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1 Introduction

Entanglement entropy (EE) of subregions is an ill-defined quantity in quantum field theory
(QFT). This fact can be understood from various perspectives. From a lattice point of view,
as we reduce the lattice spacing a growing amount of entanglement across the entangling
surface adds up, producing the usual area-law divergence (and others) in the limit. From
the continuum theory perspective, the underlying reason has to do with the fact that
algebras of operators associated to spatial regions are von Neumann algebras of type-III,
for which all traces are either vanishing or infinite — see e.g. [1, 2].

The situation improves when one considers two (or more) disjoint regions: entangle-
ment measures such as mutual information I(A,B) do make sense in QFT. The whole issue
with the type-III-ness of subregion algebras has to do with the sharp spatial cut introduced
by the entangling surface ∂A. When instead of considering a region and its complement, we
consider two disjoint regions A,B, the so-called “split-property”1 guarantees the existence
of a tensor product decomposition of the global Hilbert space as H = HNAB

⊗HN ′AB
where

NAB and its commutant N ′AB are type-I factors. The idea is that there always exists one
1This property holds in general under very mild assumptions related to the growth of the number of

degrees of freedom at high energies, [3, 4].
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such factor NAB which contains the algebra of the first region, AA, while still commuting
with the operators in algebra of the second, AB. Namely, one has AA ⊆ NAB ⊆ (AB)′.
Importantly, contrary to AA or AB, NAB cannot be sharply associated to any particular
geometric region.2 There is no problem in defining traces for Type-I von Neumann algebras
and so given NAB, we can define the corresponding von Neumann entropy S(NAB) as the
entropy of the reduced state in any of the factors of the tensor product.

Now, there are infinitely many possible splits associated to a pair of regions A,B, so
which one to choose? Interestingly, given a state which is cyclic and separating for the
various algebras (e.g. the vacuum), there is a somewhat canonical choice. This is [6–8]

NAB ≡ AA ∨ JABAAJAB , with the commutant given by N ′AB = AB ∨ JABABJAB .
(1.1)

Here we used the standard notation A∨B to refer to the double commutant of the algebra
of the union, namely, A ∨ B ≡ (A ∪ B)′′. Also, JAB is the Tomita-Takesaki modular
conjugation operator associated to the algebra of AB and the corresponding state. The
von Neumann entropy associated to this type-I factor defines the reflected entropy [9]

R(A,B) ≡ S(NAB) . (1.2)

An alternative route to the same notion was presented by Dutta and Faulkner in [10].
A given state ρAB in a Hilbert space HA ⊗ HB can be canonically purified as |√ρAB〉 ∈
(HA⊗H∗A)⊗(HB⊗H∗B). Then, the von Neumann entropy associated to the reduced density
matrix ρAA∗ obtained from tracing out over HB ⊗H∗B is nothing but the reflected entropy.
Indeed, the modular conjugation operator JAB precisely maps AA into AA∗ , and one has
NAB = AAA∗ . While this construction is not directly suitable for QFTs, one can safely use
it in the lattice and unambiguously recover reflected entropy as defined in eq. (1.2) in the
continuum limit. A useful construction in terms of replica-manifold partition functions was
also presented in that paper. In addition, they also showed that reflected entropy generally
bounds above the mutual information. Namely,

R(A,B) ≥ I(A,B) , (1.3)

holds for general theories.
Much of the interest in reflected entropy so far has come from the observation, by

the same authors, that for holographic theories dual to Einstein gravity, this quantity is
proportional to the minimal entanglement wedge cross section, Rholo.(A,B) = 2EW (A,B),
at leading in order in Newton’s constant [10]. Subsequent work studying aspects of reflected
entropy building up on the results of [10] includes [11–24]. Candidates for multipartite
versions of reflected entropy have also been proposed in [25–27]. In passing, let us mention
that EW has also been proposed to be related to the “entanglement of purification” [28,
29] and to the so-called “odd entropy” [30]. Regarding the latter, a similar connection
between reflected entropy and odd entropy has been observed in [31] in the case of Chern
Simons theories in (2 + 1) dimensions, although it is expected that both quantities differ
in general [10].

2See our previous paper [5] for a possible notion of spatial “algebra density” in the case of free fermions.
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So far, it has not been rigorously proven that reflected entropy should be finite in
general,3 although it is believed to be so at least for most QFTs — see [9] and also [34–36].
This was proven to be the case for free fermions in (1 + 1) dimensions in [9] and confirmed
later in [5], where we explicitly evaluated it for that theory as a function of the conformal
cross ratio. The calculations in [31] also yield finite answers.

The main purpose of this paper is to continue developing the general technology re-
quired for the evaluation of reflected entropy for Gaussian systems. As mentioned above,
this was started in our previous paper [5], where we obtained general formulas valid for
free fermions in arbitrary dimensions. The focus here will be on free scalars, for which we
will provide analogous expressions. This is the subject of section 2. Analogously to the
fermions case, we show that reflected entropy can be computed in terms of correlators of
the bosonic fields associated to the system A. General formulas valid in general dimensions
are presented both in the case in which the system is described in terms of N scalars and
N conjugate momenta as well as in the case corresponding to a unified description in terms
of 2N Hermitian operators. The main formulas are eqs. (2.17), (2.18) and (2.19) in the
first case and eqs. (2.26), (2.30), (2.31) and (2.32) in the second.

We apply this formulas to the case of a chiral scalar in (1 + 1) dimensions in section 3.
We compute reflected entropy for this model for a pair of intervals as a function of the
conformal cross ratio, and compare the result (normalized by the central charge) with the
holographic [10] and fermionic ones [5]. The scalar curve turns out to be considerably
lower than the other two, but still greater than the mutual information in the whole range,
as expected by the general inequality eq. (1.3). In this section we also study how the
type-I character of the algebra NAB manifests itself in the structure of eigenvalues of the
matrix of correlators required for the evaluation of reflected entropy as compared to the
entanglement entropy one. As opposed to the latter, in the case of reflected entropy only a
few eigenvalues make a relevant contribution to the result in the continuum. In this section
we also verify the conjectured monotonicity of reflected entropy under inclusions for scalars
and fermions.

In section 4 we start the study of reflected entropy for (2+1)-dimensional free theories.
In particular, we evaluate R(A,B) for free scalars and fermions for regions A,B correspond-
ing to pairs of parallel squares of length L separated a distance `. In both cases we find
a finite answer as a function of x ≡ L/` and verify that eq. (1.3) holds. Also, we observe
that reflected entropy behaves linearly with x as this quotient grows, R(A,B) ' κ(R)x,
analogously to mutual information. We compute the coefficient κ(R) numerically for both
theories as well as for holography (using the connection with EW ) and compare it to the
respective mutual information answers. In the opposite regime, i.e. for x� 1, we observe
that R(x) ∼ −I(x) log x holds for both free theories. The same behavior is found to occur
for the (1 + 1)-dimensional theories considered in section 3, which leads us to conjecture
that this is a general relation valid for arbitrary regions far apart from each other in general
d-dimensional CFTs.

3Except when A,B stop being disjoint. In fact, reflected entropy can be used as a geometric regulator
for entanglement entropy [10], similarly to mutual information [32, 33].
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We conclude with some future directions in section 5. appendix A contains a table
with the numerical results found for the reflected entropy of (1+1)-dimensional free scalars
and fermions for various values of the cross ratio.

2 Reflected entropy for free scalars

In this section we show how the reflected entropy for Gaussian scalar systems in general
dimensions can be computed — analogously to the entanglement entropy, and similarly
to the fermion case explored in [5] — from matrices of two-point functions of the scalar
and conjugate-momentum fields. We also discuss how this formula gets modified when
the usual description in terms of a set of scalars and momenta {φi, πj}, i, j = 1, . . . , N , is
replaced by one in terms of 2N Hermitian operators fi, i = 1, . . . , 2N , more suitable in
certain cases, such as the one corresponding to a chiral scalar in d = 2.

2.1 Purification and general formulas: take one

Let us start with some general comments about purifications and Tomita-Takesaki theory
— see e.g. [37] for a review of the latter. Consider a quantum mechanical system with
Hilbert space H1 and an invertible density matrix ρ written in its spectral decomposition

ρ =
∑
p

λp|p〉〈p| . (2.1)

Let us now consider a copy of H1, which we denote by H2. We can define a purification
|Ω〉 of ρ in H1 ⊗H2, so that ρ = trH2 |Ω〉〈Ω|. In the Schmidt basis, this can be written as

|Ω〉 =
∑
p

√
λp|p p̃〉 . (2.2)

Observe that the orthonormal basis {|p̃〉} for H2 in (2.2) is arbitrary, different choices
corresponding to different purifications of |Ω〉. As far as reflected entropy is concerned, all
these choices are equivalent.

Modular conjugation J is defined by the anti-unitary operator

J ≡
∑
pq

|p q̃〉〈q p̃| ∗ , (2.3)

where ∗ denotes complex conjugation in the basis {|pq̃〉}. One has J |Ω〉 = |Ω〉, J2 = 1,
J† = J−1 = J . Another important property is that the conjugation of an operator acting
on the first factor produces an operator acting on the second,

J(O ⊗ 1)J = 1⊗ Ō . (2.4)

Now, defining ∆ ≡ ρ⊗ ρ−1 , the Tomita-Takesaki relations follow,

J ∆ = ∆−1 J , J∆1/2O1|Ω〉 = O†1|Ω〉 , (2.5)

where O1 is any operator acting on the first factor.
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Let us now focus our discussion on free scalar fields. Let φi, and πj , i, j = 1, . . . , N ,
be a system of scalars and conjugate momenta acting on a Hilbert space H1. These are
Hermitian operators which satisfy canonical commutation relations

[φi, πj ] = iδij , [φi, φj ] = [πi, πj ] = 0 . (2.6)

Given a density matrix ρ ∈ H1, we can purify it by considering a Hilbert space H of
double dimension and extend the bosonic algebra with 2N additional operators φi, πj so
that eq. (2.6) holds for i, j = 1, . . . , 2N . This can be achieved by defining

φ̃i ≡ JφiJ , π̃j ≡ −JπjJ . (2.7)

Then it follows that the set {(φ1, π1), . . . , (φN , πN ), (φ̃1, π̃1), . . . , (φ̃N , π̃N )} forms a canon-
ical algebra of Hermitian operators in the full space — in particular, eq. (2.6) holds for
all variables.

With these definitions, scalar correlators depend only on the density matrix ρ for the
first N scalars. In order to see this, let us define Ψ0

i ≡ φi, Ψ1
i ≡ πi, and the same for Ψ̃a

i ,
a = 0, 1. We have, in the purified state |Ω〉 in the full space,

〈Ω|Ψa1
i1
· · ·Ψak

ik
Ψ̃b1
j1
· · · Ψ̃bl

jl
|Ω〉 = (−1)

∑
l
bl 〈Ω|Ψa1

i1
· · ·Ψak

ik
JΨb1

j1
· · ·Ψbl

jl
|Ω〉 (2.8)

= (−1)
∑

l
bl 〈Ω|Ψa1

i1
· · ·Ψak

ik
∆1/2Ψbl

jl
· · ·Ψb1

j1
|Ω〉

= (−1)
∑

l
bl tr

(
ρ1/2Ψa1

i1
· · ·Ψak

ik
ρ1/2Ψbl

jl
· · ·Ψb1

j1

)
.

The first equal follows from eq. (2.7) and the properties of the modular conjugation. The
second, from eq. (2.5) and the Hermiticity of the fields. The third can be easily verified
using eq. (2.1) and eq. (2.2) explicitly.

Now, consider a set of creation and annihilation operators al, a†l , l = 1, . . . , N , satisfying
[ai, a†j ] = δij , related to the φi and πj via linear combinations

φi = αij
[
a†j + aj

]
, πi = iβij

[
aj − a†j

]
, (2.9)

where α and β are real matrices [38]. The commutation relations in eq. (2.6) impose the
constraint α = −1

2(βT )−1.
The idea is now to assume a density matrix ρ of the form [39, 40]

ρ = Πl(1− e−εl)e−
∑

l
εla
†
l
al , (2.10)

which defines a Gaussian state. The two-point correlators of the fields and momenta will
be denoted by (this notation is somewhat standard for correlators in general states)

Xij ≡ tr(ρφiφj) , Pij ≡ tr(ρπiπj) . (2.11)

On the other hand, for Gaussian states invariant under time reflection, we have [38]

tr(ρφiπj) = tr(ρφiπj)∗ = i

2δij . (2.12)

– 5 –
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These matrices of correlators can be written in terms of the expectation value of the number
operator nkk ≡ 〈a†kak〉 = (eεk − 1)−1. The results read

α(2n+ 1)αT = X ,
1
4(α−1)T (2n+ 1)(α−1) = P ⇒ 1

4α(2n+ 1)2α−1 = XP . (2.13)

Going back to our double Hilbert space, the purified state |Ω〉 is also Gaussian for the full
system of scalars.

Organizing the scalars in a single field Φi ≡ φi, i = 1, . . . , N and Φi+N ≡ φ̃i, i =
1, . . . , N , and proceeding similarly for the momenta, Πi ≡ πi, i = 1, . . . , N and Πi+N ≡ π̃i,
i = 1, . . . , N , we are interested in the following correlators

Φij ≡ 〈Ω|ΦiΦj |Ω〉 , Πij ≡ 〈Ω|ΠiΠj |Ω〉 , i = 1, . . . , 2N . (2.14)

Using eq. (2.8) we obtain the following block-matrix representation of these two objects

Φ =

 α(2n+ 1)αT 2α
√
n(n+ 1)αT

2α
√
n(n+ 1)αT α(2n+ 1)αT

 , (2.15)

Π =

 1
4(α−1)T (2n+ 1)α−1 −1

2(α−1)T
√
n(n+ 1)α−1

−1
2(α−1)T

√
n(n+ 1)α−1 1

4(α−1)T (2n+ 1)α−1

 . (2.16)

These can be written in terms of X and P alone as

Φ =
(

X g(XP )X
g(XP )X X

)
, Π =

(
P −Pg(XP )

−Pg(XP ) P

)
, (2.17)

where
g(A) ≡

√
A− 1/4

√
A
−1
. (2.18)

The purity of the global state imposes that these matrices satisfy ΦΠ = 1/4, which can be
easily verified.

Now, the von Neumann entropy corresponding to a region Y can be obtained from the
restriction of Φ and Π to Y , i.e. (ΦY )ij = Φij and (ΠY )ij = Πij for all i, j ∈ Y . Defining
CY ≡

√
ΦY ΠY , the entropy is given by

S(Y ) = tr [(CY + 1/2) log(CY + 1/2)− (CY − 1/2) log(CY − 1/2)] . (2.19)

In the continuum, the same expression can be used, where CY is to be understood as a
kernel, C(x, y), x, y ∈ Y .

When computing reflected entropy for a pair of regions A, B, we need to evaluate
the X, P and g(XP ) matrices for all sites belonging to those regions, which allows us to
build the Φ and Π matrices, and then restrict the different blocks to the region A sites
— see below for explicit examples. Formulas eq. (2.19) and eq. (2.17) can be thought of
as generalizations of the well-known expressions required for the evaluation of the usual
entanglement entropy — see e.g. [38]. In that case, eq. (2.19) holds, where the matrix
CY is now the restriction to the entangling region Y of the matrix CY ≡

√
XY PY . In

the reflected entropy case, eq. (2.19) computes the entropy for ρAA∗ instead of ρA. The
difference between both cases is codified in the additional blocks appearing in Φ and Π
with respect to X and P respectively.

– 6 –
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2.2 Purification and general formulas: take two

The previous description in terms of scalar and conjugate-momentum fields can be gener-
alized by considering instead a set of 2N Hermitian operators fi satisfying commutation
relations of the form

[fi, fj ] = i (δji+1 − δji−1) ≡ iCij . (2.20)

This is a more suitable choice in some cases, such as the one corresponding to a d = 2
chiral scalar, which we consider in the following section. This setup has been previously
considered e.g. in [41–44].

Once again, we extend this bosonic algebra with 2N additional operators

f̃i ≡ JfiJ . (2.21)

These satisfy the commutation relations [f̃i, f̃j ] = −iCij . Again, with this definition, the
scalar correlators depend only on the density matrix of the original Hilbert space. In the
purified state |Ω〉 in the full space, we have

〈Ω|fi1 · · · fik f̃j1 · · · f̃jl |Ω〉 = 〈Ω|fi1 · · · fikJfj1 · · · fjl |Ω〉 (2.22)

= 〈Ω|fi1 · · · fik∆1/2fjl · · · fj1 |Ω〉 (2.23)

= tr
(
ρ1/2fi1 · · · fikρ

1/2fjl · · · fj1
)
. (2.24)

Let us denote
Fij ≡ 〈fifj〉 . (2.25)

Organizing the operators in a single field Fi ≡ fi, i = 1, . . . , N and Fi+N ≡ f̃i, i = 1, . . . , N ,
we can define the matrix of commutators

Cij ≡ −i[Fi,Fj ] ⇒ C =
(
C 0
0 −C

)
. (2.26)

Using the Hermiticity of the Fi it is easy to prove that4

Cij = 2 ImFij , (2.27)

where we defined the matrix of correlators

Fij ≡ 〈Ω|FiFj |Ω〉 , i = 1, . . . , 2N . (2.28)

The different blocks in this matrix turn out to be given by

F =
(

F iCV g(V 2)
iCV g(V 2) F − iC

)
, where V ≡ −iC−1F − 1

2 , (2.29)

and g(A) was defined in eq. (2.18). This matrix can also be written as

F =

 R + iI g
(
−1

4RI−1RI−1
)

R
g
(
−1

4RI−1RI−1
)

R R − iI

 , (2.30)

4Note that when we write things like ImAij , we literally refer to the matrix built from the imaginary
parts of the components of the original matrix (and the same for the real parts).
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where we defined Rij ≡ Re(Fij), Iij ≡ Im(Fij). Note that the off-diagonal terms are
manifestly real. In order to evaluate the entropy associated to some region Y , we define
the matrix

VY ≡ −i(CY )−1FY −
1
2 , (2.31)

where CY and FY are the restrictions of C and F to Y . Then, the corresponding Von
Neumann entropy can be obtained as

S(Y ) = tr [(VY + 1/2) log |VY + 1/2|] . (2.32)

When computing reflected entropies, we need to evaluate C and F for all sites belonging
to A and B, and then obtain the restrictions of their different blocks to the region A.

As a check of our results, we can observe that one should find S(Y ) = 0 when applied to
the global state, which means that the unrestricted matrix V should be such that V2 = 1/4,
which can be easily verified to be the case. Observe also that, once again, these expressions
can be seen as generalizations of the analogous entanglement entropy formulas. For that
quantity eq. (2.32) holds [41] with VY replaced by VY ≡ −i(CY )−1FY − 1

2 .
The terms appearing in the diagonal of F in the expressions above follow straight-

forwardly, but the origin of the off-diagonal pieces requires some further explanation.
In order to see where they come from, let us define vectors ~f ≡ (f1, . . . , f2N )T and
~Φ ≡ (φ1, . . . , φN , π1, . . . , πN )T and ~̃f ≡ (f̃1, . . . , f̃2N )T and ~̃Φ ≡ (φ̃1, . . . , φ̃N , π̃1, . . . , π̃N )T .
As argued in [44], we can perform a change of basis to relate the ~f and ~Φ representations
as ~Φ = QO~f where Q = diag(D−1/2, D−1/2) being D a diagonal matrix with positive
elements, and O an orthogonal matrix. On the one hand, we have

C = OTQ−1
(

0 1
−1 0

)
Q−1O , F = OTQ−1

(
X i/2
−i/2 P

)
Q−1O , (2.33)

⇒ V = OTQ

(
0 iP

−iX 0

)
Q−1O , F − iC = OTQ−1

(
X −i/2
i/2 P

)
Q−1O . (2.34)

Now, our goal is to evaluate 〈fif̃j〉. In order to do that, we use the result obtained in
eq. (2.17) in the φ, π basis. We have

〈ΦΦ̃〉 =
(
〈φφ̃〉 0

0 〈ππ̃〉

)
=
(
g(XP )X 0

0 g(PX)P

)
. (2.35)

Then, we have

〈ΦΦ̃〉 = QO 〈ff̃〉OTQ ⇒ 〈ff̃〉 = OTQ−1 〈ΦΦ̃〉Q−1O . (2.36)

Now, in order to write the expression in eq. (2.35) in terms of correlators of fi, we can use
the above expressions for C and V . We find

iCV g(V 2) = OTQ−1
(
g(XP )X 0

0 g(PX)P

)
Q−1O ⇒ 〈ff̃〉 = iCV g(V 2) , (2.37)

which is the desired relation appearing in the off-diagonal blocks of F .

– 8 –
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3 Reflected entropy for a d = 2 chiral scalar

In this section we evaluate numerically the reflected entropy for two intervals for a chiral
scalar field as a function of the conformal cross-ratio and compare the result to the ones
corresponding to holographic Einstein gravity and a free fermion. We also study the eigen-
values spectrum of the matrix of correlators which intervenes in the computation of the
reflected entropy and comment on its differences with respect to the one required for the
evaluation of the usual type-III entanglement entropy of a single interval. We also verify
the monotonicity of reflected entropy under inclusions both for the scalar and the fermion.

3.1 Reflected entropy for two intervals

The lattice Hamiltonian for a chiral scalar in 1 + 1 dimensions can be taken to be

H = 1
2
∑
i

f2
i . (3.1)

In this case, the correlator defined in eq. (2.25) was obtained in [44], the result being

Fij =


− 1 + (−1)i−j

π((i− j)2 − 1) , |i− j| 6= 1 ,

+ i

2 (δji+1 − δji−1) , |i− j| = 1 .
(3.2)

Given two regions A and B, we can evaluate the reflected entropy as the von Neumann
entropy of ρAA∗ using the expression for Fij above and the formulas obtained in the previous
section. The indices i, j in Fij take values in sites belonging to the region A ∪B. Namely,
if we define the discretized intervals through A∪B = (a1, a1 + 1, . . . , b1 − 1, b1)∪ (a2, a2 +
1, . . . , b2 − 1, b2), then i, j take values j = a1, a1 + 1, . . . , b1 − 1, b1, a2, a2 + 1, . . . , b2 − 1, b2.
Given (a1, b1) and (a2, b2) as input, which determine the length and separation of the
corresponding intervals, we can then evaluate the matrix Fij . The real and imaginary
parts of its components are easily obtained from eq. (3.2) and given by

ReFij =


− 1 + (−1)i−j

π((i− j)2 − 1) , |i− j| 6= 1 ,

0 , |i− j| = 1 ,
ImFij = 1

2 (δji+1 − δji−1) . (3.3)

With these matrices at hand, we can numerically compute the diagonal terms appearing in C
and F in eq. (2.26) and eq. (2.30) respectively, as well as the combinationW ≡ (− i

2RI−1)ij ,
required for the off-diagonal blocks of F . In order to obtain those, we first diagonalize
W . Given its eigenvalues {dm}, we build the diagonal matrix |dm|−1√d2

m − 1/4 δmn and
transform it back to the original basis, which yields g(−1

4RI−1RI−1)
∣∣∣
ij
. Multiplying by

R, we obtain the off-diagonal blocks of F . Using these matrices we can obtain the von
Neumann entropy associated to ρAA∗ , from the submatrices corresponding to the A sites.
These correspond to the first (b1 − a1) × (b1 − a1)-dimensional blocks in each case. With
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Figure 1. We plot the reflected entropy normalized by the central charge, R/c, as a function of
the cross-ratio η for: a chiral scalar (blue line and dots), a free fermion (red line and dots) [5] and
holographic Einstein gravity (black line) [10]. The latter corresponds to the leading-order result in
the Newton constant which drops to zero for η = 1/2. The gray dashed line is the general-theory
behavior as η → 1.

those pieces we can finally build the matrices C|AA∗ and F|AA∗ as

F|AA∗ =

 [R + iI]|A
[
g
(
−1

4RI−1RI−1
)

R
]∣∣∣
A[

g
(
−1

4RI−1RI−1
)

R
]∣∣∣
A

[R − iI]|A

 ,

C|AA∗ =

 2I|A 0|A
0|A − 2I|A

 . (3.4)

The last step is to evaluate VAA∗ ≡ −i(C|AA∗)−1F|AA∗ − 1
2 . Denoting its eigenvalues as

{νm}, the reflected entropy can be finally obtained from eq. (2.32) as

Rscal. =
∑
m

(νm + 1/2) log |νm + 1/2| . (3.5)

Lattice calculations give rise to a doubling of eigenvalues, so when showing results we need
to divide the numerical results by 2. On the other hand, from now on we will normalize
reflected entropies by the central charge c of the corresponding theory, which in the case
of the chiral scalar is c = 1/2. Hence, the numerical results obtained following the above
procedure automatically yield Rscal./c.

In the continuum, the reflected entropy for two intervals of lengths LA, LB separated
a distance ` is a function of the conformal cross-ratio

η ≡ (b1 − a1)(b2 − a2)
(a2 − a1)(b2 − b1) = LALB

(`+ LA)(`+ LB) . (3.6)
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In order to obtain Rscal.(η) in that limit, we fix η and consider an increasing number
of points in the discretized intervals. The results for the reflected entropy asymptote
to their continuum values, which we obtain through a polynomial fit in the inverse size
of the intervals. We plot our results in figure 1. In the same plot, we include the results
corresponding to holographic Einstein gravity and a free fermion. The former was obtained
in [10] using replica-trick techniques, and reads

Rholo.(η) =


2c
3 log

[1 +√η√
1− η

]
+O(c0) , for η > 1/2 ,

O(c0) , for η < 1/2 .
(3.7)

This agrees with previous EW calculations [28, 29]. On the other hand, the fermion results
were obtained using numerical methods in [5]. In figure 1 we have also included the η → 1
limit which was argued to hold for general d = 2 CFTs in [10]. This reads

R(η → 1) = − c3 log(1− η) + c

3 log 4 . (3.8)

While the fermion and holographic results clearly approach the limiting curve in the ex-
pected regime (doing so from below), the scalar takes values which are considerably smaller
for values of η very close to one. In appendix A we present the numerical values of the
data points shown in figure 1 both for the scalar and the fermion, which may be useful for
future comparisons.

In spite of being much smaller than the fermion and holographic results, we can verify
that Rscal. is indeed greater than the mutual information Iscal. as required by the general
inequality in eq. (1.3). For that, we recall the results for the mutual information of fermion
and scalar [44]. These are given by

Iferm./c = −1
3 log(1− η) , Iscal./c = −1

3 log(1− η) + 2U(η) , (3.9)

where
U(η) ≡ − iπ2

∫ ∞
0

ds
s

sinh2(πs)
log

[
2F1[1 + is,−is; 1; η]
2F1[1− is,+is; 1; η]

]
, (3.10)

which is a real and negative function for all values of η. We plot the corresponding reflected
entropies and mutual informations for both models in figure 2. In both cases, the inequality
is satisfied, as it should, and the quotient R/I monotonously decreases for growing values of
η. In the limit η → 1, both quotients tend to one. In the case of the scalar, it requires values
of η extremely close to one to approach that limit — see blue diamond in the right plot. This
is related to the behavior of the function U(η), which goes as U(η) ∼ −1

2 log [− log[1− η]]
for η → 1 [44]. In the opposite limit, i.e. for η → 0, the quotients seem to diverge
logarithmically. In the case of the fermion, we found that the tentative function [5]

Rferm.(η → 0)/c ∼ −0.15η log η + 0.67η + . . . (3.11)

fits reasonably well the numerical data for values of the cross ratio η . 0.1. In the case of
the scalar, a similar analysis suggests that the leading order term takes the form

Rscal.(η → 0)/c ∼ −0.04η2 log η + . . . (3.12)
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⋄⋄

Figure 2. We plot the reflected entropy and mutual information for two intervals A,B, as a
function of the cross-ratio for a free fermion (red) and a free scalar (blue). In the right we plot the
quotient between both quantities for each model. The black dot corresponds to the limit η = 1,
where both quotients should tend to one. The red and blue dots correspond to the greatest values
of η for which we numerically evaluated the reflected entropy for each model. The red dotted line
has been computed using the general-CFT formula eq. (3.8) and eq. (3.9) and is valid for η → 1.
In the case of the scalar, the curve becomes very steep near η → 1 because of U(τ). For instance,
the small blue diamond shown in the figure corresponds to the value η = 0.9999999999999999, for
which Rscal./Iscal. = 1.470488.

The fit in this case goes wrong much faster than in the case of the fermion, and can only
be trusted for values of the cross ratio η . 0.001. In spite of this limited range of validity,
we are rather confident the functional dependence of the leading term is the one shown in
eq. (3.12). In the case of the mutual informations, one finds instead [44–46]

Iferm.(η → 0)/c ∼ 1
3η + . . . , Iscal.(η → 0)/c ∼ 1

30η
2 + . . . . (3.13)

These results reflect the different nature of both quantities. While mutual information
admits a power-law expansion in that limit [47–50], which reflects the fact that it measures
correlations between operators exclusively localized in A,B, the information captured by
reflected entropy is in fact spread throughout the whole real line (except for the region
corresponding to the interval B). The latter fact was shown very explicitly in the case of
the fermion in [5], where a notion of spatial-density for the corresponding type-I algebra
was introduced.

3.2 Eigenvalues spectrum

In [5], we studied how the spectra of the correlator matrices entering the entanglement and
reflected entropies differed from each other for a (1+1)-dimensional free fermion. The goal
of this subsection is to perform an analogous analysis in the case of the chiral scalar. Just
like for the fermion, the formulas required for the evaluation of reflected entropy in the case
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Figure 3. We plot the “leading” eigenvalues of the correlator matrices VA and VAA∗ involved in
the evaluation of: the usual type-III entanglement entropy for a single interval (left); the reflected
entropy R(A,B) for two invervals A,B with cross-ratio η = 1/4 (right). For both plots, the
horizontal axis corresponds to the number of points taken for the intervals (A in the first case
and both A and B in the second). In both cases, we use a logarithmic function of the eigenvalues
which simplifies presentation of several eigenvalues in the same plot — see eq. (3.14).

of free scalars are also identical to the entanglement entropy ones — namely, they have
the same form in terms of certain two-point functions of the fields. The difference between
both quantities is that in the entanglement entropy case the relevant matrices are CA and
FA, whereas for the reflected we need CAA∗ and FAA∗ . In this setup, this is what makes
the difference between computing a von Neumann entropy for a type-III algebra associated
to region A, and a von Neumann entropy for the canonical type-I algebra associated to
regions A and B, i.e. a reflected entropy.

The eigenvalues of VAA∗ always appear doubled, as mentioned above. In the following
discussion we just remove the repeated eigenvalues and multiply the result by 2. For each
remaining eigenvalue νj there is always another one corresponding to −νj . Hence, it is
useful to arrange the eigenvalues as

ν2k ≡
1
2 + εk , ν2k−1 ≡ −

1
2 − εk , with k = 1, 2, . . . ,#A , (3.14)

where the εk are positive numbers and #A is the number of lattice points corresponding
to the interval A. The continuum limit corresponds to #A → ∞. The above expressions
can be inverted as εk = (ν2k − ν2k−1 − 1)/2 = ν2k − 1/2 = −ν2k−1 − 1/2. Then, we can
rewrite the reflected entropy eq. (3.5) as

Rscal. = 2
#A∑
k=1

[(εk + 1) log(1 + εk)− εk log εk] . (3.15)

Except for values of η very close to 1, the εk are all very small numbers, so Rscal. is
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approximately given by

Rscal. = 2
#A∑
k=1

[
εk[1− log εk] + ε2

k

2 +O(ε3
k)
]
. (3.16)

In this expression, both εk and −εk log εk make comparable contributions to Rscal. for the
most relevant eigenvalues, but −εk log εk always dominates whenever εk < 1/e, which again
is the case for all values of η except for those extremely close to η = 1. In order to compare
the behavior of the eigenvalues of VAA∗ with those of VA we choose to plot − log εk as a
function of the number of points in the interval A. Note that the smaller the values of
− log εk for a given pair of eigenvalues {ν2k, ν2k−1}, the greater the contribution to Rscal.,
since the resulting function appears multiplied by εk in the reflected entropy expression.
Indeed, the closer to 0 a given εj is, the smallest its contribution, since then εj log εj → 0,
and (εj + 1) log(εj + 1)→ log 1 = 0. As for the eigenvalues of VA, in that case there is no
doubling but, just like for the reflected entropy, for each positive eigenvalue there always
appears its negative version, so the arrangement eq. (3.14) can be performed as well, where
now the εk are no longer small in general.

In figure 3 we plot the function − log εk as we approach the continuum for the eigenval-
ues of VAA∗ and VA which contribute the most to the reflected and entanglement entropies,
respectively. The greatest contribution comes, in both cases, from the lowest curve, and so
on. In a very similar fashion to the situation encountered for a free fermion in [5], we observe
that only a few eigenvalues make a significant contribution to R(A,B). The eigenvalues
quickly stabilize as we approach the continuum, as expected for a finite type-I algebra. On
the other hand, in the entanglement entropy case, an increasing number of eigenvalues of
VA become relevant, which produces the usual logarithmically divergent behavior.

It is natural to wonder how well the first eigenvalues manage to reproduce the full
reflected entropy result. In order to test this, one can define “partial” reflected entropies as

R
(p)
scal. = 2

p∑
k=1

[(εk + 1) log(1 + εk)− εk log εk] , (3.17)

where again it is understood that we have arranged the εk from greatest to smallest. For
our working example of η = 1/4, one finds,

R
(1)
scal.(1/4) = 0.0089725 , (3.18)

R
(2)
scal.(1/4) = 0.0098531 , (3.19)

R
(3)
scal.(1/4) = 0.0100063 , (3.20)

R
(4)
scal.(1/4) = 0.0100385 , (3.21)

R
(∞)
scal.(1/4) = 0.0100512 . (3.22)

As we can see, already with four eigenvalues we obtain a pretty accurate approximation
to the full answer. A similar situation is encountered for intermediate values of η. On the
other hand, as we approach the η → 1 limit, a growing number of eigenvalues is required.
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Figure 4. For a free fermion and a chiral scalar, we plot the reflected entropy corresponding to
a fixed interval A and a region υB consisting of two intervals obtained as follows: given a single
interval B identical to A and with a fixed cross-ratio η = 1/9, we remove a certain subset of B
symmetric around its center so that we keep a total fraction υ of B. For instance, υ = 2/5 means
that we have divided B in five identical pieces and we have computed reflected entropy for A and
the pair of intervals resulting from removing the three intermediate fifths of B. The result appears
normalized by R(A,B), i.e. by the one obtained by considering the full interval B. The black dots
correspond to the limit cases and are shared by the two models.

3.3 Monotonicity of reflected entropy

The monotonicity of reflected entropy under inclusions (or its lack thereof) is an open
problem. Namely, it is not know whether

R(A,BC)
?
≥ R(A,B) , (3.23)

is a general property of reflected entropy. An analogous inequality was proven for integer-
n > 1 Rényi versions of the reflected entropy in [10], but the n = 1 case still remains
uncertain.

We have tested the validity of eq. (3.23) for the free scalar and the free fermion by
computing reflected entropy of pairs of regions A and υB where only a fraction υ of
the original interval B is considered. In figure 4, we have considered a particular case
corresponding to intervals A,B with cross-ratio η = 1/9. We find that eq. (3.23) always
holds, i.e. as we increase the fraction of B which we consider, the reflected entropy grows.
Hence, reflected entropy indeed satisfies the monotonicity property in these cases. We have
repeated the experiment for other values of η, and eq. (3.23) is always respected both for
the scalar and the fermion. While our analysis is only partial, our results suggest that
eq. (3.23) indeed holds for all possible choices of A,B,C in the case of free scalars and
fermions in d = 2.
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4 Reflected entropy in d = 3

In this section we move to (2 + 1)-dimensional theories. In particular, we compute the
reflected entropy for free massless scalars and fermions. We choose simple regions A,B
corresponding to parallel squares of length L separated a distance ` along their bases. We
study the behavior of R(A,B) both for small and large values of L/`. For the latter,
we extract the coefficients controlling the linear growth and compare them to the mutual
information ones for both theories as well as for holographic Einstein gravity. Regarding
the former, we observe a pattern, shared by the d = 2 theories considered in the previous
section, which leads us to conjecture that reflected entropy and mutual information for
pairs of regions characterized by scales LA ∼ LB ∼ L and separated a distance ` are
universally related in the large-separation regime (x ≡ L/`� 1) by R(x) ∼ −I(x) log x in
general dimensions.

4.1 Free scalar correlators

In the case of the scalar, the Hamiltonian we have considered reads

H = 1
2

∞∑
n,m=−∞

[
π2
n,m + (φn+1,m − φn,m)2 + (φn,m+1 − φn,m)2

]
, (4.1)

where the lattice spacing has been set to one. In this case, the formulation is in terms of
bosonic fields and momenta, so the discussion in section 2.1 applies, and the relevant for-
mulas for the reflected entropy are eq. (2.17), eq. (2.19). The relevant correlators read [38]

X(0,0),(i,j) ≡ 〈φ0,0φi,j〉 = 1
8π2

∫ π

−π
dx
∫ π

−π
dy cos(ix) cos(jy)√

2(1− cos(x)) + 2(1− cos(y))
, (4.2)

P(0,0),(i,j) ≡ 〈π0,0πi,j〉 = 1
8π2

∫ π

−π
dx
∫ π

−π
dy cos(ix) cos(jy)

√
2(1− cosx) + 2(1− cos y) .

(4.3)

The subindices here refer to the coordinates of the corresponding two-dimensional lat-
tice points. The correlators are invariant under translations, so that, 〈φ0,0φi,j〉 =
〈φn,mφi+n,j+m〉, and the same for the momenta. For computational purposes, it is use-
ful to perform the integral over y in both expressions. The result can be written in terms
of the regularized hypergeometric function pF̃q as

X(0,0),(i,j) = 1
25/2π

∫ π

−π
dx cos(ix)√

3− cosx 3F̃2

[{1
2 ,

1
2 , 1

}
; {1− j, 1 + j}; 2

3− cosx

]
, (4.4)

P(0,0),(i,j) = 1
23/2π

∫ π

−π
dx cos(ix)

√
3− cosx 3F̃2

[{1
2 ,

1
2 , 1

}
; {1− j, 1 + j}; 2

3− cosx

]
.

(4.5)

These integrals can be easily evaluated numerically.
Regions A,B in the lattice correspond to subsets of points p = (px, py). For instance,

for a square region of length L and with the lower left vertex at (0, 0), we have A ≡
{(px, py) ∈ Z2 | px, py = 0, . . . , L}. Given a pair of two-dimensional regions A and B we
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can evaluate the reflected entropy as follows. First, we need to evaluate the matrices X
and P . These are composed of four blocks corresponding to the AA, AB, BA and BB

components, respectively. For instance, XAB corresponds to the block of eigenvalues Xp,q

where p = (px, py), q = (qx, qy) are points in the lattice such that p ∈ A and q ∈ B. Once
we have X and P , we need to evaluate g(XP ). In order to do that, we find the eigenvalues
{dm} of the matrix XP . Then, we build the diagonal matrix

√
dm − 1/4

√
dm
−1
δmn and

transform it back to the original basis, which yields g(XP ). In order to obtain the off-
diagonal blocks in Φ and Π, we multiply it by X or P as required in an obvious way.
Finally, we restrict the matrices Φ and Π to the A region as

Φ|AA∗ =

 X|A [g(XP )X] |A

[g(XP )X] |A X|A

 , Π|AA∗ =

 P |A [−Pg(XP )] |A

[−Pg(XP )] |A P |A

 ,

(4.6)

where we used the notation |A to refer to the AA block in each case. The final step is to
evaluate CAA∗ ≡

√
Φ|AA∗Π|AA∗ . Given the eigenvalues of this matrix, which we denote

{νm}, the reflected entropy finally reads

Rscal. =
∑
m

(νm + 1/2) log(νm + 1/2)− (νm − 1/2) log(νm − 1/2) . (4.7)

4.2 Free fermion correlators

For the (2 + 1)-dimensional Dirac fermion, the lattice Hamiltonian reads

H = − i2
∑
n,m

[(
ψ†m,nγ

0γ1(ψm+1,n − ψm,n) + ψ†m,nγ
0γ2(ψm,n+1 − ψm,n)

)
− h.c.

]
, (4.8)

and the corresponding correlators [38]

〈ψ†n,kψj,l〉 = 1
2δnjδkl +

∫ π

−π
dx
∫ π

−π
dy sin(x)γ0γ1 + sin(y)γ0γ2

8π2
√

sin2 x+ sin2 y
ei(x(n−j)+y(k−l)) . (4.9)

Just like in the case of the scalar, the subindices in the fermionic fields above correspond
to the coordinates of the corresponding lattice points.

The relevant formulas for the evaluation of the reflected entropy in the case of fermionic
Gaussian systems were obtained in [5]. Let us quickly summarize the relevant results here.
We start with N fermions, ψi, i = 1, . . . , N , satisfying canonical anticommutation relations
{ψi, ψ†j} = δi,j and a density matrix ρ in the corresponding Hilbert space of dimension
2N . We can purify this state by doubling the Hilbert space and use the modular reflection
operator J associated to such state and the algebra of the first N fermions to double
the fermion algebra — doing this properly involves a unitary constructed from the fermion
number operator [51] — in a way such that we are left with a canonical set of 2N operators.
Denoting by Dij ≡ tr(ρψiψ†j) the correlators of the original system, the matrix which turns
out to be relevant for the evaluation of reflected entropy is given by

C =

 D
√
D(1−D)√

D(1−D) (1−D

 , (4.10)
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where the additional blocks correspond to the appearance of new correlators involving the
new fermionic fields in the doubled system. Just like in the case of the scalars, the final
answer can be fully written in terms of correlators of the original system, as is apparent
in eq. (4.10). Finally, the reflected entropy for a pair of regions A,B is obtained from the
restrictions of the corresponding block matrices to A

CAA∗ =

 D|A
√
D(1−D)

∣∣∣
A√

D(1−D)
∣∣∣
A

(1−D)|A

 . (4.11)

Denoting by {νm} the eigenvalues of CAA∗ , we finally have

Rferm. = −
∑
m

[νm log(νm) + (1− νm) log(1− νm)] . (4.12)

When taking the continuum limit, we have to take into account the doubling of the
fermionic degrees of freedom on the lattice. In (2 + 1) dimensions, this requires divid-
ing the final result by 4 in order to obtain the result corresponding to a Dirac fermion.
When presenting the results, we will consider reflected entropy (or mutual information)
per degree of freedom, which in this case requires dividing by an addition factor of 2.

4.3 Reflected entropy for two parallel squares

Using the results of the previous two subsections, we are ready to evaluate the reflected
entropy of scalar and fermionic systems in (2 + 1) dimensions. We do this for regions
A,B corresponding to two squares of length L aligned so that the second square can be
obtained by moving the first a distance L+ ` along the (positive) direction of its base. We
have then two parallel squares separated by a distance `. The corresponding sets in the
lattice correspond to A ≡ {(px, py) ∈ Z2 | px, py = 0, . . . , L} and B ≡ {(px, py) ∈ Z2 | px =
L+ `, . . . , 2L+ ` , py = 0, . . . , L}.

Using the procedures explained in the previous two subsections, we obtain the results
shown in figure 5 for the corresponding reflected entropies as a function of the quotient
L/`. Just like it happens for the mutual information — also shown in the plots — the
scalar result is greater than the fermion one in the whole range of values. Also, in both
cases, we find that the general inequality eq. (1.3) holds. In the case of the scalar, it is
actually possible to obtain reflected entropy using the formulas in subsection 2.2 instead
of those in subsection 2.1. We have done so and verified that the results agree, which is a
good consistency check for our general formulas.

For small values of x ≡ L/` we do not have a priori a clear guess of what the behavior
of Rscal. and Rferm. should be. We have looked for trial functions involving simple combi-
nations of powers and logarithms and such that: they go to zero at x = 0, they are positive
in the whole range, they grow monotonically in the domain considered, the fit coefficients
are neither too large nor too small. In the case of the scalar, we find that the following
function does a good job in fitting the numerical data

Rscal.(x� 1) ∼ −0.133x2 log x+ 0.0497x2 . (4.13)
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Figure 5. We plot the reflected entropy (per degree of freedom) for regions A, B, corresponding
to two squares of length L separated by a distance ` as a function of L/` for a free scalar (blue)
and a free fermion (red). For both fields we also plot the mutual information I(A,B) for the
same pair of regions (dashed lines). The latter curves are obtained numerically using the usual
definition I(A,B) = SEE(A) +SEE(B)−SEE(AB), where the corresponding entanglement entropies
are computed in the lattice using the same von Neumann entropy formulas as for the reflected
entropies, but associated to ρA instead of ρAA∗ in each case.

We plot this function alongside the numerical data points in figure 6. As we can see, the
fit is actually good up to values x . 0.38. In the case of the fermion, we find that the
following fit approximates well the data points up to similar values of x

Rferm.(x� 1) ∼ −0.111x4 log x− 0.03144x4 . (4.14)

This appears shown in the right plot in figure 5. It is interesting to compare these expres-
sions with the corresponding mutual information behavior. For that, we note that given
two regions with characteristic scale L separated by a much larger distance `, one finds for
general d-dimensional CFTs [47–50]

I(x� 1) ∼ x4∆ , (4.15)

where ∆ is the scaling dimension of the lowest-dimensional operator of the corresponding
theory. Hence, for scalars and fermions we have

Iferm.(x� 1) ∼ x2(d−1) , Iscal.(x� 1) ∼ x2(d−2) , (4.16)

respectively. Thus, we observe that Iferm.(x� 1) ∼ x4 and Iscal.(x� 1) ∼ x2 in the three-
dimensional case considered here. Comparing with eq. (4.13) and eq. (4.14), we observe
that reflected entropy behaves with the same power as mutual information multiplied by a
logarithm of L/`. Going back to section 3, we observe that exactly the same phenomenon
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Figure 6. We plot the reflected entropy (per degree of freedom) for regions A, B, corresponding to
two squares of length L separated by a distance ` as a function of L/` for a free scalar (blue dots)
and a free fermion (red dots) in the small-L/` region. We also show the trial functions explained
in the text.

is found both for the chiral scalar5 and the fermion. These results are very suggestive and
lead us to propose the following conjecture.

Conjecture. The reflected entropy for two regions A,B with characteristic scales LA ∼
LB ∼ L separated a distance ` behaves as

R(x) ∼ −I(x) log x ∼ −x4∆ log x , (x ≡ L/`) , (4.17)

in the x� 1 regime for general CFTs in arbitrary dimensions.

It would be interesting to test the validity of this conjectural relation for additional
models in various dimensions (as well as for higher-dimensional free-field theories) or to
(dis)prove it in general. A natural setup where eq. (4.17) could be tested would be hologra-
phy. In that case, the leading-order result of both reflected entropy and mutual information
vanishes for sufficiently small values of x (e.g. for η < 1/2 in the intervals case in d = 2).
Accessing the first non-vanishing contribution in the mutual information case in that regime
requires considering quantum corrections to the Ryu-Takayanagi formula [52], and the re-
sult agrees with the general CFT behavior in eq. (4.15) [50]. An analogous expression for
the leading correction of holographic reflected entropy was presented in [10], so it should
be in principle possible to check the validity of our conjecture in that case.

For large values of L/`, the behavior of R(A,B) becomes linear. The reason for this is
that, as the length of the squares grows with respect to the separation, the setup becomes
more and more similar to the case of two infinitely-extended parallel sets for which the

5Note that in the case of the chiral scalar considered in section 3, the lowest-dimensional operator is ∂φ,
for which ∆ = 1.
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leading contribution is an “area-law” like term. The situation is analogous for the mutual
information, and the corresponding linear growth is also apparent in the corresponding
dashed lines in figure 5. More generally, for any d-dimensional CFT, when A,B are two
sets with large parallel faces of area A separated by a comparatively small distance `

one finds

I(A,B) = κ
(I)
d

A
`d−2 + subleading , R(A,B) = κ

(R)
d

A
`d−2 + subleading . (4.18)

As shown in [38, 53], both for free scalars and fermions, the values for the mutual informa-
tion coefficients κ(I)

d can be obtained from a dimensional reduction to (1 + 1) dimensions.
The results are given in terms of the functions appearing in the entropic version of the
c-theorem6 [54] corresponding to the respective free theories in that number of dimensions.
The explicit results in d = 3, 4, 5, 6 for both types of fields read

κ
(I)
3, sc. ' 3.97 · 10−2 , κ

(I)
4, sc. ' 5.54 · 10−3 ,

κ
(I)
5, sc. ' 1.31 · 10−3 , κ

(I)
6, sc. ' 4.08 · 10−4 , (4.19)

κ
(I)
3, fer. ' 3.61 · 10−2 , κ

(I)
4, fer. ' 5.38 · 10−3 ,

κ
(I)
5, fer. ' 1.30 · 10−3 , κ

(I)
6, fer. ' 4.06 · 10−4 . (4.20)

As d→∞, the scalar and fermion results tend to a common value, given by [38]

κ
(I)
d→∞ =

Γ
[
d−2

2

]
2d+2π

d−2
2

. (4.21)

Naturally, the d = 3 coefficients are the slopes of the leading contributions to the dashed
curves shown in figure 5 as L/` � 1. In order to extract these values from the numerical
results, we perform a fit with a linear, a logarithmic and a constant function to the data
points obtained with L/` > 4. The results obtained from numerical fits are in good
agreement with the values of κ(I)

3, scal. and κ
(I)
3, ferm. shown above. Proceeding similarly for the

reflected entropy, we find

κ
(R)
3, scal. ' 6.95 · 10−2 , κ

(R)
3, ferm. ' 6.16 · 10−2 . (4.22)

We can compare these results to holographic theories dual to Einstein gravity, for
which the values of κ(R)

d, holo. and κ
(I)
d, holo. can be obtained analytically in general dimensions.

In the case of the mutual information, the coefficient can be extracted from the universal
term in the entanglement entropy corresponding to a strip of width ` much smaller than
the rest of dimensions. The bulk action reads

Ig = 1
16πG

∫
dd+1x

√
|g|
[
d(d− 1)
L2 +R

]
, (4.23)

where G is the Newton constant and where we parametrized the cosmological constant so
that AdS(d+1) is a solution of the theory with radius L. Entanglement entropy can be then

6This is defined from the entanglement entropy of an interval of length L as c(L) ≡ L dSEE(L)
dL

.
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obtained from the Ryu-Takayanagi prescription [55, 56] and the relevant coefficient turns
out be given by [55]

κ
(I)
d, holo. =

2d−3π
d−1

2 Γ
[

d
2(d−1)

]d−1

(d− 2)Γ
[

1
2(d−1)

]d−1
Ld−1

G
. (4.24)

In the case of the reflected entropy, we can obtain the result assuming its relation to the
minimal entanglement wedge cross section, Rholo.(A,B) = 2EW (A,B) proposed in [10].
This calculation was performed in [57] in the more general case of two parallel strips
of fixed width. Taking the large-width limit of the result we can extract κ(R)

d, holo.. The
result reads

κ
(R)
d, holo. =

2d−3π
d−2

2 Γ
[

d
2(d−1)

]d−2

(d− 2)Γ
[

1
2(d−1)

]d−2
Ld−1

G
. (4.25)

In order to compare with the free-field results, we can consider the quotient between both
coefficients, which reads

κ
(R)
d, holo.

κ
(I)
d, holo.

=
Γ
[

1
2(d−1)

]
√
πΓ
[

d
2(d−1)

] . (4.26)

This is always larger than 1, as it should in view of the inequality eq. (1.3). In particular,

κ
(R)
3, holo.

κ
(I)
3, holo.

' 1.669 ,
κ

(R)
4, holo.

κ
(I)
4, holo.

' 2.319 ,
κ

(R)
5, holo.

κ
(I)
5, holo.

' 2.963 ,
κ

(R)
6, holo.

κ
(I)
6, holo.

' 3.604 . (4.27)

As d→∞, one has

κ
(R)
d→∞, holo.

κ
(I)
d→∞, holo.

= 1
π

[2d+ (log 4− 2) +O(1/d)] . (4.28)

The d = 3 result is not so different from the ones we find numerically for the free fields.
For those, we obtain

κ
(R)
3, scal.

κ
(I)
3, scal.

' 1.75 ,
κ

(R)
3, ferm.

κ
(I)
3, ferm.

' 1.71 . (4.29)

Some degree of similarity between the free fermion and holography — as far as entropic
measures are concerned — has been previously observed in other situations — see e.g. [58].
Here we observe that the fermion result is indeed more similar to the holographic answer,
but it is not extremely close to either of the two.

While the leading contribution for large values of L/` is linear, there is a subleading
logarithmic term. The presence of logarithmic contributions associated to corner regions is
characteristic of this kind of measures. In the entanglement entropy case, the corresponding
universal contribution has been subject of intense study — see e.g. [59] for an updated list
of relevant references. While we have not attempted to evaluate with reasonable numerical
precision the logarithmic terms appearing in the case of the two square regions considered
here for the reflected entropy, we point out that we do not expect the corresponding pieces

– 22 –



J
H
E
P
1
1
(
2
0
2
0
)
1
4
8

to be immediately related to entanglement entropy corner terms corresponding to a single
square region (as opposed to mutual information, for which they are). In order to extract
such term from a reflected entropy calculation, we would need to consider regions A,B
corresponding to a square and the complement of a larger square, respectively. On the
other hand, this also means that reflected entropy contains new universal coefficients with
no immediate entanglement entropy counterpart. We leave a study of such kind of terms
for future work.

5 Outlook

As we have illustrated, the formulas presented here and in [5] allow for simple numerical
evaluations of reflected entropy for free scalars and fermions. While the expressions are
valid in general dimensions, our analysis so far has been mostly focused on two-dimensional
theories. In section 4 we made a first incursion into higher dimensions, but we restricted
ourselves to parallel square-like regions. It would be interesting to continue exploring
higher-dimensional theories and the various universal terms appearing associated to differ-
ent kinds of regions — e.g. the coefficients κ(R)

d for d > 3. As mentioned above, this will
include terms with and without entanglement entropy counterparts.

Another direction would entail considering massive theories. In most cases, the relevant
correlators are simple (and known) modifications of the ones we have used here for the
corresponding massless cases, so such generalizations are clearly accessible.

It would also be interesting to better clarify the connection and differences between
reflected entropy and other entanglement measures. In particular, it would be nice to
test the validity of our conjectural relation eq. (4.17) for additional theories. In fact,
perhaps a general proof could be attempted using Replica-trick methods [10]. Beyond
mutual information, connections between reflected entropy and odd-entropy have also been
reported [30, 31, 60], which would be interesting to examine further.

Finally, in [5] we introduced a modification of reflected entropy — “type-I entropy”
— which differed from the former in the case of theories obtained from quotients of the-
ories by global symmetry groups. Operators implementing the corresponding symmetry
operations on type-I algebras can be constructed and computationally amenable notions of
entropy can be associated to their expectation values. Those connect in a simple fashion
the reflected entropies of complete theories and the type-I entropies of subalgebras. This
suggests possible interesting entropic connections between bosonic and fermionic theories
related by quotients.

We plan to explore some of these directions in the near future.
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A Numerical values of Rferm./c and Rscal./c

In this appendix we present numerical results found for the reflected entropy of two intervals
A,B for different values of the cross-ratio — defined in eq. (3.6) — in the case of a free
fermion and a free scalar in 1+1 dimensions. The values presented here are those shown in
figure 1. Results are presented from smaller to greater values of η. For technical reasons, in
some cases we chose slightly different values of η to evaluate the reflected entropy for each
field. Also, as η approaches one, obtaining reliable numerical values becomes increasingly
demanding, which is why we present less significant digits in that case.

η Rferm./c Rscal./c

0 0 0
1/121 0.01146 0.00001572
1/100 0.01359 0.00002249
1/49 0.02569 0.00008579
1/9 0.11603 0.002075
4/25 0.16150 0.004177
1/4 0.2453 0.01005

625/1936 0.01696
16/49 0.3167
4/9 0.4347 0.03391

10000/18769 0.5315 0.0518
16/25 0.6648 0.0833
25/36 0.105

10000/13689 0.7999
625/841 0.130
64/81 0.9077

625/784 0.166
100/121 0.191

10000/11881 1.021
625/729 0.223

10000/11449 1.108
2500/2809 0.268
400/441 1.222
625/676 1.299 0.335

10000/10609 1.396 0.382
2500/2601 1.54 0.462

10000/10201 0.630
40000/40401 0.78

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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