, 2, and NR = 3, otherwise. Since the mean and median
values are quite similar, in all tables we report the median over replications. The S-estimates were computed using the
matlab programs provided on Christophe Croux’s personal Web site taking 1000 random p-subsets and using, as function
ρ, Tukey’s biweight function calibrated to attain a 25% breakdown point. To allow fair comparisons, we also report, in those
tables, the cutoff values, cMD2 , obtained for the robust Mahalanobis distance computed considering as location and scatter
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Table 2
Cutoff values for n1 = 30 and n2 = 22.

α 1st population 2nd population
0.10 0.05 0.01 0.10 0.05 0.01

p = 2
cIML2i 6.857 14.895 52.972 8.596 19.564 74.855
cIMB2i 7.027 14.267 46.691 8.949 18.947 68.729
cMD2 5.599 7.525 12.384 6.062 8.237 14.246

p = 5
cIML2i 19.926 35.153 92.469 31.398 60.427 180.390
cIMB2i 77.515 118.656 264.237 112.297 196.696 521.590
cMD2 12.886 16.021 23.707 15.175 19.367 31.047

Table 3
Cutoff values for n1 = 50 and n2 = 50.

α 1st population 2nd population
0.10 0.05 0.01 0.10 0.05 0.01

p = 2
cIML2i 5.762 12.007 38.780 5.805 12.292 39.236
cIMB2i 6.286 12.096 37.266 6.430 12.836 40.562
cMD2 5.158 6.839 10.945 5.171 6.841 10.963

p = 5
cIML2i 16.550 28.394 73.150 16.744 28.641 72.954
cIMB2i 66.836 102.084 215.880 69.285 112.185 236.395
cMD2 11.199 13.877 19.834 11.175 13.719 19.565

Table 4
Cutoff values for n1 = 100 and n2 = 20 for dimension p = 2, 5.

α 1st population 2nd population
0.10 0.05 0.01 0.10 0.05 0.01

p = 2
cIML2i 5.041 9.661 29.587 9.578 23.559 79.927
cIMB2i 5.912 11.433 32.820 8.870 17.923 59.013
cMD2 4.937 6.365 9.969 6.282 8.596 16.038

p = 5
cIML2i 13.184 22.067 54.803 29.482 55.197 175.951
cIMB2i 57.427 89.621 188.159 106.899 171.846 419.117
cMD2 10.039 12.206 17.067 16.601 21.214 32.903

Table 5
Cutoff values for n1 = 100 and n2 = 100 for dimension p = 2, 5, 10.

α 1st population 2nd population
0.10 0.05 0.01 0.10 0.05 0.01

p = 2
cIML2i 5.123 9.680 30.866 5.218 11.154 32.288
cIMB2i 5.516 10.228 27.982 6.101 11.304 32.401
cMD2 4.876 6.275 9.751 5.013 6.535 10.177

p = 5
cIML2i 12.966 21.920 54.150 13.833 23.038 55.992
cIMB2i 57.326 85.757 160.526 60.143 93.785 209.319
cMD2 10.035 12.348 16.900 10.095 12.263 17.520

p = 10
cIML2i 26.911 40.664 78.571 26.799 41.020 85.279
cIMB2i 233.408 328.315 616.109 237.382 340.598 610.016
cMD2 18.632 21.635 28.416 18.746 22.032 28.148

estimators the S-estimators, using a procedure similar to that described in Step 1 to Step 5. In dimension p = 2, it is possible
to avoid resampling when computing the projection-pursuit eigenvector estimators by maximizing over a fixed number κ
of equally spaced directions. A possible choice could be κ = 1000 which gives quite reliable results.
It is worth noticing that as dimension increases the cutoff values are much larger for a fixed sample size than those

corresponding to the asymptotic cutoff values reported in Boente et al. (2002) and also in the first column of Table 1.
For dimensions p = 2 and 5, we need more than 100 observations in each sample to attain the asymptotic cutoff.
Moreover, if the percentiles G2λ,γi and G

2
β,γi
, with γi = 1− (1− α)1/ni , reported in Table 1, are considered, some influential

observations may not be detected, since the exact cutoff values are much smaller. Table 5 also reports the cutoff values
computed with n1 = 100 and n2 = 100 for dimension p = 2, 5 and 10. In this last situation, we have considered
61 = diag(1, 5, 10, 20, 30, 50, 65, 80, 95, 115) and 62 = 461. Note that when p = 2 we are still far from the asymptotic
cutoff G2λ,α , and the difference between the asymptotic cutoff and the resampling ones becomes larger as the dimension
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Table 6
Cutoff values for different values of n and p.

p α n = 20 n = 50 n = 100 n = 200 n = 400 n = 1000
0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

2 cIML21 22.550 96.168 12.576 40.366 10.853 32.937 9.465 27.072 8.608 25.284 8.548 23.024
2 cIMB21 21.286 73.951 14.298 46.270 11.261 34.302 10.182 30.908 9.817 27.408 9.387 24.380
3 cIML21 42.290 165.709 18.337 56.202 14.777 40.789 14.007 36.219 12.875 33.702 12.456 29.761
3 cIMB21 65.924 203.209 38.217 102.677 31.618 81.370 28.371 69.705 26.800 59.164 26.211 59.984
5 cIML21 131.359 562.097 30.534 79.223 23.538 59.116 20.637 46.368 19.677 42.681 18.371 39.221
5 cIMB21 304.374 854.292 115.940 270.480 89.077 214.390 83.220 177.510 79.674 157.503 75.450 138.475
10 cIML21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 46.093 94.686 36.030 71.083 32.858 62.736 31.409 56.689
10 cIMB21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 367.635 689.145 310.787 576.205 290.055 515.678 267.336 456.851

increases, especially for α = 0.01. It is worth noticing that cIMB2i ,α seems to approximate faster to G
2
β,α , since for sample

sizes equal to 100, the relative deviations, i.e., the ratios |cIMB2i ,α − G
2
β,α|/G

2
β,α , are not larger than 18%, while for cIML2i ,α that

ratio is larger than 33% for α = 0.01.
From a practical point of view, it is important to have a guideline on the sample sizes for which the asymptotic cutoff

values are a reasonable approximation. With that purpose we have computed the cutoff values cIML21 and cIMB21 for different
dimensions and for one population (k = 1). The sample sizes were taken as n = 20, 50, 100, 200, 400 and 1000. We
generated normal data sets in dimension p = 2, 3, 5 and 10 with covariance matrices 6 = diag(5, 1), 6 = diag(10, 5, 1),
6 = diag(50, 20, 10, 5, 1) and6 = diag(115, 95, 80, 65, 50, 30, 20, 10, 5, 1), respectively. These covariancematrices have
well separated eigenvalues, to avoid consistency problems with the projection-pursuit estimators. As above, to center the
observations, we considered the S-estimators, while to estimate robustly 3̂1 and β̂, projection-pursuit estimators based on
an M-scale estimator were computed. Table 6 gives the resulting cutoff values, using N = 5000 and NR = 3, computed as
the median values over replications. Note that in dimension p = 10, we do not give the cutoff values for n = 20 and 50
since the number of observations is too low for estimating all the parameters. The results given in Table 6 show that, even
for dimension p = 2, very large samples, n ≥ 400, are needed so that the asymptotic cutoff value provides a reliable value.
This shows the advantage of the proposed procedure, since, otherwise, for moderate sample sizes some extra points would
be detected as influential when using the asymptotic cutoff values.

4. Example

To illustrate the proposed outlier detection procedure and its relevance, we have selected a real data set with k = 2
populations and five variables. This data set is part of a larger data set described in Oliveira (1995) where a principal
component analysis was performed and it was also studied in Boente et al. (2002). The variables are the following
measurements made on two varieties, Lada, n1 = 100, and Longal, n2 = 47, of chestnut tree leaves of the genus Castanea,
in 1989:

x1: petiole length (in mm);
x2: number of nervures from the right side of the leaf;
x3: number of nervures from the left side of the leaf;
x4: number of teeth from the right side of the leaf;
x5: number of teeth from the left side of the leaf.

As mentioned in Boente et al. (2002), a common principal components model was judged adequate after a ro-
bust principal component analysis of each variety showed similar principal axes with different amounts of variability.
Therein, the robust common principal components obtained using plug-in estimates and the projection-pursuit esti-
mates with f (t) = t are reported. We have used the projection-pursuit procedure defined in Boente et al. (2006)
with f (t) = ln(t). The estimated eigenvalue matrices are 3̂1 = diag(33.849, 7.375, 2.472, 2.061, 0.764) and 3̂2 =
diag(85.613, 21.085, 3.820, 1.130, 0.986)while the common eigenvector matrix is

β̂ =


0.797 0.594 0.104 0.007 −0.042
−0.338 0.578 −0.582 −0.378 0.266
−0.346 0.328 0.660 −0.457 −0.359
−0.291 0.372 −0.152 0.686 −0.533
−0.218 0.261 0.439 0.422 0.717

 .
Detection of outliers becomes an important feature in this setting. In Boente et al. (2002), several influential observations
were detected in each group using the asymptotic cutoff values given in the first column of Table 1. The cutoff values cor-
responding to the procedure described in Section 3 are reported in Table 7.
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Table 7
Cutoff values for n1 = 100 and n2 = 47 for dimension p = 5.

α 1st population 2nd population
0.10 0.05 0.01 0.10 0.05 0.01

cIML2i 13.742 22.711 51.275 16.783 29.090 79.677
cIMB2i 58.444 90.181 181.517 72.358 110.900 267.172
cMD2 10.279 12.455 16.967 11.314 13.756 20.0618

Table 8
Observations detected with the asymptotic cutoff values at level 1− (1− α)1/ni , in increasing order of the influential measures.

Lada Longal

IML2 87 88 30 1 24
IMB2 30 22 6 24 1
MD2 30

The labels of the observations detected as possible outliers when α = 0.05, using IML and IMB for the projection-
pursuit method, using the asymptotic cutoff values and those computed using Steps 1 to 5, are indicated in Fig. 1. Besides,
observations detected as outliers with the asymptotic values but that are not detected with the cutoff values reported in
Table 7 are plotted with a solid circle. The horizontal dashed lines correspond to the asymptotic cutoff values while the solid
ones correspond to the proposed cutoff values. As in Becker and Gather (2001), and according to the discussion given in
Section 3, the asymptotic values detect more observations than the exact ones.
When comparing the influence measures IML and IMB with the robust Mahalanobis distance, we see that the highest

influential observations are detected by both methods. There are however some discrepancies for the observations near
the detection limits, which is to be expected since (IML, IMB) and the robust Mahalanobis distance are measuring different
effects. Note that observation 45 of the Lada variety only appears as an influential observation for the eigenvalues with our
cutoff values while with the asymptotic ones it is detected by all procedures. Besides, observations 85 and 93 are influential
with respect to the eigenvector estimators but are not detected as outliers using the robust Mahalanobis distance. On the
other hand, observations 1, 6, 22 and42of the Longal variety seem to influence the commoneigenvectors and the eigenvalues
estimation while they are not considered as potential outliers using the Mahalanobis distance. Note also that observations
1, 6 and 42 were detected by means of the squared Mahalanobis distance when using the asymptotic cutoff χ2p,0.05.
It isworth noticing that using the asymptotic detectionmeasures defined in Boente et al. (2002)with 1−(1−α)1/ni points

for G2λ and G
2
β , many observations are not detected. Table 8 reports the labels of the observations detected as influential.

This example shows clearly the advantage of the procedure described in Section 2, since it allows one to detect
observations masked by other methods. It is worth noticing that the observations in Table 8 are mainly the observations
detected as influential with our cutoff values at the 1% level.

5. Concluding remarks

A new method for identifying influential/outlying observations for the principal axes and their sizes, in principal
component analysis and/or the cpc setting, was developed according to adaptive percentiles. This method accounts not
only for the sample size ni but also for the number of populations k of the data structure. The simulation study showed that
for small samples the adaptive percentiles could be much larger than the percentiles of G2λ and G

2
β , recommended in Boente

et al. (2002). This is analogous to the behavior of the cutoff values corresponding to the robustified Mahalanobis distance
described in Becker and Gather (2001).
For the real data set analyzed, this adaptive procedure not only detected more influential/outlying observations than the

adaptive method based on the Mahalanobis distances but it also provides a nice interpretation of its outlyingness. Besides,
it allows one to detect observations that are not detected with the asymptotic 1− (1− α)1/ni cutoff values.
It isworthnoting that inmanypractical applications, principal component analysis is based on correlationmatrices rather

than on covariance matrices. This is particularly the case in situations in which the units of measurement are arbitrary. As
mentioned in Flury (1988), the FG-algorithm can be applied to the estimated correlation matrices of the k populations.
However, in the classical setting, the estimates obtained may not be the maximum likelihood estimates. In the robust
situation, robust plug-in estimators for several populations can be defined as in the one-population case (see Croux and
Haesbroeck, 2000) by using robust correlation matrix estimators. Thus, after computation of the influence measures of
the new defined estimators, cutoff values based on a plug-in procedure can be easily adapted to this particular setting by
considering the algorithm described. Nevertheless, it is not clear how to define a procedure analogous to the projection-
pursuit approach considered in Boente et al. (2006) and so the computation of cutoff values based on this approach needs
further research.
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Fig. 1. Chestnut tree data. Varieties Lada n1 = 100, Longal n2 = 47. Observations detected as outliers at the 5% detection level. The solid line corresponds
to the computed cutoff values while the dashed line corresponds to the asymptotic ones.
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