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Abstract
The resonant charge exchange between atoms and surfaces is described by considering a
localized atomistic view of the solid within the Anderson model. The presence of a surface
energy gap is treated within a simplified tight-binding model of the solid, and a proper
calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is
performed. It is found that interference terms jointly with a surface projected gap maximum at
the � point and the Fermi level inside it, lead to hybridization widths negligible around the
Fermi level. This result can explain experimental observations related to long-lived adsorbate
states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A complete description of the interaction of atoms and
molecules with a surface, including both the statics and
the dynamics, would provide an understanding of several
phenomena of fundamental importance in surface science.
In particular, the energies and lifetimes of the electronic
states of atoms and molecules are the clue to understanding
different processes, such as the survival of excited or ionic
species produced in electron-, photon-, or particle-induced
desorption [1], the neutralization or ionization of particles
colliding with surfaces [2] and the spectroscopy of adsorbed
species [3–5].

The jellium model is the most basic model for describing
a metal surface, and it has been largely used and justified
by thinking that the charge transfer processes that determine
the survival probabilities of ion or excited species often occur
at relatively large distances from the surface [6–13]. On
the other hand, the excited states of the adsorbate broaden
into resonances as the atom approaches the surface. The
wavefunction of these resonances diverges at infinity and the
usual bound-state techniques are not applicable. The complex

scaling method was found to be the appropriate one to treat
these resonances by means of a complex scale transformation
in the radial coordinate of the wavefunction [14, 15]. This
method has been widely used for calculating resonance widths
and shifts of adsorbate electronic states [16–20].

It is now possible to measure the lifetime and the binding
energy of excited electronic states by using time-resolved
two-photon photoemission spectroscopy (TR-2PPE) [21–25].
This provides a unique method for exploring the electronic
properties of unoccupied excited states, including the image
potential states, as well as the adsorbate excited states on
metal surfaces. Long-lived excited states have been found in
alkali atoms adsorbed in Cu(111) and Cu(100) surfaces, with
lifetimes that vary from a few tens of femtoseconds (fs) in
Cs/Cu(111) to 1.6 and 4 fs in the case of Na adsorbate on
Cu(100) and Cu(111) respectively.

Calculations based on the free electron model lead to
transient state lifetimes in the 0.5 fs range [18, 26, 27].
Therefore, a new theoretical scenario has appeared, in which
the very long-lived state in the Cs/Cu(111) system is related to
the presence of a projected energy gap in the electronic band
structure of the Cu(111) surface. The wavepacket propagation
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(WPP) approach, based on the time evolution of a wavepacket
describing the active electron in the resonant charge transfer
between atom and surface, has been applied to the study of
alkali/Cu(111) systems [26, 28–32]. This calculation includes
a potential energy term that reproduces the main features of the
(111) surface: the band gap position, the energies of the surface
and first image states. On the other hand, the widths of atomic
levels near metallic surfaces have also been obtained from
the density of states projected on the adsorbate calculated by
density functional theory (DFT) using a periodic slab to model
the solid surface. [33, 34]. Within this theoretical approach it
has been found that the lifetime of Li adsorbate in Cu(111) is
greater than the corresponding one in Cu(100). This result is
attributed to the energy position of the Li 2s level, which falls
inside the surface gap in the (111) surface, while it is below
the gap in the (100) case. The shifts of the Li 2s level cannot
be easily extracted from the periodic DFT calculations due to
hybridization effects at short distances that spread the energy
level and make it hard to define the shifts unambiguously.
Instead, the same shifts calculated in the complex scaling
theory, which essentially follow the classical image potential,
were assumed in this calculation [33–35]. But there is
experimental evidence showing that the atom levels initially
move in energy as the metal surface is approached owing to
the image potential, but close to the surface the short range
interactions lead to a lowering of their energies [36, 37]. This
fact can explain the high neutralization of Li+ ions found in the
scattering by high workfunction (111) metal surfaces (Ag, Cu,
Au) [38–42], but the increase of the neutralization probability
found at low energies is not yet completely understood. It
is believed that it is mainly associated with the presence of
projected energy gaps, surface and image states [38, 40, 42].

In the present work we explore the influence of the band
structure features on the charge exchange between atoms and
surfaces by using local orbital schemes, which has proved to be
very useful in the treatment of chemisorptive bonding theories.
The canonical chemisorption theory, due to Grimley [43] and
Newns [44], deals with an Anderson Hamiltonian [45]. In
the case of dynamical ion–surface scattering, the extension
of the chemisorption theory based on the Anderson model is
straightforward when the charge exchange is only determined
by one-electron hopping processes [46, 47]. The strength of
this model is fundamentally the clear physical meaning of each
of the parameters of the Hamiltonian, and the possibility of
handling them very easily to describe equilibrium and non-
equilibrium processes. Then, a proper calculation of the
energy and hybridization terms is possible. To this purpose we
used the bond-pair model [48–50], which has been successful
for describing the interaction between atoms and surfaces in
several chemisorption and ion scattering problems [49–57]. In
this work we assimilated the interaction parameters calculated
in this way to Li–Cu system [56], while a simple first-
neighbor tight-binding calculation was used to provide the
LCAO expansion of the substrate states. Thus, two bands and
a surface projected gap were included in the band structure
in order to simulate, very qualitatively, the general trends of
the localized d-like and more extended sp-like bands of the
Cu(111) surface. The goal of this simplified surface model is

to allow one to gain some insight on the interference between
surface atoms interacting with the adsorbate (projectile) and its
effect on physical magnitudes such as the width and shift of
the adsorbate level in a stationary process or the charge state
fractions in ion scattering.

This paper is organized as follows. In section 2 the
Anderson model is presented and the ab initio calculation to
obtain the Hamiltonian parameters is described. The simple
surface model used and the Green function formalism for
calculating the physical magnitudes of interest in both the
adsorption and dynamical surface scattering processes are
also introduced in this section. Section 3 is devoted to a
comprehensive analysis of the interference and surface gap
effects on the energy dependence of the hybridization widths,
and also on the behavior of the charge fractions at low
incoming projectile energies. A summary is presented in
section 4.

2. Theory

The Anderson model has three main ingredients: a localized
atomic state with energy εa , an on-site Coulomb repulsion U
in the atomic shell and a hybridization matrix element V σ

�k,a
between the atomic state and the conduction states of the metal.
The Hamiltonian is

Ĥ =
∑

�k,σ

ε�k n̂�k,σ +
∑

σ

(
εa + 1

2Un̂aσ̄

)
n̂aσ

+
∑

�k,σ

(V σ
�k,a

ĉ†
�k,σ

ĉa,σ + h.c). (1)

Here, ĉ†
aσ creates one electron in the atomic orbital a with spin

projection σ and energy εa , ĉ†
�kσ

creates one electron in the

conduction band state with wavevector �k and spin projection
σ and energy ε�kσ ; n̂qσ = ĉ†

qσ ĉqσ is the number operator. The

index �k includes the band index, which can be also referred to
inner and localized surface bands.

An important quantity deeply related to the physics of
the Anderson model is the hybridization width �σ

a (ε) =
π

∑
�k |V σ

�k,a
|2δ(ε − ε�k,σ ), which is the imaginary part of

the adsorbate self-energy �0
σ (ω) = ∑

�k
|V σ

�k,a
|2

ω−ε�k,σ +iη in the

U = 0 case. In this case, the real part of �0
σ (ω), evaluated in

ω = εa , provides the atomic level shift caused by the
interaction with the band states, and the hybridization width
evaluated in the shifted atom energy, �σ

a (ε̃a), measuring the
energy half-width of the atomic resonance. These concepts
continue being valid in the interacting case (U �= 0) provided
the adsorbate self-energy can be assumed as �σ (ω) =
�0

σ (ω) + �U
σ (ω). The knowledge of the energy dependence

of the hybridization width and the atom energy level position
allow us to completely determine the resonant electron transfer
between atoms and surfaces within the Anderson model
framework. Therefore, ab initio calculations of the on-site
energy and hopping terms are desirable in order to make use
of the full potential of the Anderson model.
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2.1. Calculation of Hamiltonian terms: bond-pair model

A model Hamiltonian previously developed to describe pairs
of interacting atoms [48] was generalized to any atom–surface
system by assuming that one of the two atoms consists of
a system having a quasicontinuum basis of states (including
extended valence and ‘localized’ or core-like flat band states).
A symmetrically orthogonalized [58] mixed basis set of
localized adatom orbitals and extended surface states is used
in this case to finally reduce the Hamiltonian to the form of
the Anderson model. The one electron hybridization term V σ

�k,a
includes one and two electron contributions consistently with
a mean-field approximation of the many body Hamiltonian.
Basically, the V σ

�k,a
term is expanded according to the overlap

expansion of the orthogonal �k- and a-states:

V σ
�k,a

= V σ (0)

�k,a
− 1

2 S�k,a(V σ (0)

�k,�k + V σ (0)
a,a ) + · · · (2)

where the supra-index (0) indicates that the matrix elements
are referred to the states of the isolated subsystems (atom
and solid) and S�k,a is the overlap between them. The LCAO
expansion of the unperturbed surface states is then performed,

φ�k,σ (�r) =
∑

i, �Rs

C
�k,σ
i ( �Rs)ϕi (�r − �Rs) (3)

and the three-center integrals are approximated consistently
with the overlap expansion. In this way the non-dimeric
contributions are canceled and finally the hybridization term
is recovered as a superposition of the atomic hopping integrals
V σ (dim)

i,a calculated with functions only orthogonalized within

each dimeric subspace ( �Rs , �Ra) (see equations (12) and (13)
of [49]):

V σ
�k,a

=
∑

i, �Rs

C
�k,σ
i ( �Rs)V σ (dim)

i,a . (4)

The coefficients C
�k,σ
i ( �Rs) determine the density matrix of

the unperturbed solid whose elements are ρσ
i, j (

�Rs , �Rs ′ ; ε) =
∑

�k C
�k,σ∗
i ( �Rs)C

�k,σ
j ( �Rs ′)δ(ε − ε�k,σ ). How many atoms of the

substrate contribute to the expansion given by equation (4)
depends on the magnitude of the atomic hopping integral
V σ (dim)

i,a ; and the weight of each dimeric contribution is
directly related to the band structure through the coefficient

C
�k,σ
i ( �Rs). In summary, two main ingredients are required

for an ab initio calculation of V σ
�k,a

: (i) a good atomic basis
set [59, 60] and (ii) an appropriate calculation of the band
structure based on a localized description of the solid [61, 62].
The adsorbate energy level, calculated following the same
procedure, includes the orthogonalization effects and the
adsorbate–substrate two-electron interactions within a mean-
field approximation (see equation (9) of [49]).

The bond-pair model has allowed for a general
satisfactory description of experimental results in adsorption
and surface scattering processes in many different atom–
surface combinations [49–57]. In all these works only the
diagonal on-site elements of the surface density matrix (the

surface local density of states, LDOS) have been conserved in
the calculation of quantities such as the hybridization width:

�σ
a (ε) = π

∑

i, j

∑

�Rs , �Rs′

ρσ
i, j (

�Rs , �Rs ′ ; ε)V σ∗
i,a ( �Rs)V σ

j,a(
�Rs ′). (5)

Very good agreement between experiment and theory
has been found for colliding ions having large velocity
components along the normal to the surface, while this
theoretical description seems to fail when the interaction has
more time to incorporate the details of the surface band
structure. In the Li/Cu system the differences between theory
and experiment become dramatic at low energies [56]. In the
light of these results, it is very important to explore the effect
of the crossed on-site terms of ρσ

i, j (
�Rs, �Rs ′ ; ε) in the resonant

charge exchange process.

2.2. Band-states calculation

The φ�k,σ (�r) eigenstates of the solid are calculated within a first-
neighbor tight-binding approximation by assuming a simple
cubic symmetry and one atomic state per site. The coefficients
of the LCAO expansion are given by

C
�k,σ
i ( �Rs) = √

2 sin(mkzb) exp(i�k‖ · �Rs) (6)

where m is the index denoting the plane parallel to the surface,
b is the lattice parameter (b = 7 au) and �k = (�k‖, kz). The
presence of a Shockley-like surface state as the one existing
in the Cu(111) surface is disregarded in this case, because the
interest in this work is to isolate the effects originating from
the presence of surface energy gaps. The eigenenergy of the
extended �k-state is given by

ε�k,σ = E1 + 2V1[cos(kxb) + cos(kyb) + cos(kzb)]. (7)

The tight-binding parameters E1 and V1 are the site energy
and the coupling between the first neighbors, respectively.
In this form we constructed a solid with two non-hybridized
bands, one (E1, V1) of more localized character than the other
(E2, V2), in an attempt to mimic the d- and sp-bands of a
Cu(111) surface. The atomic hopping parameters Vj,a( �Rs, z)
are consistently chosen as the coupling between the orbitals
j = dz2 and pz of Cu and a = 2s of Li.

2.3. Green function technique

In dynamical ion–surface scattering processes we are
interested in calculating the probability of ion neutralization.
Within the spinless approximation, this is given by the average
atom state occupation 〈na(t)〉 = 〈c†

a(t)ca(t)〉. This quantity is
obtained from the following Green function [63, 64]:

Faa(t, t ′) = i〈|[c†
a(t

′), ca(t)]|〉 → i[2〈na(t)〉−1]t→t ′ (8)

where [ ] indicates the commutator and  is the dynamical state
in the Heisenberg picture. The function Faa(t, t ′) is calculated
by solving the equation of motion given by

i
d

dt
Faa(t, t ′) = εa Faa(t, t ′) +

∫ ∞

−∞
dτ �R

0 (t, τ )Faa(τ, t ′)

+
∫ ∞

−∞
dτ �0(t, τ )Gaa(τ, t ′). (9)
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Figure 1. The atom energy level (triangles) measured with respect to
the Fermi energy (εF = 0) and the Vj,a(z, �Rs) hopping terms as a
function of atom–surface distance. Inset: central atom (1) and its first
neighbors (2 and 3).

In equation (9) Gaa(t, t ′) is the advanced Green function,
and the introduced self-energies are

�R
0 (t, τ ) = −i�(t − τ )

∑

�k,n

Va,�kn(t)V�kn,a(τ )

× exp[−iε�kn(t − τ )] (10)

�0(t, τ ) = −i
∑

�k,n

Va,�kn(t)V�kn,a(τ )

× exp[−iε�kn(t − τ )][1 − 〈n�kn(t)〉] (11)

where 〈n�kn(t)〉 is given by the Fermi function. The boundary
condition required to solve equation (9) is Faa(t0, t ′) =
(2〈na(t0)〉 − 1)Gaa(t0, t ′), with t0 being the initial time value.

3. Results and discussion

3.1. Atomic couplings and energy level

In figure 1, the hopping integrals Vj,a(z, �Rs) and the level
energy calculated by using the bond-pair model in the case
of Li/Cu(111) [56] are shown as a function of atom–surface
distance (z). The adsorbate on-top position considered is
shown in the inset of figure 1.

We can observe from figure 1 that the localized d-band
states allow for a significant coupling of the adsorbate only
with the central atom, while the more extended p-surface band
involves the interaction of the adsorbate with the first neighbors
too.

3.2. Stationary process: hybridization widths

The hybridization width given by the imaginary part of the
Fourier transform of equation (10) can be separated into
contributions from each band, �a(ε, z) = �1

a(ε, z) + �2
a(ε, z),

where �n
a (ε, z) is

�n
a (ε, z) = Im

∑

�k

|Va,�kn(z)|2
ε − ε�k,n − iη

= π
∑

�k

∣∣∣∣
∑

�Rs

√
2 sin (mkzb)

× exp(i�k‖ · �Rs‖)Va,n(z, �Rs)

∣∣∣∣
2

δ(ε − ε�k,n). (12)

Figure 2. E2 = 3 eV case. (a) Level widths for n = 1 (black lines)
and n = 2 (gray lines). Solid lines correspond to the calculation by
equation (12) and dash lines to the one by equation (14). The inset
shows the surface projected band structure of the two bands, n = 1
(black lines) and n = 2 (gray lines). (b) Shifted energy level variation
with distance: the complete calculation derived from equation (12)
(solid black curve) and the calculation derived from equation (14)
(gray dash curve). The surface LDOS is shown for the two bands,
n = 1 (black line) and n = 2 (gray line). The inset is an expanded
view of the atom level behavior around the Fermi energy εF = 0.

Here, Va,n means Va,dz for n = 1 and Va,pz for n = 2. The
energy level width �a(ε̃a, z) is calculated as the hybridization
width evaluated at the atom energy shifted by the interaction
with the surface, ε̃a(z) = εa(z) + �(εa, z). The energy shift
�(εa, z) is calculated as

�(εa, z) = P

π

∫ ∞

−∞
dω

�a(ω, z)

εa − ω
(13)

where P denotes the Cauchy principal value.
The �n

a (ε̃a, z) calculated by using equation (12) is shown
as a function of the distance to the surface in figures 2–4 for
three different values of E2. The parameters E1, V1, V2 are
chosen equal to −2 eV, −1 eV and 1.5 eV respectively, in order
to have the lower band (n = 1) more localized than the upper
one (n = 2). The projected band structure ε�k,n(

�k) as a function

of �k‖ for kz = π
b and 0; the LDOS on the surface atom (m = 1)

and the distance dependence of the shifted energy level have
also been included in these figures.

It can be observed from figures 2 to 4 that the contribution
of the n = 1 band to the level width is more significant
for distances close to the surface (z < 4 au), while the
n = 2 band contributes more appreciably to the level width
at distances larger than 4 au. This can be correlated to the
corresponding atomic hopping integrals shown in figure 1,
and also with the energy position of the shifted energy level.
The energy resonance with the n = 2 band states occurs at
distances for which the atom level is near the Fermi energy
(see figures 2(b), 3(b) and 4(b)). This resonance becomes more
effective for small values of E2. In this way we can understand
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Figure 3. The same as in figure 2 for E2 = 7 eV.

Figure 4. The same as in figure 2 for E2 = 11 eV.

the predominant contribution of the n = 2 band to the level
width at large distances in the E2 = 3 eV case, the value
comparable to the n = 1 band contribution for E2 = 7 eV,
and the negligible contribution in the E2 = 11 eV case.

In the same figures the level width calculated from

�n
a (ε, z) ≈ π

∑

�Rs

|Va,n(z, �Rs)|2

×
∑

�k
|√2 sin (mkzb)|2δ(ε − ε�k,n) (14)

is shown. This is obtained from equation (12) by conserving
only the diagonal on-site terms. This calculation leads to a
larger and more extended in distance contribution of the n = 2
band, which rules the level width at large distances in the cases
E2 = 3 and 7 eV. Instead, small differences between the widths
calculated by using either equation (12) or (14) are observed in
the case of the more localized d-like band n = 1. At short
distances the expression (14) leads to a diminution of the level

Figure 5. Hybridization width as a function of energy calculated by
using equation (12) (solid lines) and by using equation (14) (dash
lines). Black curves correspond to n = 1 and gray curves to n = 2.
The distance z = 2 au was considered for the n = 1 case and
z = 5.8 au for the n = 2 case. The arrows indicate the corresponding
energy positions of the shifted atom level. (a) E2 = 3 eV;
(b) E2 = 7 eV; (c) E2 = 11 eV.

width in this case. The differences in the level shift between
both calculations are only appreciable around the Fermi level,
where the incidence of the n = 2 band is more important (see
insets in figures 2(b), 3(b) and 4(b)).

In figure 5 the hybridization widths �n
a (ε, z) are shown

as a function of energy at distance values where each band
contribution to the level width is significant, z = 2 au in the
n = 1 band and z = 5.8 au in the n = 2 case. The results
obtained from equations (12) and (14) are compared. For the
d-like band both calculations lead to similar results, although
it is observed that the hybridization width function is slightly
shifted towards lower energy values in the case of considering
the �k‖ dependence of |Va,�kn(z)|2 according to equation (12).
In contrast, pronounced differences are observed between both
calculations in the p-like band case. The peaked structure
is narrowed and shifted to higher energies when the �k‖
dependence of |Va,�kn(z)|2 is taken into account. An increasing
surface energy gap means a decreasing contribution of the
n = 2 band to the hybridization width around the Fermi level.
Therefore, a diminution of the energy level widths is expected
when going from E2 = 3 to 11 eV because of the shifted
energy level positions (indicated by arrows in figures 5) at the
corresponding z value in each case.

The differences between the results obtained by using
either equation (12) or (14) can be understood by looking at

5
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Figure 6. (a) Surface contour plot of |Va,�kn(z)|2 as a function of the
�k-components: perpendicular to the surface in the vertical axis and
parallel to the surface in the horizontal axis, for the n = 2 band case.
The gray scale is used to indicate the variation of the square modulus
of Va,�kn(z). (b) |Va,�kn(z)|2 as a function of �k‖ according to
equation (12) for kz = π

2b , m = 1. The black curve corresponds to
n = 1 and gray curve to n = 2. The same z values as figure 5. The
dash horizontal lines are the |Va,�kn(z)|2 calculated by neglecting the
�k‖ dependence (see text). (c) The surface projected band structure for
n = 1 and 2; the dot-dash line corresponds to kz = π

2b and the dot
line to the Fermi energy εF = 0 (E2 = 7 eV).

the �k‖ dependence of |Va,�kn(z)|2 shown in figure 6. A peaked
function around the � point is found, being more localized
at �k‖ = 0 when the number of surface atoms involved in the
interaction with the adsorbate is larger (this is the case of the
n = 2 band). By comparing this result with that obtained by
neglecting the �k‖ dependence, keeping only the diagonal on-
site terms (|Va,�kn(z)|2 ≈ ∑

�Rs
|Va,n(z, �Rs)|2|

√
2 sin (mkzb)|2),

the different energy behaviors of the hybridization widths
observed in figure 5 can be easily understood. Figure 6(c)
shows clearly that, due to the presence of the gap, the
hybridization widths calculated by using equation (12) are
narrowed and shifted to higher energies in the case of the p-
band and to lower energies in the case of the d-band, with
respect to the hybridization widths obtained by equation (14).

As a general result we have that an increasing number of
surface atoms involved with similar atomic couplings means a
rather strong localization of |Va,�kn(z)|2 around �k‖ = 0. This
fact, jointly with a surface energy gap maximum at the � point
and the Fermi level located inside it, give rise to a hybridization
width localized at energies far from the Fermi level. This

picture can explain qualitatively the long-lived adsorbate states
in systems such as alkali/Cu(111) [21–24].

By looking at charge exchange processes, the n = 2
band contribution to the level width is mainly associated with
electron loss occurring at large distances where the atom
energy level is above the Fermi level, while the contribution of
the n = 1 band is related to electron capture at distances closer
to the surface (see figures 2–4). In the case of E2 = 7 eV
(figure 3) a qualitative change of behavior can be observed
between cases considering and neglecting the �k‖ dependence
of |Va,�kn(z)|2. In the case where the dependence on �k‖ is
ignored, the electron loss becomes more effective than the
electron capture. This result is reversed when taking into
account the localization effect around �k‖ = 0 obtained by using
equation (12).

3.3. Collision process: neutral fraction

The interplay between loss and capture processes is decisive
in determining the final charge state of an incoming positive
ion scattered by a surface. The neutral fraction is calculated by
considering an ion trajectory normal to the surface, described
by the time dependent function z = z(t). Different velocity
values are considered in the incoming and outgoing paths in
order to simulate the perpendicular component of velocity
corresponding to an angle of 24◦ with respect to the surface
in the incoming trajectory and 90◦ in the exit one. This is
the scattering geometry used in the Li+/Cu(111) experiments
of [38].

Figures 7–9 show the neutral fraction 〈na(∞)〉 as a
function of the exit ion energy, the distance behavior of the
energy levels and their widths shown as error bars. Both
calculations, including and neglecting the �k‖ dependence of
Va,�kn(t)V�kn,a(τ ) in equations (10) and (11), are compared. In
the range of low kinetic energies analyzed, the position of
the ion energy level with respect to the Fermi level and its
width allow us to infer the qualitative behavior of the neutral
fraction with the incoming energy. It can be assumed that
there are characteristic distances to the surface at which the
final charge state of the projectile is defined that depend on its
velocity. If the motion with respect to the surface is slower,
these characteristic distances are larger and the dynamical
charge exchange process occurs close to an adiabatic evolution.
Note that, in the analyzed situation the incoming ion velocity
is always smaller than the exit one. This fact means that
the ion has enough time along the incoming trajectory to be
partially neutralized due to the down-shift and width of the
energy level near to the surface. The final charge state is
defined by the balance between loss and capture processes
along the outgoing part, as can be observed in figures 8(b)
and (c), where the evolution of the neutral fraction along the ion
trajectory is shown in the case of a low exit energy (200 eV).
For E2 = 3 eV the discharge at large distances dominates in
the two cases, whether considering the �k‖ dependence or not,
leading in this way to a marked drop of the neutral fraction at
low kinetic energies. The larger neutralization on including the
interference terms is related to the diminution of the n = 2
band contribution to the level width due to the localization
effects around small values of �k‖ (see figure 2).
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Figure 7. E2 = 3 eV case. (a) The neutral fraction as a function of
the projectile exit energy; black squares correspond to the complete
calculation and gray circles to the one that neglects the �k‖ dependence
of Va,�kn(t)V�kn,a(τ) in equations (10) and (11). (b) and (c) The energy
level and the total width shown as error bars as a function of z:
(b) width calculated by equation (12), (c) width calculated by
equation (14). The dot line indicates the Fermi energy level.

The dynamical neutral fractions calculated by including or
neglecting the �k‖ dependence in the E2 = 7 eV case, show a
change of behavior consistent with that observed in the level
width (figure 3). In this case the localization in �k‖ leads to
a less significant discharge compared to the charge process,
promoting in this way an increase of the neutral fraction at
low energies. This negligible level width at large distances,
due to both localization effects around small values of �k‖ and
the presence of a surface gap, provides a possible explanation
for the low energy dependence of the Li+ neutral fraction
measured in the scattering by the Cu(111) surface [38].

In the case of a very small overlap between the two bands,
E2 = 11 eV, only the more localized d-like band determines
the charge exchange. Therefore, the dominant electron capture
process leads to an increase of the ion neutralization at low
energies. Since in this case only one surface atom is practically
involved, the interference effects do not play a significant role.

Another interesting point is the memory effect with
reference to the initial state. The final neutral fraction in the
case of E2 = 7 eV is presented in figure 10 for neutral and
positive initial charge states. The calculation by conserving
only the diagonal on-site terms in Va,�kn(t)V�kn,a(τ ) shows a loss

Figure 8. The same as in figure 7 for E2 = 7 eV. (b) and (c) include
the evolution of the atom state occupation probability along the ion
trajectory when considering (b) and neglecting (c) the �k‖ dependence
of Va,�kn(t)V�kn,a(τ). Negative (positive) values of z denote the
incoming (outgoing) part of the trajectory.

of memory of the initial state. Instead, the smaller level width
obtained at large distances on considering the �k‖ dependence
(see figure 8) increases the survival probability of incoming
neutral atoms, as can be observed in figure 10. A very slow
motion along the incoming trajectory is required to produce a
loss of memory in this situation.

4. Conclusions

The atom–surface interaction is described within the frame-
work of the Anderson model and the Hamiltonian terms are
obtained from an ab initio theoretical proposal. The localized
atom–atom interactions, together with the extended features of
the solid band structure, determine the hybridization term of
the Anderson model. The general trends of the Li/Cu(111)
system, related to the different localization character of the
band states and the presence of a surface gap, are reproduced in
a very qualitative way. It is found that the interference between
surface atoms interacting with the adsorbate (projectile) leads
to a modulus of the hybridization function more localized
around �k‖ = 0. Consequently, a surface gap maximum at
the � point and the Fermi level location inside it, lead to a
reduction of the hybridization widths around the Fermi level.
This means small widths of the atom levels whose energies
are near the Fermi level. This result can explain the measured
long-lived excited states of alkali atoms adsorbed in Cu(111),
and also the increasing neutralization found at low velocities

7
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Figure 9. The same as in figure 7 for E2 = 11 eV.

Figure 10. E2 = 7 eV case. Atomic state occupation probability as a
function of the exit energy. Black symbols correspond to the correct
calculation of Va,�kn; gray symbols to the calculation that neglects the
�k‖ dependence. Closed (open) symbols are for the case of an
incoming ion (incoming neutral atom).

in the case of Li+ scattered by a Cu(111) surface. It is not
expected that the ‘Shockley-like’ surface state on Cu(111),
which lies partly below the Fermi level around the � point
and is strongly localized close to the surface, will change this
picture appreciably.
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[4] Néel N, Kröger J, Limat L, Palotas K, Hofer N A and

Berndt R 2007 Phys. Rev. Lett. 98 016801
[5] Merino J and Gunnarsson O 2004 Phys. Rev. Lett. 93 156601
[6] Blandin A, Nourtier A and Hone D 1976 J. Physique 37 369
[7] Norskov J K and Lundquist B I 1979 Phys. Rev. B 19 5661
[8] Brako R and Newns D M 1981 Surf. Sci 108 253
[9] Brako R 1984 Phys. Rev. B 30 5629

[10] Wunnik J N M, Geerlings J J and Los J 1983 Surf. Sci 131 1
[11] Burgdörfer J and Kupfer E 1986 Phys. Rev. Lett. 57 2649
[12] Brako R and Newns D M 1982 Vacuum 32 39
[13] Yu M L and Lang N D 1983 Phys. Rev. Lett. 50 127
[14] Junker B R 1982 Adv. At. Mol. Phys. 18 207
[15] Reinhardt W P 1982 Ann. Rev. Phys. Chem. 33 223
[16] Nordlander P and Tully J C 1988 Phys. Rev. Lett. 61 990
[17] Nordlander P and Tully J C 1989 Surf. Sci. 211/212 207
[18] Nordlander P and Tully J C 1990 Phys. Rev. B 42 15564
[19] Borisov A G, Teillet-Billy D and Gauyacq J P 1992 Phys. Rev.

Lett. 68 2842
[20] Gauyacq J P and Borisov A G 1998 J. Phys.: Condens. Matter

10 6585
[21] Bauer M, Pawlik S and Aeschilmann M 1997 Phys. Rev. B

55 10040
[22] Bauer M, Pawlik S and Aeschilmann M 1999 Phys. Rev. B

60 5016
[23] Ogawa S, Nagano H and Petek H 1999 Phys. Rev. Lett. 82 1931
[24] Petek H, Weida M J, Nagano H and Ogawa S 2000 Science

288 1402
[25] Zhao J et al 2008 Phys. Rev. B 78 085419
[26] Borisov A G, Teillet-Billy D, Gauyacq J P, Winter H and

Dierkes G 1996 Phys. Rev. B 54 17166
[27] Lang N D and Williams A R 1978 Phys. Rev. B 18 616
[28] Borisov A G, Kazansky A K and Gauyacq J P 1999 Surf. Sci.

430 165
[29] Gauyacq J P, Borisov A G, Rassev G and Kazansky A K 2000

Faraday Discuss. 117 15
[30] Borisov A G, Kazansky A K and Gauyacq J P 1999 Phys. Rev.

B 59 10935
[31] Borisov A G, Gauyacq J P, Chulkov E V, Silkin V M and

Echenique P M 2002 Phys. Rev. B 65 235434
[32] Sjakste J, Borisov A G and Gauyacq J P 2004 Phys. Rev. Lett.

92 156101
[33] Niedfeldt K, Carter E and Nordlander P 2004 J. Chem. Phys.

121 3751
[34] Niedfeldt K, Nordlander P and Carter E 2006 Phys. Rev. B

74 115109
[35] Niedfeldt K, Carter E and Nordlander P 2006 Surf. Sci.

600 L291
[36] Lankaster J C, Kontur F J, Watters G K and Dunning F B 2003

Phys. Rev. B 67 115413
[37] Wetherkam S and Winter H 2005 Surf. Sci. 59 L319
[38] Canario A R, Kravchuk T and Esaulov V A 2006 New J. Phys.

8 227
[39] Kravchuk T, Bandourine Y, Hoffman A and Esaulov V A 2006

Surf. Sci. 600 L265
[40] Canario A R, Borisov A G, Gauyacq J P and Esaulov V A 2005

Phys. Rev. B 71 121404
[41] Hamoudi H, Dablemont C and Esaulov V A 2008 Surf. Sci.

8 2486
[42] Hecht T, Winter H, Borisov A G, Gauyacq J P and

Kazanszky A K 2000 Phys. Rev. Lett. 84 2517
[43] Grimley T B 1967 Proc. Phys. Soc. Lond. 90 751

8

http://dx.doi.org/10.1016/0168-583X(84)90243-X
http://dx.doi.org/10.1016/0370-1573(90)90104-A
http://dx.doi.org/10.1021/j150649a004
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRevLett.93.156601
http://dx.doi.org/10.1051/jphys:01976003704036900
http://dx.doi.org/10.1103/PhysRevB.19.5661
http://dx.doi.org/10.1016/0039-6028(81)90448-9
http://dx.doi.org/10.1103/PhysRevB.30.5629
http://dx.doi.org/10.1016/0039-6028(83)90116-4
http://dx.doi.org/10.1103/PhysRevLett.57.2649
http://dx.doi.org/10.1016/S0042-207X(82)80194-2
http://dx.doi.org/10.1103/PhysRevLett.50.127
http://dx.doi.org/10.1016/S0065-2199(08)60242-0
http://dx.doi.org/10.1146/annurev.pc.33.100182.001255
http://dx.doi.org/10.1103/PhysRevLett.61.990
http://dx.doi.org/10.1016/0039-6028(89)90772-3
http://dx.doi.org/10.1103/PhysRevB.42.5564
http://dx.doi.org/10.1103/PhysRevLett.68.2842
http://dx.doi.org/10.1088/0953-8984/10/30/002
http://dx.doi.org/10.1103/PhysRevB.55.10040
http://dx.doi.org/10.1103/PhysRevB.60.5016
http://dx.doi.org/10.1103/PhysRevLett.82.1931
http://dx.doi.org/10.1126/science.288.5470.1402
http://dx.doi.org/10.1103/PhysRevB.78.085419
http://dx.doi.org/10.1103/PhysRevB.54.17166
http://dx.doi.org/10.1103/PhysRevB.18.616
http://dx.doi.org/10.1016/S0039-6028(99)00431-8
http://dx.doi.org/10.1039/b002630l
http://dx.doi.org/10.1103/PhysRevB.59.10935
http://dx.doi.org/10.1103/PhysRevB.65.235434
http://dx.doi.org/10.1103/PhysRevLett.92.156101
http://dx.doi.org/10.1063/1.1777218
http://dx.doi.org/10.1103/PhysRevB.74.115109
http://dx.doi.org/10.1016/j.susc.2006.08.005
http://dx.doi.org/10.1103/PhysRevB.67.115413
http://dx.doi.org/10.1016/j.susc.2005.09.002
http://dx.doi.org/10.1088/1367-2630/8/10/227
http://dx.doi.org/10.1016/j.susc.2006.07.033
http://dx.doi.org/10.1103/PhysRevB.71.121401
http://dx.doi.org/10.1016/j.susc.2008.05.037
http://dx.doi.org/10.1103/PhysRevLett.84.2517
http://dx.doi.org/10.1088/0370-1328/90/3/320


J. Phys.: Condens. Matter 23 (2011) 045003 A Iglesias-Garcı́a et al

[44] Newns D M 1969 Phys. Rev. B 178 1123
[45] Anderson P W 1961 Phys. Rev. B 41 1123
[46] Muda Y and Newns D M 1988 Phys. Rev. B 37 7048
[47] Muda Y and Hanawa T 1980 Surf. Sci. 97 283
[48] Bolcatto P G, Goldberg E C and Passeggi M C G 1994 Phys.

Rev. A 50 4643
[49] Bolcatto P G, Goldberg E C and Passeggi M C G 1998 Phys.

Rev. B 58 5007
[50] Bolcatto P G, Goldberg E C and Passeggi M C G 2000 J. Phys.:

Condens. Matter 12 8369
[51] Goldberg E C, Monreal R, Flores F, Brongersma H and

Bauer P 1999 Surf. Sci. 440 L875
[52] Torralba M C, Bolcatto P G and Goldberg E C 2003 Phys. Rev.

B 68 075406
[53] Garcı́a E A, Pascual C G, Bolcatto P G, Passeggi M C G and

Goldberg E C 2006 Surf. Sci. 600 2195
[54] Bonetto F, Romero M A, Garcı́a E A, Vidal R, Ferrón J and

Goldberg E C 2007 Europhys. Lett. 80 53002

[55] Bonetto F, Romero M A, Garcı́a E A, Vidal R, Ferrón J and
Goldberg E C 2008 Phys. Rev. B 78 075422

[56] Garcı́a E A, Romero M A, González C and Goldberg E C 2009
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