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Abstract

The signal contribution function (SCF) in multivariate curve resolution evalu-

ates signal portions of specific components either in absolute or in relative

form related to the integrated signal of all components. In 1999, Gemperline

used the summed signal data, and in 2001, Tauler worked with the square-

summed relative signal in order to determine the profiles that minimize,

respectively maximize, the signal contribution. These profiles approximate the

bands of all feasible profiles. Here, Gemperline's approach using the entrywise

1-matrix norm is proved to provide accurate bounds for two-component

systems. This revives the approach of summed mass or absorption values with

its potentially better chemical interpretability.
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1 | INTRODUCTION

Pure component decompositions in chemometrics aim at determining matrix factorizations D¼CST , namely, to
factorize a given spectral data matrix D into the pure component factors C and S. The chemically true factorization
provides in the columns of C the concentration profiles of the pure components along the time axis. The corresponding
columns of S are the associated pure component spectra. However, the factorization problem suffers from ambiguous
factors. The nonunique profiles can be represented by the so-called bands of feasible solutions. Gemperline1 in 1999
and later Tauler2 in 2001 suggested techniques to measure the extent of the factor ambiguity by determining the
minimal and maximal contributions of a constituent to the total signal. The related profiles of minimal and maximal
signal contributions approximate to a certain extent the boundaries of the bands of feasible solutions. They can even
reproduce the band boundaries exactly in certain cases. If cℓ is the concentration profile of a certain chemical
species and if sℓ is the associated spectrum, then the rank-1 matrix cℓsTℓ represents the contribution of the species ℓ to
the k-by-n matrix D of mixture data. If C and S contain columnwise the pure component information, then cℓ ¼Cð:, ℓÞ
and sℓ ¼ Sð:, ℓÞ represent the contribution by the ℓth chemical species.

Eq. 8 of Gemperline1 suggested to determine the minimum and maximum of the summed up or integrated signal

minimum or maximum of
Xk
i¼1

Xn
j¼1

ðcℓÞiðsℓÞj ð1Þ
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subject to the feasible nonnegative concentration profiles and the associated spectral profiles. Eq. 6 of Tauler2 suggested
to analyze the signal contribution in a relative fashion related to the total absorption D¼CST , namely, to determine
the minimum and maximum of the signal contribution function (SCF):

kcℓsTℓkF
kCSTkF

: ð2Þ

Therein, k � kF denotes the Frobenius norm, that is, the square root of the sum-of-squares (ssq) of all matrix
elements. Tauler gave as an argument for the use of the Frobenius norm that “for some spectroscopic signals giving
negative values, Equation (2) should be preferred since it is valid also for negative profiles.” However, using sums of
squares is not the only way to work with partially negative data. An alternative is to use absolute values in Gemperline's
approach (1), namely, to consider sums of jcℓjijsℓjj. This amounts to substituting the Frobenius norm of csT in (2) by the
entrywise 1-norm. This substitution rises the general question which norms can be useful in the definition of general
signal contribution functions.

The choice of norm in (2) has not yet been systematically analyzed. In most cases, the Frobenius norm has been
used; see, for example, the analyses in previous studies3-6 and the MCR-Bands software.7However, mathematics
provides (infinitely) many other vector and matrix norms. An influence of different normalizations on the results of
multivariate curve resolution calculations is a known phenomenon. It has been studied, for example, in the context of
factor ambiguities by Borgen and Kowalski8 and systematically under the keyword Borgen norms by Rajk�o.9Further,
sparsity is sometimes used as a constraint in multivariate curve resolution methods and works with the 1-norm or even
the 0-norm, which counts the number of nonzero entries of a vector.10 Here, we focus on the 1-norm and the
maximum norm which reads for vectors x:

kxk1 ¼
X
i

jxij, kxk∞ ¼max
i

jxij:

Different norms relate to different ways of measuring distances. Changing the matrix norm in the definition of the SCF
can help to extract different chemical meanings and can potentially open up new chemical interpretations.
For instance, the 1-norm of a spectral profile measures the summed up absorption along the frequency axis.
Correspondingly, the 1-norm of a concentration profile vector relates to the time integral of the concentration profile.
Alternatively, the maximum norm yields maximal absorption or concentration values.

1.1 | Overview

Section 2 introduces various vector and matrix norms and determines the componentwise 1-norm as a proper candidate
for the mathematical analysis of the maximum and minimum of the SCF. This approach complies for nonnegative
profiles with the signal sums used by Gemperline. Section 3 proves that the SCF for the entrywise 1-norm and for
systems with two species takes its maximum and minimum in profiles that include the ranges of all feasible profiles.
Section 4 points out that a comparable analysis for the entrywise maximum norm leads to mathematical difficulties that
cannot be easily overcome. Numerical studies are presented in Section 5.

2 | THE SCF FOR DIFFERENT MATRIX NORMS

We start with considering the square sum signal integration as suggested by Tauler according to (2). The numerator
of (2) satisfies (we omit the index ℓ of the chemical species)

kcsTk2F ¼
Xk
i¼1

Xn
j¼1

ðcsTÞij
� �2

¼
Xk
i¼1

c2i
Xn
j¼1

s2j ¼kck22ksk22:
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In words, the Frobenius norm of csT �ℝk�n factorizes into the product of the Euclidean vector norms of c and s. From a
mathematical point of view, these squared Euclidean norms have the advantage that they allow us to compute partial
derivatives of the SCF with respect to the vector components ci and si. The partial derivatives are the basis of the
analysis in Neymeyr et al.5 for finding minima and maxima of the SCF. For chemical systems with two chemical
species, the two extrema of the SCF are proved to be associated with profiles that enclose the ranges of all feasible
profiles.5 Next, we investigate the SCF with respect to other norms.

2.1 | The SCF for the 1-matrix norm

An alternative to the Frobenius norm is the 1-matrix norm. For a general k-by-n matrix M, this norm is defined by
means of the 1-vector norm kxk1 ¼

P
i
jxij as follows:

kMk1 ¼max
x ≠ 0

kMxk1
kxk1

¼ max
1≤ j≤n

Xk
i¼1

jmijj: ð3Þ

See section 2.3.2 in Golub and Van Loan11 for details. In words, the 1-operator norm of M is the maximal absolute
sum along the columns. Hence, this norm is also called the column-sum norm. The direct computation

kcsTk1 ¼ max
1≤ j≤n

Xk
i¼1

jcisjj ¼
Xk
i¼1

jcij � max
1≤ j≤n

jsjj ¼ kck1ksk∞ ð4Þ

shows that the 1-operator norm of csT equals the product of the 1-vector norm of c and the maximum norm of s. Thus,
c and s are evaluated with respect to different vector norms. As c and s are assumed to be nonnegative vectors, we get
that

kck1 ¼ c1þ…þ ck, ksk∞ ¼ max
1≤ j≤n

sj: ð5Þ

Having in mind our goal to determine maxima and minima of kcsTk1 with respect to the choice of c and s, we note
that c1+…+ ck is a differentiable function with respect to all its components ci and that nonnegativity has allowed us
to get rid of the nondifferentiable absolute value function. Unfortunately, the maximum underlying the definition of
ksk∞ is not a differentiable function of si which prevents forming the partial derivatives.

2.2 | The SCF for the maximum matrix norm

The maximum vector norm kxk∞ ¼maxijxij is the basis to defining the matrix norm

kMk∞ ¼max
x ≠ 0

kMxk∞
kxk∞

¼ max
1≤ i≤ k

Xn
j¼1

jmijj: ð6Þ

Again, see Golub and Van Loan11 for the last equality. Thus, kMk∞ is the maximal absolute row sum of M and is
called the row-sum norm. The evaluation of csT with respect to the row-sum norm and c, s≥ 0 yield

kcsTk∞ ¼ max
1≤ i≤n

Xk
j¼1

jcisjj ¼ max
1≤ i≤ k

ci �
Xn
j¼1

sj ¼kck∞ksk1: ð7Þ

In analogy to (5), the maximum norm of c prevents taking partial derivatives for finding extrema of the SCF. For
this reason, we do not pursue an analysis of the SCF with respect to the column-sum or row-sum norms.
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2.3 | The SCF for the entrywise 1-norm

The entrywise 1-norm (which we write by a triple-lined norm symbol)

jjjMjjj1 ¼
Xk
i¼1

Xn
j¼1

jmijj ð8Þ

is also a matrix norm. One can easily check the three norm axioms: first, the positive definiteness (jjjMjjj1≥ 0,
jjjMjjj1 ¼ 0 if and only if M¼ 0 ); second, the absolute homogeneity (jjjλMjjj1 ¼ jλj � jjjMjjj1 for all real numbers λ);
and third, the triangle inequality (jjjM+Njjj1≤ jjjMjjj1+ jjjNjjj1 for all k-by-n matrices M and N). In contrast to
the column-sum norm, the entrywise 1-norm is not an operator norm. This means that no vector norm k � k exists
so that jjjMjjj1 ¼maxx ≠ 0kMxk=kxk for general M. The latter statement is true because for the n�n identity
matrix M¼ I , we get jjjIjjj1= n, but for any vector norm, it holds that kIxk=kxk¼ 1 so that any operator norm
of I equals 1.

The entrywise 1-norm of csT reads for nonnegative c and s

jjjcsT jjj1 ¼
Xk
i¼1

Xn
j¼1

jcisjj ¼ kck1ksk1 ¼
Xk
i¼1

ci
Xn
j¼1

sj: ð9Þ

The entrywise 1-norm of csT evaluates the 1-norms of c and s. The last equality is valid for nonnegative c and s and
amounts to the summed signal approach by Gemperline, see Equation (1). In contrast to the norms discussed in
Sections 2.1 and 2.2, the norm is symmetric in the sense that jjjcsT jjj1 ¼ jjjscT jjj1. Additionally, the entrywise 1-norm of
csT is a differentiable function of c and s on the assumption of their nonnegativity. This qualifies the entrywise 1-norm
as a promising alternative for the mathematical analysis. The two 1-vector norms measure chemically interpretable
quantities which is discussed in the next section.

2.4 | Chemical interpretation of the various norms

Next, we interpret the chemical meaning of the three matrix norms, namely, the matrix 1-norm, the matrix maximum
norm, and the entrywise matrix 1-norm: from the perspective of analytical chemists, the 1-norm of a concentration
vector, which represents a concentration profile along the time coordinate, is a time sum of concentration values.
Hence, uncertainties due to the rotational ambiguity appearing in the bands of feasible solutions are proportional to
uncertainties of the concentration values. A similar interpretation of the 1-norm is possible for the spectral profiles and
the associated absorption values. The two matrix norms (3) and (6), see Sections 2.1 and 2.2, seem to be less suitable for
a chemical interpretation because a 1-norm for one vector and the maximum norm for the other vector are to be
evaluated; see Equations (4) and (7). This breaks a symmetric treatment of the two factors. On the one hand, the
maximum norm of a concentration profile or a spectrum, that is, the maximal absolute value of its components, is
potentially sensitive to perturbed data or experimental data with outliers. On the other hand, the 1-norm sums up or
averages the components and thus seems to be less sensitive to noise. This leads us to the analysis of the entrywise
1-norm in the following section.

A further possible approach is to determine the profiles that maximize or minimize the relative signal contribution
according to

kck=kCk subject to ksℓk2 ¼ 1for allℓspecies: ð10Þ

Therein, k � k can be any norm, for example, the 1-vector norm in the numerator and the associated 1-matrix norm
in the denominator. Then, kc k/kCk is a relative contribution measure with numerical values between 0 and 1. The key
concept behind (10) is a normalization of the associated spectrum with respect to the Euclidean norm. However, such
an approach is not consistent with the evaluation of kcsTk for general norms. Hence, we do not pursue Equation (10) or
its variant with swapped positions of the concentration factor and spectral factor any further.
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3 | THE SCF FOR THE ENTRYWISE 1-NORM AND TWO-COMPONENT
SYSTEMS

The subsequent analysis of the SCF with respect to the entrywise 1-norm follows the general procedure as used in
Neymeyr et al.5 and Rajk�o6 and which is based on the Frobenius norm. All arguments are to be adapted to the present
norm. The starting point is the fact that any nonnegative factorization D¼CST can be represented by a truncated singu-
lar value decomposition (SVD) D¼UΣVT with U �ℝk�s , Σ�ℝs�s and V �ℝn�s and a regular matrix T �ℝs�s so that
C¼UΣT�1 and ST ¼TVT . The first column of T can be used to fix a certain normalization of the profiles. The matrix
can be written in the 2� 2 block form

T¼ 1 x

1 W

� �
, ð11Þ

with x¼ðx1,…,xs�1Þ, W �ℝs�1�s�1 and the all-ones vector 1¼ð1,…,1ÞT �ℝs�1 ; see Borgen and Kowalski8 and Sawall
and Neymeyr.12 The vector x has a key position. Any x that can be extended to a regular matrix T according to (11) so
that C and S are nonnegative matrices is called a feasible profile. The set of all those x represents the ambiguity
underlying the factorization problem and is called the area of feasible solution (AFS)

MS ¼ x �ℝs�1 : W �ℝðs�1Þ�ðs�1Þexists in ð11Þso that T is regular and C,S≥ 0
n o

:

Geometric construction techniques for the AFS are described in previous studies,8,13-15 whereas previous studies12,16-19

report on numerical approximation techniques.

3.1 | Mathematical analysis

In order to determine the extrema of jjjcℓsTℓ jjj1=jjjCST jjj1 , we use the T-dependent representations cℓ ¼UΣT�1ð: ,ℓÞ
and sTℓ ¼ðTðℓ, :ÞÞVT . The denominator does not depend on T which allows us to restrict the optimization of the
function

gℓðTÞ¼ UΣðT�1ð: ,ℓÞÞðTðℓ, :ÞÞVT
�� ���� ���� ��

1: ð12Þ

For two-component systems, the 2� 2 matrix T and its inverse read

T¼ 1 α

1 β

� �
, T�1 ¼ 1

β�α

β �α

�1 1

� �
, ð13Þ

where α≠ β is assumed in order to guarantee the invertibility of T; otherwise, the factors would not have the rank
2. Hence, we get C�ℝk�2 and S�ℝn�2 (with U ¼ ½u1,u2� and V ¼ ½v1,v2�) as

C ¼ðc1,c2Þ¼UΣT�1 ¼ 1
β�α

βσ1u1�σ2u2, �ασ1u1þσ2u2ð Þ,

ST ¼
sT1

sT2

 !
¼TVT ¼

1 α

1 β

 !
vT1

vT2

 !
¼

vT1 þαvT2

vT1 þβvT2

 !
:

ð14Þ

Equation (12) for ℓ¼ 1 yields with g1(T)= g1(α, β)
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g1ðα,βÞ¼ kc1k1ks1k1 ¼
1

β�α
kβσ1u1�σ2u2k1kv1þαv2k1: ð15Þ

Because c1 and s1 are componentwise nonnegative vectors for feasible T, the absolute values can be omitted in the
evaluation of the 1-norms. This leads to

g1ðα,βÞ ¼ 1
β�α

Xk
i¼1

βσ1 Ui1

z}|{>0

�σ2Ui2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≥ 0

0
@

1
A Xn

j¼1

Vj1

z}|{>0

þαVj2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≥ 0

0
B@

1
CA

¼ 1
β�α

βσ1ku1k1�σ2
Xk
i¼1

Ui2

 !
kv1k1þα

Xn
j¼1

Vj2

 !
,

where we have used the fact that the singular vectors U(: , 1)=u1 and V(: , 1)= v1 corresponding to the largest singular
value σ1 can be assumed to be componentwise positive. (For details on this fact, see Varga20 where the Perron–
Frobenius spectral theory applied to DTD and DDT shows that the components of the eigenvectors belonging to the
largest eigenvalues all have the same sign. Without loss of generality, this sign can be assumed to be positive. In the
case of all components, negative vectors can be treated by substituting u1!�u1 and v1!�v1.)

In the second case ℓ¼ 2, we get similar results. For the nonnegative profiles c2 and s2, it holds that

g2ðα,βÞ ¼ kc2k1ks2k1 ¼
1

β�α
k�ασ1u1þσ2u2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≥ 0

k1kv1þβv2|fflfflfflffl{zfflfflfflffl}
≥ 0

k1

¼ 1
β�α

�ασ1ku1k1þσ2
Xk
i¼1

Ui2

 !
kv1k1þβ

Xn
j¼1

Vj2

 !

¼ 1
α�β

ασ1ku1k1�σ2
Xk
i¼1

Ui2

 !
kv1k1þβ

Xn
j¼1

Vj2

 !

¼ g1ðβ,αÞ:

Thus, an extremum of g1(α, β) is an extremum of g2(β, α) and vice versa. This justifies to restrict the following analysis
on g1.

3.2 | The SCF takes its extrema at the vertices of the rectangle of feasible solutions

The nonnegativity of C¼UΣT�1 and S¼VTT with T and its inverse given by (13) imposes the following restrictions on
(α, β):

ðα,βÞ� ½a,b�� ½c,d� or ðβ,αÞ� ½a,b�� ½c,d�, ð16Þ

with

a¼�min
Vi2 > 0
i¼1,…,n

V i1

Vi2
, b¼ min

i¼1,…,k

Ui2σ2
Ui1σ1

< 0, c¼ min
i¼1,…,k

Ui2σ2
Ui1σ1

> 0, d¼�max
Vi2 < 0
i¼1,…,n

V i1

Vi2
, ð17Þ

see, for example, section 3.6 in Sawall and Neymeyr12 for the determination of the constants a, b, c, and d.
Figure 1 illustrates the rectangular region with C≥ 0 and S≥ 0. Again, the second alternative in (16) reflects the
symmetry of g1 and g2 with respect to its arguments. Next, we determine the extrema of g1. A vanishing gradient
of g1
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rg1 ¼ ∂g1
∂α ,

∂g1
∂β

� �T

¼ 1

ðβ�αÞ2
βσ1ku1k1�σ2

Xk

i¼1
Ui2

� �
kv1k1þβ

Xn

j¼1
Vj2

� �
� ασ1ku1k1�σ2

Xk

i¼1
Ui2

� �
kv1k1þα

Xn

j¼1
Vj2

� �
0
B@

1
CA¼ 0

ð18Þ

is a necessary condition for a local extremum of g1 in (α, β). The condition (18) is symmetric in α and β. First, we treat
the singular case

P
jV j2 ¼ 0. Then, rg1 ¼ 0 can only be fulfilled for α¼ β which is impossible for C and S having the

rank 2. Thus, this case is not consistent with a local extremum in [a, b]� [c, d]. Second, the general case
P

jV j2 ≠ 0

leaves for α≠ β the two possibilities:

ðα,βÞ or ðβ,αÞ equals
σ2
Xk

i¼1
Ui2

σ1ku1k1
,
�kv1k1Xn

j¼1
Vj2

0
@

1
A:

Our aim is to show that α and β in a point of a maximum or minimum of the SCF can only attain the endpoints a, b, c,
and d (and not values in the interior of the intervals [a, b] and [c, d]). We start with the case that α or β equals the value

ðσ2=σ1Þ
Xk

i¼1
Ui2=ku1k1. Inequality (A1) from Appendix A1 proves that the following inequality is true:

b¼ σ2
σ1

� �
min
i¼1, ⃛,k

Ui2

Ui1
≤

σ2
σ1

� �Pk
i¼1

Ui2

ku1k1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
αorβ

¼ σ2
σ1

� �
U12þ ⃛þUk2

U11þ ⃛þUk1
≤

σ2
σ1

� �
max
i¼1, ⃛,k

Ui2

Ui1
¼ c: ð19Þ

Together with the conditions (16) and (17), we conclude that only the endpoints b and c satisfy the inequalities
above and simultaneously guarantee that C and S are nonnegative.

Next, we consider the alternative case that α or β attain the coordinate �kv1k1=
Xn

j¼1
Vj2 in order to attain a

vanishing gradient in (18). We have to distinguish the two cases
Xn

j¼1
Vj2 being larger or less than zero (and refer to

the discussion above showing that the sum can never equal to zero). If
Xn

j¼1
Vj2 > 0, then a proof is given that shows

�kVð: ,1Þk1Xn

j¼1
Vj2

≤ � min
Vi2 > 0
i¼1,…,n

V i1

Vi2
¼ a

FIGURE 1 Rectangular feasible region [a, b]� [c, d] in which

C≥ 0 and S≥ 0 holds according to (17). The SCF minimum at (a, c)

is marked by a blue dot and the maximum at (b, d) by a red dot
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or equivalently

min
Vi2 > 0
i¼1,…,n

V i1

Vi2
≤
kVð: ,1Þk1Xn

j¼1
Vj2

: ð20Þ

In the other case
Xn

j¼1
Vj2 < 0, we have to show

�kVð: ,1Þk1Xn

j¼1
Vj2

≥ �max
Vi2 < 0
i¼1,…,n

V i1

Vi2
¼ d ð21Þ

or equivalently

kVð: ,1Þk1Xn

j¼1
Vj2

≤ max
Vi2 < 0
i¼1,…,n

V i1

Vi2
: ð22Þ

The two inequalities (20) and (22) are proved in Theorem A2 by inequalities (A4) and (A5). Together with the non-
negativity constraints, which force α and β to stay in the intervals [a, b], respectively [c, d], this proves that a maximum
or minimum of the SCF can only be attained in the endpoint coordinates a, b, c, or d.

The following properties of the SCF (15) follow from the analysis above:

1. The SCF (15) takes its minimum in the vertex (a, c) and its maximum in the vertex (b, d).

Proof. The assertion follows by proving that

∂

∂α
g1 > 0 and

∂

∂β
g1 > 0 for ðα,βÞ� ða,bÞ�ðc,dÞ:

First, according to (18), it holds that ∂g1=∂β¼ω σ2
Xk

i¼1
Ui2�ασ1ku1k1

� �
for a positive constant ω; the constant

includes the factor kv1k1þα
Xn

j¼1
Vj2 which equals the positive componentwise sum of s2. Thus, it remains to show

σ2
Xk

i¼1
Ui2

σ1
Xk

i¼1
Ui1

> α� ða,bÞ,

which has already been proved by (19).
Second, according to (18), it holds that ∂g1=∂α¼ �ω kv1k1þβ

Xn

j¼1
Vj2

� �
for a positive constant �ω which

includes as a factor the positive componentwise sum of s1. It remains to show that kv1k1þβ
Xn

j¼1
Vj2 > 0 . By

following the argumentation around Equations (20)–(22), we distinguish the three cases
Xn

j¼1
Vj2 > 0, equal to

0 or less than 0. The case of equality to 0 has already been shown to contradict the necessary condition α≠ β. IfXn

j¼1
Vj2 > 0, then it remains to show that β> �kv1k1=

Xn

j¼1
Vj2 which has already been proved because

� kv1k1Xn

j¼1
Vj2

≤ a< β:

In the remaining case
Xn

j¼1
Vj2 < 0 we have to show that β< �kv1k1=

Xn

j¼1
Vj2 . Its proof is a consequence of the

nonnegativity constraint that β≤ d¼�maxVi2< 0Vi1=Vi2 in combination with the already proved inequality (21).
Figure 1 illustrates the SCF minimum at (a, c) by a blue dot and the maximum at (b, d) by a red dot. We note
that the SCF for the similar analysis using the Frobenius norm takes its minimum and maximum in the same
vertices. However, the partial derivative ∂h/∂β in Neymeyr et al.,5 see after Equation (16), is not less than zero
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but larger than zero. This mistake in Neymeyr et al.5 affects the position of the maximum and minimum but has
no consequences on the central results as on the band representations because α and β still run through the full
intervals [a, b] and [c, d].

2. The bands of feasible profiles are monotone functions of either α or β. This property is a consequence of the
solution representation by Equation (14). The bands of feasible profiles do not depend on the definition of the SCF
so that the properties as discussed in detail in section 3.4 of Neymeyr et al.5 still hold. The variables α and β run
through the full intervals [a, b], respectively [c, d], while connecting the minimum of the SCF at (a, c) and the
maximum at (b, d). For a fixed time coordinate (in the case of concentration profiles) or a fixed frequency value
(in the case of spectral profiles), the related profile values form either a monotone increasing functions or monotone
decreasing functions of α or β or are constant. The latter case resembles an isosbestic point (with respect to the set of
feasible profiles instead of relating to the time series of spectra) which occurs for a vanishing derivative. Figure 2
illustrates a typical series of feasible profiles with such a point.

4 | THE SCF FOR THE ENTRYWISE MAXIMUM NORM

The entrywise maximum norm (which we write by a triple-lined norm symbol)

jjjMjjj∞ ¼ max
i¼1,…,k
j¼1,…,n

jmijj

is also a matrix norm for k� n matrices. The norm can easily be evaluated for the rank-1 matrix csT because

jjjcsT jjj∞ ¼ max
i¼1,…,k
j¼1,…,n

jcisjj ¼ kck∞ksk∞: ð23Þ

The entrywise maximum norm of csT equals the product of the maximum norms of c and s.
The mathematical analysis of the SCF for the entrywise maximum norm seems to be more complex than the

analysis of the entrywise 1-norm in Section 3. We get for the dependence of the numerator on α and β

h1ðα,βÞ ¼ kc1k∞ks1k∞ ¼ 1
β�α

kβσ1u1�σ2u2k∞kv1þαv2k∞
¼ max

i¼1,…,k
βσ1Ui1�σ2Ui2ð Þ max

j¼1,…,n
Vj1þαVj2
� 	

:

Therein, the absolute values can be skipped on the given restrictions on α and β which guarantee the componentwise
nonnegativity of the vectors whose maximum norms are considered. Unfortunately, the indices in which the maxima
are attained depend on α and β. This complicates the mathematical analysis by partial derivatives with respect to α and

FIGURE 2 A typical series of feasible profiles with an “isosbestic” point related
to the series of feasible spectra. The extremal profiles in blue and red enclose the

band of feasible profiles
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β. However, our numerical experiments indicate that the entrywise maximum norm for the SCF in the case of systems
with two chemical components may have a similar behavior to that studied in Section 3.

5 | NUMERICAL STUDIES

This section illustrates properties of the SCF for model data and experimental data.

5.1 | Model data

Next, a two-component model problem serves to illustrate the typical shape of the SCF for the entrywise 1-norm and
the Frobenius norm. The concentration factor of this model problem derives from a discretization of the kinetic model
A!0:2B on the time interval [0, 20] with k¼ 51 grid points. The pure component spectra are Gaussians:

s1ðλÞ¼ 0:95exp �ðλ�20Þ2
500

 !
þ0:3, s2ðλÞ¼ 0:9exp �ðλ�50Þ2

500

 !
þ0:25:

Equidistant sampling on [0, 100] with n¼ 101 nodes gives the spectral factor. The product of these factors yields the
51� 101 spectral data matrix that is also a part of the FACPACK software21 as file example1.mat. The profiles and the
mixed data set are plotted in Figure 3.

Figure 4 in the left plot shows the entrywise 1-norm of c1sT1 according to (14) and also the Frobenius norm (see
middle plot). The function values for the entrywise 1-norm vary within the interval [1.68 � 103, 2.62 � 103] and for the
Frobenius norm in [31.74, 41.99]. Apart from a different scaling of these functions, the color coding suggests a similar
qualitative behavior. In order to highlight differences, a best-fit difference plot is computed as follows: if the numerical
values representing these functions are stored in matrices X and Y, then the smallest ssq of the best-fit ωX�Y is taken
in ω¼X:∗Y=kXk2F , where X. ∗Y denotes the entrywise Euclidean inner product of the matrices X and Y. Figure 4

FIGURE 3 The profiles of the model data set: spectra (left), concentration profiles (middle), and mixture data (right)

FIGURE 4 The signal contribution function (SCF) for the two-component model problem shows a qualitatively similar behavior of the

1-norm (left) compared with the Frobenius norm (center). The best-fit difference plot (right) illustrates differences, but these differences do

not change the position of the minima and maxima
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shows in the right plot the best-fit difference plot. Differences can be stated, but they do not change the position of the
minima and maxima. For both norms, the minimum is attained in lower left vertex and the maximum in the upper
right vertex.

Additionally, Figure 5 illustrates for the same model problem the relative signal contribution kcki/kCki
according to Equation (10) subject to the scaling condition that the Euclidean norms of all associated spectra
equal 1. The left plot displays the case i¼ 1 (pair of 1-vector norm and 1-matrix norm) and the right plot shows the
case i¼ 2 (the Euclidean vector norm and the 2-matrix norm). The plots indicate that the minimum and maximum are
again taken in the same vertices of the (α, β) rectangle of feasible parameters as the SCF does for the entrywise 1-norm
and the Frobenius norm. Here, we do not present a deepened analysis of the relative signal contribution measure by
Equation (10).

5.2 | Experimental data

A two-component experimental example is examined in this section, involving a set of calibration samples containing a
single analyte and additional test samples containing the analyte and a single interfering component. The original data
collection and its processing for analyte quantification have already been published, although no rotational
ambiguity analysis was carried out at the time.22 Subsequently, the system was shown to display a substantial degree of
ambiguity, due to the fact that analyte and interferent profiles are identical in the concentration mode. 23

Briefly, these data involve the measurement of luminescence excitation–time decay matrices sensitized by
terbium(III). Ten test samples were produced from human sera spiked with the fluoroquinolone antibiotic ciprofloxacin
and also with a potential interferent (salicylate). The analyte concentrations were within the therapeutic range, that is,
0–6 mgL�1 in serum, with concentrations in the measuring cell of 0, 0.08, 0.16, and 0.24 mgL�1. Individual matrix sizes
were 24 data points in the time decay mode and 23 in the spectral mode. For additional experimental details, see
Lozano et al.22

Extreme profiles corresponding to maximum and minimum values of different norms were estimated, namely,
(1) the relative Frobenius norm kcsTkF/kCSTkF, (2) the entrywise 1-norm jjjcsTjjj1, and (3) the relative signal function kc
k/kCk subject to ksk2 ¼ 1. Because the present experimental data are rather noisy, negative entries occur in the data
matrices, and thus, it is important to consider how the available algorithms for computing the band boundaries handle
these negative values. The recently published N-BANDS method was adopted here, because it provides nonnegative
component profiles and consistent results for increasing levels of noise.24 N-BANDS can be adapted to minimize or
maximize any of the three parameters mentioned above.

The analysis of a typical test sample included the following activities: (1) joining the test sample data matrix with
those for the calibration samples along the time decay direction (this is the mode representing component concentra-
tions), building an augmented data matrix of size 12,023 data points, (2) decomposing the augmented matrix using
multivariate curve resolution–alternating least-squares (MCR-ALS)25 under the constraints of nonnegativity and
sample selectivity (also called species correspondence), and (3) using the retrieved spectral and time decay profiles as
starting values for N-BANDS estimation of band boundaries.24

FIGURE 5 Plots of the relative signal contribution kcki/kCki for the two-component model problem. The left plot for i¼ 1, the 1-norm,

and the right plot for i¼ 2, the 2-norm, show qualitatively similar results compared with the behavior of the SCF for the entrywise 1-norm

and for the Frobenius norm
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For one of the analyzed test samples, the results for the analyte and the interferent are, respectively, shown in
Figures 6 and 7 in the time decay mode and in Figures 8 and 9 in the spectral mode (spectra are scaled to unit 2-norm).
Profiles for extreme values of the relative signal function kc k/kCk (not shown) are identical to those for the entrywise
1-norm jjjcsTjjj1. As can be seen, a significant degree of rotational ambiguity exists for the analyte in the time decay
mode (Figure 6) and for the interferent in the spectral mode (Figure 9). The analyte spectrum is almost unique
(Figure 8), as the interferent time profile, for which the ambiguity is only due to the scale (Figure 7). In the ideal,
noiseless case, the latter profiles will be uniquely defined. This complementary result is tied to the duality principle.26 It
is apparent in these figures that the band boundaries estimated for extreme values of kcsTjjF/kCSTkF or jjjcsTjjj1 are very
similar, with small differences that are most probably due to the presence of instrumental noise.

To discuss the chemical interpretability of the results in an analytical chemistry context, values of the SCFs have
been estimated for the 10 samples of the test set. The specific values for the relative Frobenis norm kcsTkF/k jCSTkF
corresponding to the extreme band boundaries are given in Table 1. In general, the differences between maximum and
minimum values appear to indicate a small degree of ambiguity. However, this is because the analyte spectral profile is
almost uniquely recovered, and the augmented concentration profile is mainly dominated by the calibration samples,
where the analyte profiles are also nearly unique. Overall, therefore, the extreme values of the SCF in this case do
not reflect the degree of rotational ambiguity which is clearly present in the test sample in Figure 6, which is a
representative example for the remaining samples.

FIGURE 6 Extreme augmented time decay profiles for the

analyte, estimated using N-BANDS for the processing of a typical

test sample in the experimental data set. Solid lines correspond to

profiles of minimal norm, dashed lines for maximal norm. Blue

profiles are for extreme values of kcsTkF/kCSTkF, red profiles for

jjjcsTjjj1. The vertical dashed black lines separate the subprofiles for

each sample: the first one on the left is the test sample, and the

subsequent ones are the calibration samples

FIGURE 7 Extreme augmented time decay profiles for the

interferent, estimated using N-BANDS. Solid lines correspond to

profiles of minimal norm, dashed lines for maximal norm. Blue

profiles are for extreme values of kcsTkF/kCSTkF, red profiles for

jjjcsTjjj1. The vertical dashed black lines separate the subprofiles for

each sample: the first one on the left is the test sample, and the

subsequent ones are the calibration samples, where the interferent is

absent. These profiles are almost identical after scaling them to unit

2-norm
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FIGURE 8 Extreme spectral profiles for the analyte, estimated

using N-BANDS. Solid lines correspond to profiles of minimal norm,

dashed lines for maximal norm. Blue profiles are for extreme values

of kcsTkF/kCSTkF, red profiles for jjjcsTjjj1

FIGURE 9 Extreme spectral profiles for the interferent,

estimated using N-BANDS. Solid lines correspond to profiles of

minimal norm, dashed lines for maximal norm. Blue profiles are for

extreme values of kcsTkF/kCSTkF, red profiles for jjjcsTjjj1

TABLE 1 Extreme values of the

parameter kcsTkF/kCSTkF when
estimating the band boundaries and the

difference between maximum and

minimum for each test sample

Sample Maximum Minimum Difference

1 0.997 0.050 0.047

2 0.994 0.939 0.055

3 0.994 0.943 0.051

4 0.969 0.812 0.157

5 0.992 0.990 0.002

6 0.993 0.931 0.062

7 0.978 0.853 0.125

8 0.995 0.975 0.020

9 0.990 0.901 0.089

10 0.989 0.940 0.049

NEYMEYR ET AL. 13 of 17



On the other hand, the values of jjjcsTjjj1 in Table 2 are appealing from the chemical point of view, because they can
be directly related to analyte concentrations. Specifically, the difference between maximum and minimum values
can be traced to the uncertainty in the estimated analyte concentration for the test sample. This can be done by
isolating, from the total difference between maximum and minimum function values, the portion ascribed to the test
sample (Table 2). To convert these differences into absolute concentration errors, the slope of the calibration line of
jjjcsTjjj1 versus nominal analyte concentration is required (see above), and this is shown in Table 2. In relative terms
with respect to the mean analyte calibration concentration, the errors range from 30% to more than 100%. They imply a
significant impact of rotational ambiguity in analyte prediction, as qualitatively gathered from Figure 6 for a typical test
sample.

Using the extreme values of the relative function kc k/kCk, similar concentration errors as those quoted in Table 2
are found, indicating that this approach also provides an improved analytical interpretation of the consequences of
rotational ambiguity.

6 | CONCLUSION

We conclude that Gemperline's primal work on approximating the ranges of feasible bands by means of finding the
minimum and maximum of the SCF (1) is still meaningful as far as the (simple) sums are substituted by sums of
absolute values. This amounts to using the entrywise 1-norm in the definition of the respective SCF. For experimental
spectral data with partially negative entries (e.g., due to baseline or background subtractions), the entrywise 1-norm
approach provides results comparable with Tauler's square-summed SCF. The interesting property, namely, that for
chemical systems with only two species, the respective SCFs take their extrema on the boundary of the sets of feasible
coefficients, holds in mathematically precise form for each of the two approaches. This includes the important property
that the associated profiles of these extrema exactly enclose the ranges of all feasible nonnegative profiles. The analysis
of this paper also indicates that the Frobenius norm and also the entrywise 1-norm are particularly suitable for the
evaluation of the signal contribution of the ℓth chemical species by means of considering norms of the rank-1 matrices
cℓsTℓ . Potentially, the considerations made here can revive Gemperline's approach in combination with absolute values
and may additionally allow a more direct interpretation of the widths of feasible bands in terms of uncertainties in
concentration values or absorptivities.

Finally, we expect that the strict mathematical analysis as presented here for chemical systems with two species
cannot be generalized in a straightforward way to systems with more than two components. The reason is not only that
the SCF function gains in complexity with growing dimension but also—much more decisive—that the set over which

TABLE 2 Extreme values of the parameter jjjcsTjjj1 when estimating the band boundaries in the experimental data set, differences

attributed to the test samples, and the corresponding concentration errors in analyte prediction

Sample Maximum Minimum Difference Difference for Absolute error Relative error
test samplea (in mgL�1)b (%)c

1 2.45 � 104 2.18 � 104 2.8 � 103 1.2 � 103 0.036 30

2 2.22 � 104 1.96 � 104 2.6 � 103 1.3 � 103 0.040 33

3 2.51 � 104 2.22 � 104 2.8 � 103 1.2 � 103 0.038 32

4 2.32 � 104 1.72 � 104 6.0 � 103 4.7 � 103 0.14 118

5 1.75 � 104 1.53 � 104 2.1 � 103 1.3 � 103 0.040 33

6 2.38 � 104 2.11 � 104 2.7 � 103 1.4 � 103 0.041 34

7 2.21 � 104 1.68 � 104 5.3 � 103 4.0 � 103 0.12 102

8 2.29 � 104 2.03 � 104 2.6 � 103 1.4 � 103 0.042 35

9 2.37 � 104 2.04 � 104 3.3 � 103 2.0 � 103 0.060 50

10 1.99 � 104 1.65 � 104 3.4 � 103 2.5 � 103 0.076 63

aPortion of the difference between maximum and minimum jjjcsTjjj1 corresponding to the test sample.
bAbsolute errors are given by the ratio of the difference for the test sample to the slope of the calibration line.
cRelative errors are given in % with respect to the mean calibration concentration.
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the optimization is executed becomes considerably more complicated. For two components, the feasible solutions can
be represented with respect to the rectangle (16) for which the boundary points are analytically determined by (17). In
contrast to this, the set of feasible solutions for systems with three or more chemical components depends on the AFS,
for which no closed-form analytical representation is available. Moreover, the investigations in section 4 of Neymeyr
et al.5 indicate that a comparable result, namely, that the SCF for three-component systems takes its extrema on the
boundary of the set of feasible solutions, cannot be expected in general situations.
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APPENDIX A: An inequality on vector components

Theorem A1. Let x,y�ℝm and y>0 (componentwise positive). Then, it holds that

min
i¼1,…,m

xi
yi
≤

Xm

i¼1
xiXm

i¼1
yi
≤ max

i¼1,…,m

xi
yi
: ðA1Þ

Proof. We first prove the left inequality. To this end, we show that for any real numbers α, β, γ, and δ with γ, δ>0, it
holds that

min
α

γ
,
β

δ

� �
≤
αþβ

γþδ
: ðA2Þ

If the latter inequality were wrong, then it would hold

α

γ
>
αþβ

γþδ
and

β

δ
>
αþβ

γþδ
:

Because γ, δ>0, the two last inequalities are equivalent to

αðγþδÞ> ðαþβÞγ and βðγþδÞ> ðαþβÞδ:

Simplification yields

αδ> βγ and βγ> αδ

so that αδ> αδ, which is not true. Hence, (A2) must be true. By repeated application of (A2), we get

Xm

i¼1
xiXm

i¼1
yi

¼
x1þ

Xm

i¼2
xi

y1þ
Xm

i¼2
yi
≥min

x1
y1
,

Xm

i¼2
xiXm

i¼2
yi

 !
≥min

x1
y1
,min

x2
y2
,

Xm

i¼3
xiXm

i¼3
yi

0
@

1
A

0
@

1
A

¼min
x1
y1
,
x2
y2
,

Xm

i¼3
xiXm

i¼3
yi

0
@

1
A≥…≥ min

i¼1,…,m

xi
yi
,

ðA3Þ
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which proves the left inequality of the proposition. The right inequality in (A1) is proved similarly starting with the
pendant of (A2)

αþβ

γþδ
≤max

α

γ
,
β

δ

� �

and its subsequent repeated application as in Equation (A3).

Theorem A2. Let x,y�ℝm and x>0 (componentwise positive). Further, let
Xk

i¼1
yi ≠ 0.

1. If
Xm

i¼1
yi >0, then it holds that

min
iwithyi >0

xi
yi
≤

kxk1Xm

i¼1
yi
: ðA4Þ

2. If otherwise
Xm

i¼1
yi <0, then it holds that

kxk1Xm

i¼1
yi
≤ max

iwithyi <0

xi
yi
: ðA5Þ

Proof. Let I be the set of all indexes for which yi>0. Then, Theorem A1 proves the left inequality of

min
i � I

xi
yi
≤

P
i � I

xiP
i � I

yi
≤
kxik1P
i � I

yi
: ðA6Þ

Because 0<
Xm

i¼1
yi ≤

X
i � I

yi, we get from (A6) the inequality (A4) by decreasing the denominator of the right-hand side.

In order to prove (A5), we multiply (A4) by �1 and get reversely written

kxk1Xm

i¼1
� yi

≤ � min
iwithyi >0

xi
yi
¼ max

iwithyi >0

xi
�yi

:

By substituting �y! z, we get

kxk1Xm

i¼1
zi
≤ max

iwithzi <0

xi
zi
,

which proves (A5).
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