Polar decomposition of oblique projections

G. Corach*, A. Maestripieri

Departamento de Matemática, Facultad de Ingeniería, UBA and Instituto Argentino de Matemática - CONICET, Saavedra 15, Buenos Aires (1083), Argentina

A R T I C L E I N F O

Article history:

Received 23 December 2009
Accepted 11 March 2010
Available online 3 April 2010
Submitted by T. Ando

AMS classification:

47A05

Keywords:
Oblique projections
Polar decomposition
Partial isometries
Moore-Penrose pseudoinverse

A B S T R A C T

The partial isometries and the positive semidefinite operators which appear as factors of polar decompositions of bounded linear idempotent operators in a Hilbert space are characterized.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{H} be a Hilbert space and $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. The polar decomposition of $T \in L(\mathcal{H})$ is the unique factorization $T=V_{T} A_{T}$, where V_{T} is a partial isometry, A_{T} is a positive semidefinite operator and $N\left(V_{T}\right)=N\left(A_{T}\right)$ (here, N denotes the nullspace).

This paper is devoted to the study of the polar factors of an oblique projection Q, i.e., an idempotent $Q \in L(\mathcal{H})$. More precisely, denote by \mathcal{J} the set of all partial isometries on $\mathcal{H}, L(\mathcal{H})^{+}$the cone of all positive semidefinite operators on \mathcal{H}, and \mathcal{Q} the set of all idempotents of $L(\mathcal{H})$. Our main goal is to characterize the sets

$$
\mathcal{J}_{\mathcal{Q}}=\left\{V \in \mathcal{J}: \text { there exists } Q \in \mathcal{Q} \text { such that } V=V_{Q}\right\}
$$

[^0]and
$$
L(\mathcal{H})_{\mathcal{Q}}^{+}=\left\{A \in L(\mathcal{H})^{+}: \text {there exists } Q \in \mathcal{Q} \text { such that } A=A_{\mathcal{Q}}\right\}
$$

It is well-known that for every $T \in L(\mathcal{H})$ it holds $A_{T}=|T|=\left(T^{*} T\right)^{1 / 2}$. However, there is no formula for V_{T}, in general. We prove that for $Q \in \mathcal{Q}$ both $|Q|$ and V_{Q} have an explicit expression, and they form a relatively regular pair, in the sense that $|Q| V_{Q}|Q|=|Q|$ and $V_{Q}|Q| V_{Q}=V_{Q}$; moreover, this property characterizes the idempotency of $Q=V_{Q}|Q|$.

For any closed subspace \mathcal{S} denote by $P_{\mathcal{S}}$ the orthogonal projection onto \mathcal{S}. It is known that the mapping $T \longrightarrow P_{R(T)}$ is not continuous with respect to the norm (uniform) topology. However, the restriction to \mathcal{Q} is Lipschitz with constant 1 , by a result of Kato [14, Theorem 6.35, p. 58]. From this, it also follows that the mapping $Q \longrightarrow V_{Q}$ is continuous, in contrast with the fact that the mapping $T \longrightarrow V_{T}$ is not. This result is related to the fact that the mapping $Q \longrightarrow Q^{\dagger}$ is Lipschitz of constant 2 while, in general, $T \longrightarrow T^{\dagger}$ is not continuous; here ${ }^{\dagger}$ denotes the Moore-Penrose pseudoinverse [8].

The main results of the paper are the characterizations

$$
\mathcal{J}_{\mathcal{Q}}=\left\{V \in \mathcal{J}: V P_{R(V)} \in L(\mathcal{H})^{+}, R\left(V P_{R(V)}\right)=R(V)\right\}
$$

and

$$
L(\mathcal{H})_{\mathcal{Q}}^{+}=\left\{A \in L(\mathcal{H})^{+}: \gamma(A) \geqslant 1, \operatorname{dim} \overline{R\left(A-P_{R(A)}\right)} \leqslant \operatorname{dim} N(A)\right\} .
$$

We also prove that the map $Q \longrightarrow V_{Q}$ is injective with inverse $V \longrightarrow\left(V^{2} V^{*}\right)^{\dagger} V$ and we characterize, for each $A \in L(\mathcal{H})^{+}$, the set

$$
\{Q \in \mathcal{Q}:|Q|=A\} .
$$

We also show that the map $Q \longrightarrow\left(Q Q^{*}, Q^{*} Q\right)$ is injective and we characterize its image. More precisely, it consists of all pairs $(A, B) \in L(\mathcal{H})^{+} \times L(\mathcal{H})^{+}$such that $P_{R(A)} B P_{R(A)}=P_{R(A)}$ and $P_{R(B)} A P_{R(B)}=$ $P_{R(B)}$.

2. Preliminaries

2.1. Polar decompositions

Given $T \in L(\mathcal{H})$, there exists a unique partial isometry V and a unique positive (semidefinite) operator A such that $T=V A$ and $N(V)=N(A)=N(T)$. The operator A is exactly $|T|=\left(T^{*} T\right)^{1 / 2}$. However, in general there is no explicit formula for V. The following equalities hold: $T=\left|T^{*}\right| V ;|T|=$ $V^{*} T ; T|T|^{\dagger}=V$ if T has a closed range. In this last case, the Moore-Penrose inverse T^{\dagger} can be obtained by functional calculus and T^{\dagger} belongs to the C^{*}-algebra generated by T. It should be noticed that in matrix analysis literature, in the definition of polar decompositions many times there is no condition on $N(V)$, so that there are many "polar decompositions" of an operator T (see the comments by Higham [11, p. 194]). Observe that the canonical polar decomposition $T=V|T|$, with $N(V)=N(T)$, can be changed to $T=U|T|$, with a unitary U, if the index of T is zero, i.e., if $\operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)$. This is the case of every projection Q.

2.2. Reduced minimum modulus

The reduced minimum modulus of $T \in L(\mathcal{H})$ is the number $\gamma(T)=\inf \left\{\|T \xi\|: \xi \in N(T)^{\perp},\|\xi\|=\right.$ 1\}. It is well known that $\gamma(T)=\gamma\left(T^{*}\right)=\gamma(|T|)=\gamma\left(T^{*} T\right)^{1 / 2}$, and $\gamma(T)>0$ if and only if T has closed range. Indeed, it holds $\left\|T^{\dagger}\right\|=1 / \gamma(T)$ if T has closed range (see [5]; [14, p. 231]).

2.3. Comparison of oblique projections

The next result is widely used in the next sections. Its proof is elementary and will be omitted.

Lemma 2.1. Let P, Q be two oblique projections. Then:

1. $P Q=Q \Longleftrightarrow R(Q) \subseteq R(P)$;
2. $P Q=P \Longleftrightarrow N(Q) \subseteq N(P)$;
3. $P=Q \Longleftrightarrow N(P)=N(Q)$ and $R(P)=R(Q) \Longleftrightarrow N(Q) \subseteq N(P)$ and $R(Q) \subseteq R(P)$.

We frequently use, without mention, the fact that there is a natural bijective correspondence between the set \mathcal{Q} of all oblique projections in \mathcal{H} and the set of direct sum decompositions $\mathcal{W} \dot{+} \mathcal{M}=\mathcal{H}$. This bijection associates to each decomposition $\mathcal{W} \dot{+} \mathcal{M}=\mathcal{H}$ the oblique projection $Q=P_{\mathcal{W} / / \mathcal{M}}$ with range \mathcal{W} and null space \mathcal{M}.

3. The polar factors of an oblique projection

We start with a series of lemmas which shows that each one of the partial isometry and the absolute value of an oblique projection is a generalized inverse of the other.

Lemma 3.1. Let Q be an oblique projection. Then

$$
V_{Q}|Q| V_{Q}=V_{Q}
$$

Proof. From $Q^{2}=Q$ and $Q=V_{Q}|Q|$ we get $V_{Q}|Q| V_{Q}|Q|=V_{Q}|Q|$, i.e., $V_{Q}|Q| V_{Q}=V_{Q}$ on $R(|Q|)=$ $R\left(Q^{*}\right)=N(Q)^{\perp}$. But $V_{Q}|Q| V_{Q}$ and V_{Q} obviously coincide on $N(Q)$, because $N\left(V_{Q}\right)=N(Q)$. Thus, $V_{Q}|Q| V_{Q}=V_{Q}$ on \mathcal{H}.

Lemma 3.2. Let Q be an oblique projection. Then

$$
|Q| V_{Q}=V_{Q}^{*}|Q|=P_{N(Q)^{\perp}}
$$

Proof. By Lemma 3.1, it follows that $|Q| V_{Q}$ is an idempotent. The chain of inclusions $N(Q)=N\left(V_{Q}\right) \subseteq$ $N\left(|Q| V_{Q}\right) \subseteq N\left(V_{Q}|Q| V_{Q}\right)=N\left(V_{Q}\right)=N(Q)$ implies that $N\left(|Q| V_{Q}\right)=N(Q)$. On the other hand, $R\left(|Q| V_{Q}\right) \subseteq R(|Q|)=N(Q)^{\perp}$. Therefore, $|Q| V_{Q}$ is an oblique projection with the same nullspace as $P_{N(Q)^{\perp}}$ and whose range is contained in $N(Q)^{\perp}$. Then $|Q| V_{Q}=P_{N(Q)^{\perp} \text {, by Lemma 2.1. By taking adjoints }}$ we get $V_{T}^{*}|Q|=P_{N(Q)^{\perp}}$.

Remark 3.3. If $T \in L(\mathcal{H})$ has polar decomposition $V_{T}|T|$, then the operator $T_{0}=|T| V_{T}$ is called the Duggal (or Duggal-Porta) transform of T. Lemma 3.2 says that the Duggal transform of $Q \in \mathcal{Q}$ is $P_{N(Q)^{\perp}}$. We will extend this result to the family of Aluthge transforms at the end of this section.

Lemma 3.4. Let Q be an oblique projection. Then

$$
V_{Q}=P_{R(Q)}|Q|
$$

Proof. It suffices to combine the last two results: $V_{Q}=V_{Q}|Q| V_{Q}=V_{Q}\left(V_{Q}^{*}|Q|\right)=P_{R(Q)}|Q|$.
Lemma 3.5. Let Q be an oblique projection. Then

$$
Q=P_{R(Q)} Q^{*} Q
$$

Proof. By Lemma 3.4, it holds $Q=V_{Q}|Q|=P_{R(Q)}|Q|^{2}=P_{R(Q)} Q^{*} Q$.
Lemma 3.6. Let Q be an oblique projection. Then

$$
|Q| V_{Q}|Q|=|Q| .
$$

Proof. By Lemmas 3.4 and 3.5, it holds $V_{Q}|Q|=P_{R(Q)}|Q|^{2}=Q$; thus, $|Q| V_{Q}|Q|=|Q| Q$. Observe now that $|Q| Q=|Q|$ on $R(Q)$ and on $N(Q)$, so we get the result.

For later reference we state the following lemma.
Lemma 3.7. For any oblique projection Q, the positive part and the partial isometry part of Q^{*} are related to those of Q in such a way that $\left|Q^{*}\right|=V_{Q}|Q| V_{Q}^{*}, V_{Q^{*}}=V_{Q}^{*}$ and $Q=\left|Q^{*}\right| V_{Q}$.

We collect these results, and their analogous for the reverse polar decomposition, in the next statement.

Theorem 3.8. Given an oblique projection $Q \in L(\mathcal{H})$ with polar decompositions $Q=V_{Q}|Q|=\left|Q^{*}\right| V_{Q}$, the following identities hold:

1. $V_{Q}=P_{R(Q)}|Q|=\left|Q^{*}\right| P_{N(Q)^{\perp}}$;
2. $V_{Q}|Q| V_{Q}=V_{Q}=V_{Q}\left|Q^{*}\right| V_{Q}$;
3. $|Q| V_{Q}|Q|=|Q|$ and $\left|Q^{*}\right| V_{Q}\left|Q^{*}\right|=\left|Q^{*}\right|$;
4. $|Q| V_{Q}=V_{Q}^{*}|Q|=P_{N(Q)^{\perp}}$ and $V_{Q}\left|Q^{*}\right|=\left|Q^{*}\right| V_{Q}^{*}=P_{R(Q)}$;
5. $P_{R(Q)} Q^{*} Q=Q=Q Q^{*} P_{N(Q)^{\perp}}$.

Proof. The first identity of each 1, 2, 3 and 4 follows directly from Lemmas 3.4, 3.1 and 3.6. The second identities can be easily derived by using Lemma 3.7.

Corollary 3.9. The mapping $Q \longrightarrow V_{Q}$ is continuous with respect to the operator (uniform) topology.
Proof. By a result of Kato [14, Theorem 6.35, p. 58], $\left\|P_{R(Q)}-P_{R\left(Q^{\prime}\right)}\right\| \leqslant\left\|Q-Q^{\prime}\right\|$ for every $Q, Q^{\prime} \in$ \mathcal{Q}. The continuity of $T \longrightarrow|T|$ is well known and holds not only on \mathcal{Q} but on $L(\mathcal{H})$. Therefore, the factorization $V_{Q}=P_{R(Q)}|Q|$ proves the result.

Remark 3.10. (1) Since $P_{R(Q)}$ and Q are idempotents with the same range, by Lemma 2.2 it follows that $P_{R(Q)} Q=Q$ and $Q P_{R(Q)}=P_{R(Q)}$, so that $P_{R(Q)} Q^{*} Q=P_{R(Q)} Q=Q$.
(2) The decomposition of Lemma 3.4 is a polar decomposition, in the sense that $|Q|$ is a positive semidefinite operator and $P_{R(Q)}$ is a partial isometry. However, the nullspace condition does not hold and, of course, the positive factor is not $|X|$ in either case $X=V_{Q}, V_{Q}^{*}$. Higham [11] suggests the name of "canonical polar factorization" for the one we are using. Observe that, in general, the literature in matrix computations is not uniform in this respect.
(3) Given $Q \in \mathcal{Q}$, it is well known [9] that the orthogonal projection $P_{R(Q)}$ can be explicitly obtained from Q by means of the formula $P_{R(Q)}=Q Q^{*}\left(I-\left(Q-Q^{*}\right)^{2}\right)^{-1}$. We present a short proof of this fact: observe first that $I-\left(Q-Q^{*}\right)^{2}=I+\left(Q-Q^{*}\right)^{*}\left(Q-Q^{*}\right)$ is positive and invertible. Also using Lemma 2.1 several times we get $P_{R(Q)}\left(I-\left(Q-Q^{*}\right)^{2}\right)=P_{R(Q)}\left(I-Q-Q^{*}+Q Q^{*}+Q^{*} Q\right)=Q Q^{*}$.

Observe also that $Q Q^{*}=P_{R(Q)}\left(I-\left(Q-Q^{*}\right)^{2}\right)$ has some of the features of a polar decomposition in the sense that $P_{R(Q)}$ is a partial isometry with the same nullspace as $Q Q^{*}$ and $I-\left(Q-Q^{*}\right)^{2}$ is positive. However, this is not the polar decomposition of $Q Q^{*}$. In fact, the operator $I-\left(Q-Q^{*}\right)^{2}$ has a trivial nullspace. In order to get the polar decomposition of $Q Q^{*}$, it suffices to observe the identity $Q Q^{*}=P_{R(Q)} Q Q^{*}$ and verify that $P_{R(Q)}$ and $Q Q^{*}$ satisfy the nullspace condition. In general, if A is a positive (semidefinite) operator then its polar decomposition is provided by the identity $A=P_{R(A)} A$.

It is well-known that the study of projections is closely related to the study of diverse types of generalized inverses. The sets $S=\{(A, B): A, B \in L(\mathcal{H}), A B A=A, B A B=B\}$ and $S_{Q}=\{(A, B): A, B \in$ $L(\mathcal{H}), A Q=A, Q B=B, B A=Q\}$, for a fixed $Q \in \mathcal{Q}$, have been studied from a geometrical point of view
in [3,7], respectively. Notice that $S=\cup_{Q \in \mathcal{Q}} S_{Q}$. As a consequence of Theorem 3.8, we get that $\left(V_{Q},|Q|\right)$ belongs to S. Moreover, the following result shows that this property characterizes \mathcal{Q} :

Proposition 3.11. Given $T \in L(\mathcal{H})$ with polar decomposition $T=V_{T}|T|$, it holds $T \in \mathcal{Q}$ if and only if $\left(V_{T},|T|\right) \in S$.

Proof. If $T \in \mathcal{Q}$, from Theorem 3.8, it follows that $\left(V_{T},|T|\right) \in S$.
On the other hand, if $V_{T}|T| V_{T}=V_{T}$ then $T^{2}=V_{T}|T| V_{T}|T|=V_{T}|T|=T$, so that $T \in \mathcal{Q}$.
Very recently, much attention has been paid to the so-called Aluthge transform. This notion has been introduced by Aluthge [1] as a useful tool for studying generalized hyponormal operators. If $T \in L(\mathcal{H})$ has polar decomposition $T=V|T|$ then the Aluthge transform is $\widetilde{T}_{1 / 2}:=|T|^{1 / 2} V|T|^{1 / 2}$ and, more generally, for $0<\lambda<1, \widetilde{T}_{\lambda}:=|T|^{1-\lambda} V|T|^{\lambda}$. The Duggal-Porta transform corresponds to the extreme case $\lambda=0$, i.e., $\widetilde{T}_{0}=|T| V$. The reader is referred to $[4,2,13]$ for many results on these notions.

It turns out that, for an oblique projection, all these transforms coincide:
Proposition 3.12. If $Q \in \mathcal{Q}$ then for all $\lambda, 0 \leqslant \lambda<1$ it holds

$$
\widetilde{\mathrm{Q}}_{\lambda}=P_{N(Q)^{\perp}} .
$$

Proof. We prove the case $0<\lambda<1$; the case $\lambda=0$ has been proven in Lemma 3.2. Observe first that every \widetilde{Q}_{λ} is an oblique projection: in fact $\widetilde{Q}_{\lambda}^{2}=\left(|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}\right)\left(|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}\right)=|Q|^{1-\lambda} V_{Q}|Q| V_{Q}|Q|^{\lambda}$ $=|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}=\widetilde{Q}_{\lambda}$, because $V_{Q}|Q| V_{Q}=V_{Q}$ (see Lemma 3.1). Obviously, $R\left(\widetilde{Q}_{\lambda}\right)=R\left(|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}\right)$ $\subseteq R\left(|Q|^{1-\lambda}\right)=N(Q)^{\perp}$, because, in general, $\overline{R\left(|T|^{t}\right)}=\overline{R\left(T^{*}\right)}=N(T)^{\perp}$ for $t>0$.

On the other hand, from the definition $\widetilde{Q}_{\lambda}=|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}$ we get $|Q|^{\lambda} \widetilde{Q}_{\lambda}|Q|^{1-\lambda}=|Q| V_{Q}|Q|=$ $|Q|$, by Lemma 3.6, and therefore, since $|Q|^{\lambda \dagger}|Q|^{\lambda}=P_{N(Q)^{\perp}}=|Q|^{1-\lambda}\left(|Q|^{1-\lambda}\right)^{\dagger}$, we also get $\widetilde{Q}_{\lambda} P_{N(Q)^{\perp}}$ $=P_{N(Q)^{\perp}}$. In particular, $N(Q)^{\perp} \subseteq R\left(\widetilde{\mathrm{Q}}_{\lambda}\right)$; we conclude that $R\left(\widetilde{\mathrm{Q}}_{\lambda}\right)=N(Q)^{\perp}$. But, obviously, $N(Q) \subseteq$ $N\left(\widetilde{\mathrm{Q}}_{\lambda}\right)$ and, using Lemma 2.1, we obtain $\widetilde{\mathrm{Q}}_{\lambda}=P_{N(Q)^{\perp}}$ because both oblique projections have the same range and comparable nullspaces.

Remark 3.13. Observe the identity $|Q|^{\lambda} V_{Q}^{*}|Q|^{1-\lambda}=|Q|^{1-\lambda} V_{Q}|Q|^{\lambda}$, which follows from the fact that $\widetilde{\mathrm{Q}}_{\lambda}$ is an orthogonal projection.

4. On the Moore-Penrose inverse of an oblique projection

The next result is essentially due to Greville [10], who proved it for matrices, but part of it was proven by Penrose [16]. With the addition of a closedness hypothesis, his proof is still valid for Hilbert space operators.

Theorem 4.1. If $Q \in L(\mathcal{H})$ is an oblique projection then $Q^{\dagger}=P_{N(Q)}{ }^{\perp} P_{R(Q)}$. Conversely, if \mathcal{M} and \mathcal{N} are closed subspaces of \mathcal{H} such that $P_{\mathcal{M}} P_{\mathcal{N}}$ has closed range, then $\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}$ is the unique oblique projection with range $R\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)$ and nullspace $R\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\perp}=N\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)$.

Proof. If $Q^{2}=Q$, then $Q^{\dagger}=Q^{\dagger} Q Q^{\dagger}=Q^{\dagger} Q^{2} Q^{\dagger}=\left(Q^{\dagger} Q\right)\left(Q Q^{\dagger}\right)=P_{N(Q) \perp} P_{R(Q)}$.
Since $R\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)$ is closed, the operator $Y=\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}$ is well defined. Observe that, by the properties of the Moore-Penrose inverse, $R\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}\right)=R\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*}\right)=R\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)$. Then $R(Y) \subseteq \mathcal{N}$. Since $R\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)$ is also closed, $Y^{*}=\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)^{\dagger}$ and $R\left(Y^{*}\right)=R\left(P_{\mathcal{M}} P_{\mathcal{N}}\right) \subseteq \mathcal{M}$. Thus $P_{\mathcal{N}} Y=Y$ and $P_{\mathcal{M}} Y^{*}=$ Y^{*}, so that $Y^{2}=\left(Y P_{\mathcal{M}}\right)\left(P_{\mathcal{N}} Y\right)=Y\left(P_{\mathcal{M}} P_{\mathcal{N}}\right) Y=Y$, by one of the defining properties of $\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}$.

Remark 4.2. Observe that $R\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}\right)=R\left(P_{\mathcal{N}} P_{\mathcal{M}}\right)=P_{\mathcal{N}} \mathcal{M}$ and $N\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}\right)=R\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger^{*}}\right)^{\perp}=$ $R\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\perp}=\left(P_{\mathcal{M} \mathcal{N}}\right)^{\perp}$ and the fact that $\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{\dagger}$ is an oblique projection implies

$$
P_{\mathcal{N}} \mathcal{M} \dot{+}\left(P_{\mathcal{M} \mathcal{N}}\right)^{\perp}=\mathcal{H} .
$$

This means that the mapping $(\mathcal{M}, \mathcal{N}) \longrightarrow\left(P_{\mathcal{N}} \mathcal{M}, P_{\mathcal{M}} \mathcal{N}\right)$ sends a pair $(\mathcal{M}, \mathcal{N})$ such that $\mathcal{M}+\mathcal{N}^{\perp}$ is closed into a pair $\left(P_{\mathcal{N}} \mathcal{M}, P_{\mathcal{M} \mathcal{N}}\right)$ such that $P_{\mathcal{N}} \mathcal{M}+\left(P_{\mathcal{M} \mathcal{N}}\right)^{\perp}=\mathcal{H}$.

We prove now one of the main result of the section, namely, that the map $Q \longrightarrow Q^{\dagger}$ is Lipschitzian of constant 2.

Theorem 4.3. Given $Q_{1}, Q_{2} \in \mathcal{Q}$ it holds

$$
\left\|Q_{1}^{\dagger}-Q_{2}^{\dagger}\right\| \leqslant 2\left\|Q_{1}-Q_{2}\right\| .
$$

Proof. Recall a result by Kato, which states that $\left\|P_{R\left(Q_{1}\right)}-P_{R\left(Q_{2}\right)}\right\| \leqslant\left\|Q_{1}-Q_{2}\right\|[14]$ (see also Mbekhta [15]). Then:

$$
\begin{aligned}
\left\|Q_{1}^{\dagger}-Q_{2}^{\dagger}\right\| & =\left\|P_{N\left(Q_{1}\right)^{\perp}} P_{R\left(Q_{1}\right)}-P_{N\left(Q_{2}\right)^{\perp}} P_{R\left(Q_{2}\right)}\right\| \\
& \leqslant\left\|P_{N\left(Q_{1}\right)^{\perp}}\left(P_{R\left(Q_{1}\right)}-P_{R\left(Q_{2}\right)}\right)\right\|+\|\left(P_{N\left(Q_{1}\right)^{\perp}}-P_{\left.N\left(Q_{2}\right)^{\perp}\right)} P_{R\left(Q_{2}\right)} \|\right. \\
& \leqslant\left\|P_{R\left(Q_{1}\right)}-P_{R\left(Q_{2}\right)}\right\|+\left\|P_{N\left(Q_{1}\right)^{\perp}}-P_{N\left(Q_{2}\right)^{\perp}}\right\| \leqslant 2\left\|Q_{1}-Q_{2}\right\|
\end{aligned}
$$

because $\left\|P_{N\left(Q_{1}\right)^{\perp}}\right\|=\left\|P_{R\left(Q_{2}\right)}\right\|=1$ and $\left\|P_{N\left(Q_{1}\right)^{\perp}}-P_{R\left(Q_{2}\right)^{\perp}}\right\|=\left\|P_{R\left(Q_{1}^{*}\right)}-P_{R\left(Q_{2}^{*}\right)}\right\| \leqslant\left\|Q_{1}^{*}-Q_{2}^{*}\right\|=$ $\left\|Q_{1}-Q_{2}\right\|$.

Remark 4.4. (1) The continuity of $Q \longrightarrow Q^{\dagger}$ follows from Apostol's result [5] that $T \longrightarrow P_{R(T)}$ is continuous on $\Gamma_{\varepsilon}=\{T: \gamma(T) \geqslant \varepsilon\}$ for any $\varepsilon>0$ and the fact that for any $Q \in \mathcal{Q}$ it holds that $\gamma(Q) \geqslant 1$, which follows by multiplying $I \geqslant P_{R(Q)}$ at left by Q and at right by Q^{*}. The continuity of $T \longrightarrow P_{N(T)}$ on the same set Γ_{ε} is analogous and Greville's identity $Q^{\dagger}=P_{N(Q) \perp} P_{R(Q)}$ completes the proof. However, the approach followed here gives the finer result $\left\|Q_{1}^{\dagger}-Q_{2}^{\dagger}\right\| \leqslant 2\left\|Q_{1}-Q_{2}\right\|$.
(2) If $\mathcal{Q}^{\dagger}=\left\{Q^{\dagger}: Q \in \mathcal{Q}\right\}$ then ${ }^{\dagger}: \mathcal{Q} \longrightarrow \mathcal{Q}^{\dagger}$ is a bijective continuous map. However, it is not a homeomorphism. Observe, for $\mathcal{H}=\mathcal{C}^{2}$, that the sequence of projections $Q_{n}=\left(\begin{array}{ll}1 & n \\ 0 & 0\end{array}\right)$ does not converge; however, it is easy to check that $Q_{n}^{\dagger}=\left(\begin{array}{cc}\left(1+n^{2}\right)^{-1} & 0 \\ n\left(1+n^{2}\right)^{-1} & 0\end{array}\right)$ converges to the nullmatrix, which is its own Moore-Penrose inverse.

5. Partial isometries of oblique projections

Observe that the polar decomposition of an orthogonal projection P is the trivial factorization $P=P^{2}$: in fact, P is at the same time a positive operator and a partial isometry. However, for an oblique projection Q, the natural question arises about how special are both, the partial isometry V_{Q} and $|Q|$. This section is devoted to the first case.

There are partial isometries V for which $V \neq V_{Q}$ for all Q : in fact, if $V \neq I$ is an isometry then $N(V)=\{0\}$, and there is only one projection Q such that $N(Q)=\{0\}$, namely, $Q=I$. Of course, the polar decomposition of I is the trivial $I=I \cdot I$. Observe that even if $\operatorname{dim} \mathcal{H}<\infty$ not every partial isometry is contained in $\mathcal{J}_{\mathcal{Q}}$. Take, for instance, $V=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on $\mathcal{H}=\mathcal{C}^{2}$.

In what follows we denote by $G L(\mathcal{H})$ the group of invertible bounded linear operators and by $G L(\mathcal{H})^{+}$ the subset of $G L(\mathcal{H})$ of positive operators. The next theorem characterizes the set $\mathcal{J}_{\mathcal{Q}}$:

Theorem 5.1. For a partial isometry $V \in L(\mathcal{H})$ the following conditions are equivalent:

1. there exists $Q \in \mathcal{Q}$ such that $V=V_{Q}$, in fact Q is uniquely determined as $Q=P_{R(V) / / N(V)}$;
2. $\left.V\right|_{R(V)} \in G L(R(V))^{+}$;
3. there exists $A \in L(\mathcal{H})^{+}$such that $R(A)=R(V)$ and $V=A P_{N(V)^{\perp}}$;
4. there exists $\alpha>0$ such that $V^{2} V^{*} \geqslant \alpha P_{R(V)}$.

Proof. $1 \rightarrow 2$: If $V=V_{Q}$, for $Q \in \mathcal{Q}$, then $R(V)=R(Q)$ and $Q=\left|Q^{*}\right| V$, or $V=\left|Q^{*}\right|^{\dagger} Q$. Therefore, $V P_{R(V)}=V P_{R(Q)}=\left|Q^{*}\right|^{\dagger} Q P_{R(Q)}=\left|Q^{*}\right|^{\dagger} P_{R(Q)}=\left|Q^{*}\right|^{\dagger}$ because $R\left(\left|Q^{*}\right|^{\dagger}\right)=R\left(\left|Q^{*}\right|\right)=R(Q)$; then $V P_{R(V)}=\left|Q^{*}\right|^{\dagger}$. This implies that $\left.V\right|_{R(V)}=\left.V P_{R(V)}\right|_{R(V)}=\left.\left|Q^{*}\right|^{\dagger}\right|_{R(V)} \in G L(R(V))^{+}$.
$2 \rightarrow$ 1: If $\left.V\right|_{R(V)} \in G L(R(V))^{+}$then $\left(V P_{R(V)}\right)^{\dagger} V P_{R(V)}=P_{R(V)}$. Define $Q=\left(V P_{R(V)}\right)^{\dagger} V$; it is easy to see that $Q=P_{R(V)}+\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)$ and then $Q^{2}=Q$: in fact, $P_{R(V)}\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)=$ $\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)$ because $R\left(\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)\right) \subset R(V)$; obviously, $\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)$ $P_{R(V)}=0$ and $\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)\left(V P_{R(V)}\right)^{\dagger} V\left(I-P_{R(V)}\right)=0$ because $R\left(\left(V P_{R(V)}\right)^{\dagger} \subset R(V)\right.$.

Since $\left(V P_{R(V)}\right)^{\dagger}$ is positive and $R\left(\left(V P_{R(V)}\right)^{\dagger}\right)=R(V)$, it follows from the uniqueness of the polar decomposition that $\left(V P_{R(V)}\right)^{\dagger}=\left|Q^{*}\right|$ and $V=V_{Q}$.
$2 \leftrightarrow 4:\left.V\right|_{R(V)} \in G L(R(V))^{+}$is equivalent to $\left.V\right|_{R(V)} \geqslant \beta I$, on $R(V)$, for some $\beta>0$; but observe that this is equivalent to $V^{2} V^{*} \geqslant \beta P_{R(V)}$.
$1 \rightarrow 3$ is proved in Theorem 3.8, 1 .
To prove $3 \rightarrow 1$ suppose that there exists $A \in L(\mathcal{H})^{+}$such that $V=A P_{N(V)^{\perp}}$ and $R(A)=R(V)$. Then $V V^{*}=A P_{N(V)}{ }^{\perp} A=P_{R(V)}$ and $V^{*} V=P_{N(V)^{\perp}} A^{2} P_{N(V)^{\perp}}=P_{N(V)^{\perp}}$, because V is a partial isometry. Let $Q=A^{2} P_{N(V)^{\perp}}$, then $Q^{2}=Q$. Also, $Q Q^{*}=A^{2} P_{N(V)^{\perp}} A^{2}=A P_{R(V)} A=A P_{R(A)} A=A^{2}$, so that $\left|Q^{*}\right|=A$ and $V_{Q}=A P_{N(V)^{\perp}}=V$ because $R(Q)=R\left(\left|Q^{*}\right|\right)=R(A)=R(V)$ and $N(Q)=N(A V)=N(V)$.

We have just proved that

$$
\mathcal{J}_{\mathcal{Q}}=\left\{V \in \mathcal{J}:\left.V\right|_{R(V)} \in G L(R(V))^{+}\right\} .
$$

Our next result shows that the correspondence between Q and V_{Q} is a homeomorphism between \mathcal{Q} and $\mathcal{J}_{\mathcal{Q}}$.

Theorem 5.2. The map

$$
\varphi: \mathcal{J}_{\mathcal{Q}} \longrightarrow \mathcal{Q}, \quad \varphi(V):=Q_{V}=\left(V^{2} V^{*}\right)^{\dagger} V
$$

is a homeomorphism, which is the inverse of the map $Q \longrightarrow V_{Q}$.
Proof. Notice first that if $T \in L(\mathcal{H})$, then $T \longrightarrow T T^{*}$ and $T \longrightarrow T^{*} T$ are always continuous. In particular, if V is a partial isometry, we get that $V \longrightarrow P_{R(V)}=V V^{*}$ and $V \longrightarrow P_{N(V)^{\perp}}=V^{*} V$, are continuous. But if $V \in \mathcal{J}_{\mathcal{Q}}$ then $\varphi(V)=P_{R(V) / / N(V)}=P_{R(V)}\left(P_{R(V)}+P_{\left.N(V)^{\perp}-I\right)^{-1} P_{N(V)^{\perp}} \text {; the first }}\right.$ equality has been proved in the last theorem, and the second follows by a well-known formula (see $[17,6])$; therefore, the continuity of φ follows. On the other hand, the continuity of the inverse of φ has been proved in Corollary 3.9. Also $\left|Q_{V}^{*}\right|=\left(V^{2} V^{*}\right)^{\dagger}$ and $V_{Q_{V}}=V$. Observe that if $V \in \mathcal{J}_{\mathcal{Q}}$ then $R(V) \dot{+} N(V)=\mathcal{H}$, which is not true in general for an arbitrary partial isometry.

6. Positive parts of oblique projections

In this section we characterize all (closed range) positive operators A such that $A=|Q|$ for some $Q \in \mathcal{Q}$. Of course, such A must satisfy $\gamma(A) \geqslant 1$. However, this condition is not sufficient. The next theorem describes the set $L(\mathcal{H})_{\mathcal{Q}}^{+}$:

Theorem 6.1. Let $B \in L(\mathcal{H})^{+}$. There exists $Q \in \mathcal{Q}$ such that $|Q|=B$ if and only if $\gamma(B) \geqslant 1$ and $\operatorname{dim} \overline{R\left(B^{2}-P_{R(B)}\right)} \leqslant \operatorname{dim} N(B)$.

Proof. By interchanging Q and Q^{*}, we will study the equation $\left|Q^{*}\right|=B$. Suppose, then, that $B^{2}=Q Q^{*}$, so that $R\left(B^{2}\right)$ is closed and so is $R(B)$ and $R(B)=R(V)$. If the matrix representation of Q along the decomposition $\mathcal{H}=R(B) \oplus N(B)$ is $Q=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)$, where $a: N(B) \longrightarrow R(B), a=\left.Q\right|_{N(B)}$, then $Q Q^{*}=\left(\begin{array}{cc}1+a a^{*} & 0 \\ 0 & 0\end{array}\right)$ and $\left.B^{2}\right|_{R(B)}=1+a a^{*}$. Therefore, $B^{2} \geqslant P_{R(B)}$ and it is easy to see that therefore, $B \geqslant P_{R(B)}$ and $\gamma(B) \geqslant 1$. Also, $\operatorname{dim} \overline{R\left(B^{2}-P_{R(B)}\right)}=\operatorname{dim} \overline{R\left(a a^{*}\right)}=\operatorname{dim} \overline{R(a)} \leqslant \operatorname{dim} N(B)$, because since a is a linear map from $N(B)$ to $R(B)$ we can conclude that $\operatorname{dim} \overline{R(a)} \leqslant \operatorname{dim} N(B)$.

Conversely, if $\gamma(B) \geqslant 1$ then $\gamma\left(B^{2}\right) \geqslant 1$ so that $B^{2}-P_{R(B)}$ is positive. Let $D=\left(B^{2}-P_{R(B)}\right)^{1 / 2}$ and consider a subspace $\mathcal{S} \subseteq N(B)$ such that $\operatorname{dim} \mathcal{S}=\operatorname{dim} \overline{R(D)}$. This is possible because $\operatorname{dim} \overline{R(D)}=$ $\operatorname{dim} \overline{R\left(B^{2}-P_{R(B)}\right)} \leqslant \operatorname{dim} N(B)$. If U is a partial isometry with initial space \mathcal{S} and final space $\overline{R(D)}$, then $D U(D U)^{*}=D^{2}=B^{2}-P_{R(B)}$. Hence, if $Q=P_{R(B)}+D U$, it follows that $Q^{2}=Q$ and $Q Q^{*}=$ $P_{R(B)}+D^{2}=B^{2}$, so that $B=\left|Q^{*}\right|$.

In contrast with the case of partial isometries, which uniquely determine their corresponding oblique projections (see Section 5), the fibres of the maps $Q \longrightarrow|Q|$ and $Q \longrightarrow\left|Q^{*}\right|$ are not singletons. The following theorem characterizes the fibre $\left\{Q \in \mathcal{Q}:\left|Q^{*}\right|=B\right\}$, for $B \in L(\mathcal{H})_{\mathcal{Q}}^{+}$; the case of $\{Q \in \mathcal{Q}:|Q|=B\}$ is analogous.

Theorem 6.2. Consider $B \in L(\mathcal{H})_{\mathcal{Q}}^{+}$. For $Q \in \mathcal{Q}$ the following conditions are equivalent:

1. $\left|Q^{*}\right|=B$;
2. $Q=P_{R(B)}+\left(B^{2}-P_{R(B)}\right)^{1 / 2} U$, where $U \in \mathcal{J}$ has final space $\overline{R\left(B^{2}-P_{R(B)}\right)}$ and initial space contained in $N(B)$;
3. $V_{Q}=B^{\dagger}+\left(P_{R(B)}-B^{2^{\dagger}}\right)^{1 / 2} U$, where $U \in \mathcal{J}$ has final space $\overline{R\left(B^{2}-P_{R(B)}\right)}$ and initial space contained in $N(B)$.

Proof. $1 \longrightarrow 2$ follows from the proof of Theorem 6.1.
$2 \longrightarrow$ 3: if $Q=P_{R(B)}+\left(B^{2}-P_{R(B)}\right)^{1 / 2} U$ then $Q Q^{*}=B$ because $U U^{*}=P_{\overline{R\left(B^{2}-P_{R(B)}\right)}}$. Therefore $V_{Q}=B^{\dagger} Q=B^{\dagger}\left(P_{R(B)}+\left(B^{2}-P_{R(B)}\right)^{1 / 2} U\right)=B^{\dagger}+\left(P_{R(B)}-B^{2 \dagger}\right)^{1 / 2} U$.
$3 \longrightarrow 1$: Observe first that $V_{Q} V_{Q}^{*}=P_{R(B)}$ so that $R\left(V_{Q}\right)=R(B)$. From the proof of $1 \longrightarrow 2$ of Theorem 5.1 it follows that $V_{Q} P_{R\left(V_{Q}\right)}=\left|Q^{*}\right|^{\dagger}$. In this case $\left|Q^{*}\right|^{\dagger}=V_{Q} P_{R\left(V_{Q}\right)}=V_{Q} P_{R(B)}=B^{\dagger}$ so that $\left|Q^{*}\right|=B$.

The next result characterizes the image \mathcal{L}, in $L(\mathcal{H})^{+} \times L(\mathcal{H})^{+}$, of the map $Q \longrightarrow\left(Q Q^{*}, Q^{*} Q\right)$. Observe that this is related to a paper of Horn and Olkin [12] about the relationship between $A A^{*}$ and $A^{*} A$, for a matrix A.

Theorem 6.3. Let $A, B \in L(\mathcal{H})^{+}$with a closed range. Then, there exists $Q \in \mathcal{Q}$ such that $|Q|=A^{1 / 2}$ and $\left|Q^{*}\right|=B^{1 / 2}$ if and only if $P_{R(A)} B P_{R(A)}=P_{R(A)}$ and $P_{R(B)} A P_{R(B)}=P_{R(B)}$.

Proof. If $Q Q^{*}=B$ and $Q^{*} Q=A$ then $R(Q)=R(B)$ and $N(Q)=N(A)$, or equivalently, $Q=P_{R(B) / / N(A)}$. Applying Theorem 3.8(5) we get that $Q=B P_{R(A)}=P_{R(B)} A$. Therefore $P_{R(A)} B P_{R(A)}=P_{R(A)} Q=P_{R(A)}$ because $P_{R(A)}$ and Q have the same nullspace; in the same way, $P_{R(B)} A P_{R(B)}=Q P_{R(B)}=P_{R(B)}$ because Q and $P_{R(B)}$ have the same range.

Conversely, suppose that $P_{R(A)} B P_{R(A)}=P_{R(A)}$ and consider $Q=B P_{R(A)}$. It follows that Q is idempotent. To compute the nullspace of Q observe that

$$
N(A)=N\left(P_{R(A)}\right)=N\left(P_{R(A)} B P_{R(A)}\right)=N\left(B^{1 / 2} P_{R(A)}\right)=R(A) \cap N(B) \dot{+} N(A)
$$

Therefore $R(A) \cap N(B)=\{0\}$ and $N\left(P_{R(A)} B P_{R(A)}\right)=N(A)$. Then $N(Q)=N\left(B P_{R(A)}\right)=N\left(B^{1 / 2} P_{R(A)}\right)$ $=N(A)$. Observe that $R(Q)=B(R(A))$. In a similar way, from $P_{R(B)} A P_{R(B)}=P_{R(B)}$ we get that $R(B) \cap$ $N(A)=\{0\}$ so that $\mathcal{H}=R(Q) \dot{+} N(Q)=B(R(A)) \dot{+} N(A) \subseteq R(B) \dot{+} N(A)$. This implies that $R(Q)=$ $B(R(A))=R(B)$. Hence $Q=P_{R(B) / / N(A)}$. To see that $Q Q^{*}=B$ observe that multiplying both sides of the equality $P_{R(A)} B P_{R(A)}=P_{R(A)}$ by $B^{1 / 2}$ it follows that $B^{1 / 2} P_{R(A)} B^{1 / 2}$ is an orthogonal projection, in fact $B^{1 / 2} P_{R(A)} B^{1 / 2}=P_{R(B)}$. Then $Q Q^{*}=B P_{R(A)} B=B$.

In the same way, using that $P_{R(B)} A P_{R(B)}=P_{R(B)}, \widetilde{Q}=A P_{R(B)}$ is an oblique projection such that $R(\widetilde{Q})=R(A), N(\widetilde{Q})=N(B)$ and $\widetilde{Q} \widetilde{Q}^{*}=A$. Therefore $\widetilde{Q}=P_{R(A) / / N(B)}$ so that $\widetilde{Q}=Q^{*}$, which shows that $Q^{*} Q=\widetilde{Q} \widetilde{Q}^{*}=A$.

Corollary 6.4. The inverse of the map $Q \longrightarrow\left(Q Q^{*}, Q^{*} Q\right)$, for $Q \in \mathcal{Q}$, is given by $(B, A) \longrightarrow B P_{R(A)}(=$ $\left.P_{R(B)} A\right)$, for $(B, A) \in \mathcal{L}$.

Acknowledgments

The authors are very grateful to the anonymous referee and to Professor Tsuyoshi Ando for several comments which help them to improve the final form of the manuscript.

References

[1] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990) 307-315.
[2] T. Ando, T. Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Algebra Appl. 375 (2003)299-309.
[3] E. Andruchow, G. Corach, M. Mbekhta, On the geometry of generalized inverses, Math. Nachr. 278 (2005) 75-770.
[4] J. Antezana, E. Pujals, D. Stojanoff, Convergence of the iterated Aluthge transform sequence for diagonalizable matrices, Adv. Math. 216 (2007) 255-278.
[5] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985) 279-294.
[6] D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (1999) 1415-1418.
[7] G. Corach, H. Porta, L. Recht, Differential geometry of spaces of relatively regular operators, Integral Equations Operator Theory 13 (1990) 771-794.
[8] C.A. Desoer, B.H. Whalen, A note on pseudoinverses, J. Soc. Indust. Appl. Math. 11 (1963) 442-447.
[9] A. Galántai, Projectors and Projection Methods, Kluwer, Boston, MA, 2004.
[10] T.N.E. Greville, Solutions of the matrix equation $X A X=X$, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26 (1974) 828-832.
[11] N.J. Higham, Functions of matrices. Theory and computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
[12] R. Horn, I. Olkin, When does $A^{*} A=B^{*} B$ and why does one want to know? Amer. Math. Monthly 103 (1996) 470-482.
[13] I.B. Jung, E. Ko, C. Pearcy, The iterated Aluthge transform of an operator, Integral Equations Operator Theory 45 (2003) 375-387.
[14] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.
[15] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989) 69-105.
[16] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955) 406-413.
[17] V. Pták, Extremal operators and oblique projections, Casopis Pest. Mat. 110 (1985) 343-350.

[^0]: * Corresponding author.

 E-mail addresses: gcorach@fi.uba.ar (G. Corach), amaestri@fi.uba.ar (A. Maestripieri).

