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a b s t r a c t

To enrich the dynamics of mathematical models of angiogenesis, all mechanisms involved
are time-dependent. We also assume that the tumor cells enter the mechanisms of
angiogenic stimulation and inhibition with some delays. The models under study belong
to a special class of nonlinear nonautonomous systems with delays. Explicit sufficient and
necessary conditions for the existence of the positive periodic solutions were obtained via
topological methods. Numerical examples illustrate our findings. Some open problems are
presented for further studies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The process which enables a solid tumor to make the transition from the relatively harmless and localized avascular
state to the more dangerous vascular state is termed angiogenesis. The angiogenic process is determined by the relative
balance of angiogenesis stimulators and inhibitors [1–3]. The two-compartmental model of tumor growth, in response to
tumor-derived stimulators and inhibitors, was developed in [4].

dx
dt

= ax(t) ln
K(t)
x(t)

− p(t)x(t)

dK
dt

= −cK(t)+ S(x(t), K(t))− I(x(t), K(t))− q(t)K(t),

where x(t) is the tumor mass and K(t) is a variable carrying capacity. According to [4], a stimulator/inhibitor tumor growth
dynamics should provide a time dependent carrying capacity under angiogenic control and include the distinct mechanisms
for angiogenic stimulation and inhibition. The dynamics of the second equation is a balance between stimulatory and
inhibitory effects: the first term is the loss of functional vasculature; the second term corresponds to the stimulatory capacity
of the tumor; the third term reflects endogenous inhibition due to endothelial cell death or disaggregation.

An additional insight into clinically observed tumor-induced phenomena, such as tumor recurrence or short and long
term tumor oscillations, can be gained by introducing models with the time-varying parameters. It is known (see, for
example, [5–7]) that the drugs affect all types of cells, and over time the therapy has more effect on the normal tissue
and less effect on the tumor volume; or the drugs might reduce the carrying capacity of the normal cells. The tumor
microenvironment plays a crucial role in these processes [8] because the variability of the tumormicroenvironment induces
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fluctuations in all mechanisms. The biological interpretations of environmental fluctuations are many, e.g., the degree of
vascularization of tissues, the supply of oxygen, the supply of nutrients, the immunological state of the host, chemical
agents, temperature and radiations. To determine appropriate treatment schedules the influence of variations in tumor
kinetics should be considered. Thus we assume that all mechanisms involved are time-dependent.

To model processes in nature it is frequently required to know system states ‘‘after a while’’, i.e., models incorporating
memory [9]. In cell dynamics the after-effects represent: the time it takes to respond to angiogenic growth factors, divide,
migrate to the site of growth; time between activation of vascular precursor cells and construction of functional vessels;
time associated with drug-induced cell-kill, or progression delays due to repair of cell damage [10–14]. We assume that the
tumor cells enter the mechanisms of angiogenic stimulation and inhibition with some delays h(t) ≤ t .

Following the models developed by Hahnfeldt et al. [4,15], we complement their results by studying model

dx
dt

= a(t)x(t) ln
K(t)
x(t)

− p(t)x(t)

dK
dt

= −c(t)K(t)+ S(t, x(h(t)), K(t))− I(t, x(h(t)), K(t))− q(t)K(t),
(1)

where all mechanisms involved are time-dependent. The last terms p(t) and q(t) in Model (1) are the varying effectiveness
of the drug. If, for example, we assume that the drug combination is administered with a periodicity, then p(t) and q(t) can
be expressed as exponential decaying functions in t during each period.

Remark 1.1. According to [4], S = bKmxn is a form for the stimulatory mechanism, wherem+ n ≈ 1. For example, S = bx,
or another choice S = bK if we follow the hypothesis that the stimulatory factors are independent of the tumor size [1,2].

In particular, we will examine the following models:
Model 1.

dx
dt

= a(t)x(t) ln
K(t)
x(t)

− p(t)x(t)

dK
dt

= −c(t)K(t)+ b(t)x(h(t))− d(t)x2/3(h(t))K(t)− q(t)K(t).
(2)

Model 2.

dx
dt

= a(t)x(t) ln
K(t)
x(t)

− p(t)x(t)

dK
dt

= −c(t)K(t)+ b(t)K(t)− d(t)x2/3(h(t))K(t)− q(t)K(t).
(3)

We shall assume that a, b, c, d, p and q are positive, continuous and T -periodic and that h(t) = t − τ(t) for some
continuous and T -periodic positive function τ . By ‘positive periodic solutions’ we mean solutions (x, K) that are globally
defined and satisfy

x(t + T ) = x(t) > 0, K(t + T ) = K(t) > 0

for all t .
Classicalmodels that have been themainstay formodels of cells growth are based on the assumption that themechanism

of the growth rate of tumor cells is a Gompertzian curve

dx
dt

= rx(t)G(x(t)),

whereG(x) = α−β ln x(t). Hereα is the intrinsic growth rate of the tumor, i.e., a parameter related to the initialmitosis rate;
β is the growth inhibition factor, related to the antiangiogenic process. For the Gompertz model the inhibition logarithmic
function G(x) and its derivative are more likely to cause chaotic (abruptive) behavior. According to the recent experimental
data [16] (see also [17]), the Gompertz model is not suitable for extrapolating the specific growth rate (or generation time)
of the cells when the concentration is low and/or at the early stage of cell development. Therefore, a logistic-type model
with Richards nonlinearity could also be used for modeling tumor growth dynamics (see, for example, [4]).
Model 3.

dx
dt

= a(t)x(t)

1 −

[
x(t)
K(t)

]m
− p(t)x(t)

dK
dt

= −c(t)K(t)+ b(t)x(h(t))− d(t)x2/3(h(t))K(t)− q(t)K(t).

(4)

Herem > 0 and m ≠ 1 is a constant that drops an unnatural symmetry of the classical logistic curve (m = 1).



Author's personal copy

P. Amster et al. / Nonlinear Analysis: Real World Applications 13 (2012) 299–311 301

Note that all autonomous models without time lags were studied in [18,4,15]. In [19], autonomous models with time-
varying delays were introduced, explicit conditions for the existence of positive global solutions and the equilibria solutions
were obtained. Based on the results obtained in [20–24], we found explicit sufficient conditions for the existence of the local
attractors for Model 1 and Model 2.

The fact that malignant tumors have periods in which they grow rapidly, often though not invariably followed by a
latent stage, has been known by clinicians for many years. The existence of periodic positive solutions (cancer periodicity)
of models i.e., after cessation of treatment the original periodic rhythm returns, is a very important issue in cancer research
(2)–(4). For the constant dose of the drug it is possible to find a dose such that the equilibrium point is equal to zero, whereas
in a periodic microenvironment, suppression or eradication of the tumor depends on the shape of pulses in the periodic
protocol. According to [5], chemotherapy treatment with a period commensurate with the normal cell cycle time could also
minimize the normal cell kill. Therefore, the prediction of the oscillations in the concentrations of cells in the various phases
of the cell cycle may drastically increase the efficacy of resonance chemotherapy [5,25].

Amodel for tumor growth in [26] that combinesmultiple effects, such as periodicity of the environment, time delays and
impulse actions is a step toward new ways to understand the complex tumor dynamics. Based on the contraction mapping
principle, sufficient conditions for the existence and exponential stability of the positive non-periodic (almost periodic)
solutions were obtained in [26].

Partial differential equations (PDEs) have been also used extensively to model spatial aspects of solid tumor growth
and cancer-immune system interactions, and have been discussed in many research papers (e.g., [27–34]). For example,
a class of nonlinear PDEs, with quadratic type nonlinearity, that models complex multicellular systems was introduced
in [27]. The asymptotic analysis refers to the derivation of hyperbolic models focused on the influence of existence of a
global equilibrium solution. Amodel arising in angiogenesis, that includes a chemotaxis type term and a nonlinear boundary
condition at the tumor boundary, was under study in [28]. It was shown that the parabolic problem admits a unique positive
global solution. One second-order PDE that approximates a tumor invasion model was under study in [30]. In [32] a model
of cancer invasion with tissue remodeling was under study. Under a restrictive assumption on the coefficients, the global
existence, boundedness and uniqueness of classical solutions were obtained by establishing some a priori estimates. In [33],
a PDEmodel of tumor angiogenesis that describes the angiogenic response of endothelial cells to a secondary tumor, is under
study. By using topological methods, it was proved that the PDE system has a unique global solution. In [34], a mathematical
model describing the growth of a solid in the presence of an immune system response was under investigation via the
reaction–diffusion PDE system. By using the approximation method combined with energy estimates and the bootstrap
arguments, it was proved that this system has a global classical solution.

In this paper we are focused on models (2)–(4), and based on the topological degree theory, proved the existence of
periodic solutions of all models, illustrated by the numerical examples. Necessary and sufficient conditions for the existence
theorems are explicit, and for each model we obtained upper and lower estimates for the solutions. Finally, we formulate
some open problems.

2. Preliminaries

Substitution u = ln x, v = ln K yields:
for model (2)

du
dt

= a(t)(v(t)− u(t))− p(t)

dv
dt

= b(t)eu(h(t))−v(t) − c(t)− d(t)e2/3u(h(t)) − q(t),
(5)

for model (3)

du
dt

= a(t)(v(t)− u(t))− p(t)

dv
dt

= b(t)− c(t)− d(t)e2/3u(h(t)) − q(t),
(6)

and for model (4)

du
dt

= a(t)(1 − em(u(t)−v(t)))− p(t)

dv
dt

= b(t)eu(h(t))−v(t) − c(t)− d(t)e2/3u(h(t)) − q(t).
(7)

Severalmethods are used for the first order periodic systems; among them, one of the best known is based on the Poincaré
operator, defined in terms of the solutions of the associated initial value problem. This requires some information about the
flow of the differential equation; for instance, it is needed to know in advance if, for some choice of the initial data, solutions
starting at t = 0 are defined over [0, T ]. In contrast with this situation, topological degree methods allow to avoid any
consideration about the flow by studying an equivalent functional equation.
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For the reader’s convenience, we present the basic facts of the degree theory that are used in this paper.
Roughly speaking, the topological degree is an algebraic count of the zeros of a continuous function f : U → E where U

is an open and bounded subset of a Banach Space E, and f does not vanish on ∂U . Let E = Rn. A function f ∈ C1 has 0 as a
regular value, if the differential Df (x) : Rn

→ Rn is surjective for every x ∈ f −1(0). We define Brouwer degree of f as

degB(f ,U, 0) :=

−
x∈f−1(0)∩U

sgnJf (x), (8)

where Jf denotes the Jacobian of f , namely Jf (x) = detDf (x). This definition can be extended in an appropriate way for f ∈ C
with f ≠ 0 on ∂U .

Further generalization for infinite dimensional spaces is given by the Leray–Schauder degree, which is defined for
Fredholm operators f : U → E of the type f = I − K with K compact. In particular, when the range of K is contained in a
finite dimensional subspace V ⊂ E, the Leray–Schauder degree is defined by

degLS(f ,U, 0) := degB(f |V ,U ∩ V , 0). (9)

More remarkable properties of the degree can be found for example in [35], however, in the present work, we will only
use two of them:

1. If deg(f ,U, 0) ≠ 0, then f vanishes in U .
2. Homotopy invariance: if F : U × [0, 1] → E is continuous such that I − F(·, λ) is compact for all λ and F(u, λ) ≠ 0 for

u ∈ ∂U and λ ∈ [0, 1], then degLS(F(·, λ),U, 0) does not depend on λ.

Consider the spaces

CT : {u ∈ C(R) : u(t) = u(t + T )}, CT : {u ∈ CT : u = 0},

where u denotes the average of the function u(t) on [0, T ], namely u :=
1
T

 T
0 u(t) dt .

According to the standard continuation method [36], we shall convert each of the problems under study into an
equivalent equation F(u, v) = (0, 0) for some continuous F : CT × CT → CT × CT ; and embed it in a continuous
one-parameter family of problems Fλ(u, v) = (0, 0), where F1 = F , and each Fλ has the form Fλ = I − Kλ, with
Kλ : CT × CT → CT × CT compact. Thus, using the homotopy invariance of the degree, it will suffice to find a bounded
domainΩ ⊂ CT × CT such that

1. Fλ does not vanish on ∂Ω for 0 ≤ λ < 1.
2. degLS(F0,Ω, 0) ≠ 0.

Remark 2.1. In all cases, we define the operators in such a way that the range of K0 is contained in R2, regarded as a
2-dimensional subspace of CT × CT ; thus, according to (9), the Leray–Schauder degree degLS(F0,Ω, 0) will be computed as
the Brouwer degree degB(f ,U, 0), where f := F0|R2 : R2

→ R2 and U := Ω ∩ R2. Furthermore, since f is a C1 function and
0 is a regular value, the previous formula (8) applies.

In order to establish an appropriate setting for solving all systems (5)–(7), we shall define the corresponding integral
operators. Firstly, observe that for any ϕ ∈ CT and ψ ∈ CT the problems

u′(t)+ a(t)u(t) = ϕ(t), v′(t) = ψ(t)

have unique solutions u ∈ CT and v ∈ CT . This allows us to define operators Ka : CT → CT and K0 : CT → CT given by

Ka(ϕ) = u, K0(ψ) = v.

A simple computation shows that

Ka(ϕ) =

 T
0 ϕ(s)e

 s
0 a(r) dr ds

e
 T
0 a(r) dr

− 1
+

∫ t

0
ϕ(s)e

 s
0 a(r) dr ds


e−

 t
0 a(r) dr ,

and

K0(ψ) =

∫ t

0
ψ(s) ds −

1
T

∫ T

0

∫ s

0
ψ(r) dr ds.

Note that the integral operators, defined by first order systems, are similar to those used in the Samoilenko
numerical–analytical method (see e.g. [37]). An application of Arzelá–Ascoli’s Theorem shows that Ka and K0 are compact
operators.

Remark 2.2. In all cases, we define the operators in such a way that the range of K0 is contained in R2, regarded as a
2-dimensional subspace of CT ×CT ; thus, the Leray–Schauder degree degLS(F0,Ω, 0) can be easily computed as the Brouwer
degree degB(f ,U, 0), where f := F0|R2 : R2

→ R2 and U := Ω ∩ R2. Furthermore, since f is a C1 function and 0 is a regular
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value, its degree is simply defined as−
x∈f−1(0)∩U

sgnJf (x),

where Jf denotes the Jacobian determinant of f , namely Jf (x) = detDf (x).

For Model 1 and Model 2, we set
Fλ(u, v) = (u, v)− (Ka(Φλ), v + Ψ1 + K0(Ψλ − Ψλ)),

where for Model 1 the continuous operatorsΦλ and Ψλ : CT × CT → CT are defined by
Φλ = Φλ(v) := λ(a(t)v(t)− p(t))

and

Ψλ = Ψλ(u, v) := λ(b(t)eu(h(t))−v(t) − c(t)− q(t)− d(t)e
2
3 u(h(t))). (10)

Whereas for Model 2, the operatorsΦλ and Ψλ are defined as
Φλ = Φλ(v) := a(t)(1 − λ)v + λ(a(t)v(t)− p(t)),

and

Ψλ = Ψλ(u) := λ(b(t)− c(t)− q(t)− d(t)e
2
3 u(h(t))).

When 0 < λ ≤ 1, Fλ(u, v) = (0, 0) if and only if (u, v) ∈ CT × CT is a solution of the system
u′(t)+ a(t)u(t) = Φλ
v′(t) = Ψλ.

(11)

Indeed, if Fλ(u, v) = 0 then u = Ka(Φλ) and hence u′
+ au = Φλ. Moreover, taking average at both sides of the equality

v = v + Ψ 1 + K0(Ψλ − Ψλ)

we deduce that Ψ1 = 0 and then Ψλ = 0. This implies that v = v + K0(Ψλ) and consequently v′
= Ψλ. Conversely, the

equality u′
+ au = Φλ obviously implies that u = Ka(Φλ) and, on the other hand, from the equality v′

= Ψλ and the
periodicity of v we deduce that Ψλ = 0 and then Ψ1 = 0. Moreover, as (v− v)′ = Ψλ it follows that v− v = K0(Ψλ)which,
in turn, implies that v = v + Ψ1 + K0(Ψλ − Ψλ).

To examine Model 3, we assume
Fλ(u, v) := (u, v)− (u + Φ1 + K0(Φλ − Φλ), v + Ψ1 + K0(Ψλ − Ψλ)),

where
Φλ = Φλ(u, v) := λ(a(t)(1 − em(u−v))− p(t))

and Ψλ is defined by (10).
Proceeding as we did before with the second equation of (11), for 0 < λ ≤ 1 it is seen that Fλ(u, v) = (0, 0) if and only

if (u, v) ∈ CT × CT is a solution of the system
u′(t) = Φλ
v′(t) = Ψλ.

(12)

In all cases, it follows from the definition ofΦλ and Ψλ that (u, v) ∈ CT × CT is a solution if and only if F1(u, v) = (0, 0).
Thus, it will suffice to prove that F1 has at least one zero in the set

Ω := {(u, v) ∈ CT × CT : α < u(t), v(t) < β ∀t ∈ R}

for some constants α < β to be determined for each model. In the next section, we obtain appropriate upper and lower
bounds for the solutions of systems (11) and (12). Since the computations vary slightly for each case, our results are presented
separately.

3. Main results

In this section, we establish sufficient conditions for solving Models 1–3. For convenience, the maximum and the
minimum values of a function ϕ ∈ CT will be denoted respectively by ϕmax and ϕmin.

3.1. Existence of periodic solutions for model 1

Theorem 3.1. Assume that b(t) > (c(t) + q(t))e(p/a)max for all t. Then problem (2) admits at least one positive T-periodic
solution.

Proof. For (u, v) ∈ R2, it is easy to check that

F0(u, v) = (u, c + q + de2/3u − beu−v).
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Then F0(u, v) = (0, 0) if and only if u = 0 and v = ln b
c+q+d

. Thus, if we fix the constantsα < 0 < β satisfying the inequality

α < ln
b

c + q + d
< β,

then F0 vanishes at exactly one point P ∈ (α, β)× (α, β), with

DF0(P) =

1 0

−


c + q +

d
3


c + q + d

 .
Hence,

degLS(F0,Ω, 0) = degB(F0|R2 , (α, β)× (α, β), 0) = 1.

Suppose that Fλ(u, v) = (0, 0) for some λ ∈ (0, 1). If η is a maximum or a minimum of the function u, then from the first
equation of system (11)

u(η) = λ


v(η)−

p(η)
a(η)


,

and we conclude that

umax ≤ λ


vmax −

p
a


min


,

umin ≥ λ


vmin −

p
a


max


.

Moreover, if ξ is a critical point of v, then

b(ξ)eu(h(ξ))−v(ξ) = c(ξ)+ q(ξ)+ d(ξ)e2/3u(h(ξ)). (13)

Assume firstly that ξ is a global maximum. If vmax ≤ (
p
a )min, then umax ≤ 0; otherwise, u(h(ξ)) − vmax < −(

p
a )min, and we

deduce

e2/3u(h(ξ)) <

be−(p/a)min − c − q

d


max
.

Thus,

u(h(ξ)) <
3
2
ln

be−(p/a)min − c − q

d


max

:= k1

and, using (13) and the fact that v(ξ) = vmax we obtain:

c(ξ)+ q(ξ) < b(ξ)ek1e−vmax .

The latter implies

umax +

p
a


min
< vmax < k1 + ln


b

c + q


max
.

Hence, we may fix β such that

β > max

k1 + ln


b

c + q


max
,
p
a


min


.

Next, if ξ is a global minimum of v then (13) holds and

u(h(ξ))− vmin < ln
c(ξ)+ q(ξ)+ d(ξ)e2/3[β−(p/a)min]

b(ξ)
:= M(ξ).

Hence (13) yields

u(h(ξ)) < vmin + ln
c(ξ)+ q(ξ)+ d(ξ)e2/3[vmin+M(ξ)]

b(ξ)
.
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Using the fact that ln(x + h) < ln(x)+
h
x for h, x > 0, we obtain

u(h(ξ)) < vmin + ln

c + q
b


max

+ γ e2/3vmin ,

where

γ :=


de2/3M

c + q


max
. (14)

In consequence,

umin < vmin + ln

c + q
b


max

+ γ e2/3vmin .

If vmin ≥ (
p
a )max, then umin ≥ 0, or otherwise, vmin < umin + (

p
a )max and we conclude:p

a


max

+ ln

c + q
b


max

+ γ e2/3vmin > 0,

namely

vmin >
3
2
ln

ln


b
c+q


min

−
 p
a


max

γ
.

Thus, it suffices to choose

α < min

3
2
ln

ln


b
c+q


min

−
 p
a


max

γ
−

p
a


max
, ln

b

c + q + d
, 0

 . �

Corollary 3.1. The following upper estimates hold for the solutions of Model 1

umax +

p
a


min

≤ vmax < k1 + ln


b
c + q


max
.

Moreover, if the assumption of Theorem 3.1 is satisfied, then the following lower estimates also hold

umin +

p
a


max

≥ vmin >
3
2
ln

ln


b
c+q


min

−
 p
a


max

γ

with γ as in (14) and β = k1 + ln


b
c+q


max

.

3.2. Existence of periodic solutions for model 2

Theorem 3.2. Assume that b(t) > c(t)+ q(t) for all t. Then problem (3) admits at least one positive T-periodic solution.

Proof. For (u, v) ∈ R2, we have

F0(u, v) = (u − v, c + q + de2/3u − b).

Thus, if α and β satisfy

e2/3α <
b − c − q

d
< e2/3β ,

then F0 vanishes at exactly one point P ∈ (α, β)2, with

DF0(P) =


1 −1

2
3
(b − c − q) 0


Hence,

degLS(F0,Ω, 0) = degB(F0|R2 , (α, β)× (α, β), 0) = 1.
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As in the previous case, we shall find a priori bounds for the solutions of Fλ(u, v) = (0, 0) for λ ∈ (0, 1). From system (11),
if ξ is a critical point of v, then

u(h(ξ)) =
3
2
ln

b(ξ)− c(ξ)− q(ξ)
d(ξ)

and hence

umax ≥
3
2
ln

b − c − q

d


min
, umin ≤

3
2
ln

b − c − q

d


max
.

On the other hand, if η is a maximum or a minimum of u, then

u(η) = (1 − λ)v + λv(η)− λ
p(η)
a(η)

,

and we conclude that

umax ≤ vmax − λ
p
a


min
,

umin ≥ vmin − λ
p
a


max
.

Moreover, by the periodicity of v there exist values tmin < tmax such that tmax − tmin ≤ T and vmax = v(tmax), vmin = v(tmin).
Thus, for some mean value θ

vmax − vmin = v′(θ)(tmax − tmin) ≤ TΨλ(u)(θ) < T (b − c − q)max := R. (15)

Combined with the previous inequalities, inequality (15) implies that

umax − umin < R + λ

[p
a


max

−

p
a


min

]
< R +

p
a


max

−

p
a


min
,

and consequently

umax < R +

p
a


max

−

p
a


min

+
3
2
ln

b − c − q

d


max

:= M+,

umin >
3
2
ln

b − c − q

d


min

− R +

p
a


min

−

p
a


max

:= M−.

Integration of the first equation of system (11) yields

v = u + λp/a

which, in turn, implies:

vmax ≤ v + R < M+
+ p/a + R,

vmin ≥ v − R > M−
− R.

To complete the proof, it suffices to choose

α = M−
− R and β = M+

+ p/a + R. �

Corollary 3.2. The following upper estimates hold for Model 2

umax < M+ and vmax < M+
+ p/a + R.

Moreover, if the assumption of Theorem 3.2 is satisfied, then the following lower estimates also hold

umin > M− and vmin > M−
− R.

3.2.1. Alternative approach
For simplicity, denote u = u(t), u ◦ h = u(h(t)), a = a(t), b = b(t), c = c(t), d = d(t), p = p(t) and q = q(t). If

a(t) and p(t) are smooth functions, an alternative existence result for Model 2 is obtained from the equivalent second order
Liénard type equation

u′′
+


a −

a′

a


u′

= a

b − c − q −

p
a

′


− ade2/3u◦h := Φ(u).
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In fact, it can be proven that the inequality

b > c + q +

p
a

′

(16)

for all t is a sufficient condition for the existence of T -periodic solutions. We give a sketch of the proof here; the details are
left to the reader.

A simple computation shows that, for ϕ ∈ CT , the problem

u′′
+


a −

a′

a


u′

= ϕ

has a solution u ∈ CT (which is unique) if and only if
 T
0 θϕdt = 0, where θ =

1
a . Hence, we may define a compact operator

K :


ϕ ∈ CT :

∫ T

0
θϕ dt = 0


→ CT

given by K(ϕ) = u, and Fλ : CT → CT defined by

Fλ(u) := u − u − P(u)− λK


Φ(u)−

θP(u) T
0 θ

2(t) dt



where P(u) =
 T
0 θ(t)Φ(u)(t) dt .

Next, for λ > 0, Fλ(u) = 0 if and only if

u′′
+


a −

a′

a


u′

= λΦ(u).

Moreover, F0|R = −P|R; namely, for u ∈ R

F0(u) = e2/3u
∫ T

0
d dt +

∫ T

0
c + q − b dt.

Clearly, if inequality (16) holds, then F0(−u) < 0 < F0(u) for u ≫ 0 and therefore deg(F0|R, (−R, R), 0) = 1 for large
enough R. On the other hand, if Fλ(u) = 0 for λ ∈ (0, 1), then P(u) = 0 andu′′

+


a −

a′

a


u′

 ≤ a

b − c − q −

p
a

′


+ ade2/3u◦h,

which implies∫ T

0
θ

u′′
+


a −

a′

a


u′

 dt ≤ 2
∫ T

0
b − c − q dt.

Hence∫ T

0

u′′
+


a −

a′

a


u′

 dt ≤
2
θmin

∫ T

0
b − c − q dt := r.

From the periodicity of u(t) there exists t0 such that u′(t0) = 0, then setting A(t) :=
 t
0 (a −

a′
a ) dt we obtain:

eA(t)u′(t) =

∫ t

t0
[eA(s)u′(s)]′ ds =

∫ t

t0
eA(s)

[
u′′

+


a −

a′

a


u′

]
ds;

thus

‖u′
‖∞ ≤ reAmax−Amin , ‖u − u‖∞ ≤ TreAmax−Amin .

Finally, the equality P(u) = 0 can be written in the following form

e2/3u
∫ T

0
de2/3[u(h(t))−u] dt =

∫ T

0
b − c − q dt.

The latter implies that |u| cannot be arbitrarily large; or, in other words, we proved the existence of such R that u ∉ ∂BR(0),
and deg(F1, BR(0), 0) = 1.



Author's personal copy

308 P. Amster et al. / Nonlinear Analysis: Real World Applications 13 (2012) 299–311

3.3. Existence of periodic solutions for model 3

Theorem 3.3. Assume that ( c(t)+q(t)
b(t) )m + (

p
a )max < 1 for all t. Then problem (4) admits at least one positive T-periodic solution.

Proof. In this case, for (u, v) ∈ R2

F0(u, v) = (p − a[1 − em(u−v)], c + q + de2/3u − beu−v).

The unique zero of this function corresponds to the point P = (u, v) given by

u =
3
2
ln

b

1 −

p
a

1/m
− c − q

d
,

v = u −
1
m

ln

1 −

p
a


,

and

DF0(P) =

 m(a − p) −m(a − p)

−
b
3


1 −

p
a

1/m

−
2
3
(c + q) b


1 −

p
a

1/m

 ,
so its degree is equal to 1, provided that P ∈ (α, β)× (α, β). Next, let Fλ(u, v) = (0, 0)with λ ∈ (0, 1). When η is a critical
point of uwe deduce

1 − em(u(η)−v(η)) =
p(η)
a(η)

,

and hence

umax ≤ vmax +
1
m

ln

1 −

p
a


min


,

umin ≥ vmin +
1
m

ln

1 −

p
a


max


.

(17)

We proceed as in Model 1: if ξ is a global maximum of v, then (13) holds and hence

e2/3u(h(ξ)) ≤


b

1 −

 p
a


min

1/m
− c − q

d


max

.

Thus,

u(h(ξ)) ≤
3
2


b

1 −

 p
a


min

1/m
− c − q

d


max

:= k3,

and (13) yields

c(ξ)+ q(ξ) < b(ξ)ek3e−vmax .

This implies

vmax < k3 + ln


b
c + q


max

:= β

umax < k3 + ln


b
c + q


max

+
1
m

ln

1 −

p
a


min


< β.

Remark 3.1. It is readily seen that

β >
3
2
ln

b

1 −

p
a

1/m
− c − q

d
−

1
m

ln

1 −

p
a


.

Thus, if we set, as before, P = (u, v) ∈ R2 as the unique zero of F0, then u < v < β .
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On the other hand, if ξ is a global minimum of v, then again from (13)

u(h(ξ)) < vmin + ln

c + q
b


max

+ γ e2/3vmin ,

where γ is defined by (14) and M is now given by

M(ξ) := ln
c(ξ)+ q(ξ)+ d(ξ)


1 −

 p
a


min

2/3m e2/3β

b(ξ)
.

Combining with (17), the last inequality yields

1
m

ln

1 −

p
a


max


< ln


c + q
b


max

+ γ e2/3vmin ,

so we conclude

vmin >
3
2
ln

ln


1 −
 p
a


max

1/m  b
c+q


min


γ

.

Thus, it suffices to choose α smaller than the minimum between two quantities

3
2
ln

ln


1 −
 p
a


max

1/m  b
c+q


min


γ

and

3
2
ln

b

1 −

p
a

1/m
− c − q

d
. �

Corollary 3.3. The following upper estimates hold for the solutions of Model 3

umax −
1
m

ln

1 −

p
a


min


≤ vmax < k3 + ln


b

c + q


max
.

Moreover, if the assumption of Theorem 3.3 is satisfied, then the following lower estimates also hold

umin −
1
m

ln

1 −

p
a


min


≥ vmin >

3
2
ln

ln


1 −
 p
a


max

1/m  b
c+q


min


γ

.

3.4. Existence of periodic solutions: necessary conditions

In summation, the proofs of the preceding theorems reveal that the sufficient conditions are ‘almost’ necessary, in the
following sense.

Theorem 3.4. Assume that problem (2) admits a positive T-periodic solution. Then b(t) > (c(t)+ q(t))e(p/a)min for some t.

Proof. As in the proof of Theorem 3.1, if (u, v) is a T -periodic solution of (5) we deduce that

umax ≤ vmax −

p
a


min
.

Moreover, if ξ is an absolute maximum of v then (13) holds and hence

0 < d(ξ)e2/3u(h(ξ)) = b(ξ)eu(h(ξ))−vmax − c(ξ)− q(ξ) ≤ b(ξ)e−( pa )min − c(ξ)− q(ξ). �

Theorem 3.5. Assume that problem (3) admits a positive T-periodic solution. Then b > c + q.

Proof. Let (u, v) be a T -periodic solution of (6). Integrating the second equation of the system it is readily seen that

b = c + q +
1
T

∫ T

0
d(t)e2/3u(h(t)) dt > c + q. �

Theorem 3.6. Assume that problem (4) admits a positive T-periodic solution. Then ( c(t)+q(t)
b(t) )m + (

p
a )min < 1 for some t.
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Proof. Let (u, v) be a T -periodic solution of (7). Then the inequalities (17) are satisfied. Moreover, if ξ is a maximum of v
then (13) holds and

0 < d(ξ)e2/3u(h(ξ)) = b(ξ)eu(h(ξ))−vmax − c(ξ)− q(ξ) ≤ b(ξ)

1 −

p
a


min

1/m

− c(ξ)− q(ξ).

This implies that

c(ξ)+ q(ξ)
b(ξ)

<


1 −

p
a


min

1/m

and so completes the proof. �

The following graphs illustrate that if all conditions of Theorems 3.1 and 3.3 are satisfied, then positive periodic solutions
exist (Fig. 1).

Periodic Tumor Model 1
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Periodic Tumor Model 2
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Fig. 1. Existence of positive periodic solutions with the parameters given by (a) data set for model: a = .5 sin(.2t)+ 0.6, p = 0.25 sin(.2t)+ 0.3, b = 2.5,
c = 0.0, q = 0.1 sin(0.2t)+0.2, d = 0.1 sin(.2t)+0.2, τ = 0.1; (b) data set formodel 2: a = .25, p = 0.25 sin(t)+0.34, b = 1.5, c = 0.25 sin(0.2t)+0.3,
q = 0.1, d = 0.25, τ = 0.1.

4. Concluding remarks

In Section 3.2 a Liénard-type second-order differential equation with delays was used as an alternative tool for the
proof of the existence of the periodic solutions of Model 2. The interesting fact about this approach is that, under slightly
different conditions, we obtained a priori estimates directly from the second order equation. Definitely, if the assumptions
of Theorems 3.1 and 3.3 hold, then this approach can be used forModel 1 andModel 3.We think that an interesting question
would be: is it possible to get lower estimates for Model 1 and Model 3 via a Liénard-type equation, when the assumptions
of Theorems 3.1 and 3.3 are dropped? Another open problem would be further studies of the uniqueness or multiplicity of
the solutions.
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