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1. Introduction

Let H be a Hilbert space and L(H) the algebra of all bounded linear operators on H. The polar
decomposition of T ∈ L(H) is the unique factorization T = VTAT , where VT is a partial isometry, AT is
a positive semidefinite operator and N(VT ) = N(AT ) (here, N denotes the nullspace).

This paper is devoted to the study of the polar factors of an oblique projectionQ , i.e., an idempotent
Q ∈ L(H). More precisely, denote by J the set of all partial isometries on H, L(H)+ the cone of all
positive semidefinite operators on H, and Q the set of all idempotents of L(H). Our main goal is to
characterize the sets

JQ = {V ∈ J : there exists Q ∈ Q such that V = VQ }
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and

L(H)+Q = {A ∈ L(H)+ : there exists Q ∈ Q such that A = AQ }.
It iswell-known that for every T ∈ L(H) it holdsAT = |T| = (T∗T)1/2. However, there is no formula

for VT , in general. We prove that for Q ∈ Q both |Q | and VQ have an explicit expression, and they form
a relatively regular pair, in the sense that |Q |VQ |Q | = |Q | and VQ |Q |VQ = VQ ; moreover, this property
characterizes the idempotency of Q = VQ |Q |.

For any closed subspace S denote by PS the orthogonal projection onto S . It is known that the
mapping T −→ PR(T) is not continuous with respect to the norm (uniform) topology. However, the
restriction to Q is Lipschitz with constant 1, by a result of Kato [14, Theorem 6.35, p. 58]. From this,
it also follows that the mapping Q −→ VQ is continuous, in contrast with the fact that the mapping

T −→ VT is not. This result is related to the fact that the mapping Q −→ Q † is Lipschitz of constant 2
while, in general, T −→ T† is not continuous; here † denotes the Moore–Penrose pseudoinverse [8].

The main results of the paper are the characterizations

JQ = {V ∈ J : VPR(V) ∈ L(H)+, R(VPR(V)) = R(V)}
and

L(H)+Q = {A ∈ L(H)+ : γ (A) ! 1, dim R(A − PR(A)) " dimN(A)}.
We also prove that themap Q −→ VQ is injective with inverse V −→ (V2V∗)†V andwe characterize,

for each A ∈ L(H)+, the set

{Q ∈ Q : |Q | = A}.
We also show that the map Q −→ (QQ∗, Q∗Q) is injective and we characterize its image. More pre-
cisely, it consists of all pairs (A, B) ∈ L(H)+ × L(H)+ such that PR(A)BPR(A) = PR(A) and PR(B)APR(B) =
PR(B).

2. Preliminaries

2.1. Polar decompositions

Given T ∈ L(H), there exists a unique partial isometry V and a unique positive (semidefinite)
operator A such that T = VA and N(V) = N(A) = N(T). The operator A is exactly |T| = (T∗T)1/2.
However, in general there is no explicit formula forV . The following equalities hold: T = |T∗|V; |T| =
V∗T; T|T|† = V if T has a closed range. In this last case, theMoore–Penrose inverse T† can be obtained

by functional calculus and T† belongs to the C∗-algebra generated by T . It should be noticed that in
matrix analysis literature, in thedefinitionof polar decompositionsmany times there is no conditionon
N(V), so that there are many “polar decompositions" of an operator T (see the comments by Higham
[11, p. 194]). Observe that the canonical polar decomposition T = V |T|, with N(V) = N(T), can be
changed to T = U|T|, with a unitary U, if the index of T is zero, i.e., if dimN(T) = dimN(T∗). This is
the case of every projection Q .

2.2. Reduced minimum modulus

The reduced minimum modulus of T ∈ L(H) is the number γ (T) = inf{‖Tξ‖ : ξ ∈ N(T)⊥, ‖ξ‖ =
1}. It is well known that γ (T) = γ (T∗) = γ (|T|) = γ (T∗T)1/2, and γ (T) > 0 if and only if T has

closed range. Indeed, it holds ‖T†‖ = 1/γ (T) if T has closed range (see [5]; [14, p. 231]).

2.3. Comparison of oblique projections

The next result is widely used in the next sections. Its proof is elementary and will be omitted.
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Lemma 2.1. Let P, Q be two oblique projections. Then:

1. PQ = Q ⇐⇒ R(Q) ⊆ R(P);
2. PQ = P ⇐⇒ N(Q) ⊆ N(P);
3. P = Q ⇐⇒ N(P) = N(Q) and R(P) = R(Q) ⇐⇒ N(Q) ⊆ N(P) and R(Q) ⊆ R(P).

We frequently use, without mention, the fact that there is a natural bijective correspondence be-
tween the setQ of all oblique projections inH and the set of direct sum decompositionsW +̇ M = H.
This bijection associates to each decompositionW +̇ M = H the oblique projectionQ = PW//M with
range W and null space M.

3. The polar factors of an oblique projection

Westartwith a series of lemmaswhich shows that each one of the partial isometry and the absolute
value of an oblique projection is a generalized inverse of the other.

Lemma 3.1. Let Q be an oblique projection. Then

VQ |Q |VQ = VQ .

Proof. From Q2 = Q and Q = VQ |Q | we get VQ |Q |VQ |Q | = VQ |Q |, i.e., VQ |Q |VQ = VQ on R(|Q |) =
R(Q∗) = N(Q)⊥. But VQ |Q |VQ and VQ obviously coincide on N(Q), because N(VQ ) = N(Q). Thus,
VQ |Q |VQ = VQ on H. #

Lemma 3.2. Let Q be an oblique projection. Then

|Q |VQ = V∗
Q |Q | = PN(Q)⊥ .

Proof. By Lemma3.1, it follows that |Q |VQ is an idempotent. The chain of inclusionsN(Q) = N(VQ ) ⊆
N(|Q |VQ ) ⊆ N(VQ |Q |VQ ) = N(VQ ) = N(Q) implies that N(|Q |VQ ) = N(Q). On the other hand,

R(|Q |VQ ) ⊆ R(|Q |) = N(Q)⊥. Therefore, |Q |VQ is an oblique projection with the same nullspace as

PN(Q)⊥ andwhose range is contained inN(Q)⊥. Then |Q |VQ = PN(Q)⊥ , by Lemma2.1. By takingadjoints

we get V∗
T |Q | = PN(Q)⊥ . #

Remark 3.3. If T ∈ L(H) has polar decomposition VT |T|, then the operator T0 = |T|VT is called the
Duggal (or Duggal-Porta) transformof T . Lemma3.2 says that theDuggal transformofQ ∈ Q is PN(Q)⊥ .
We will extend this result to the family of Aluthge transforms at the end of this section.

Lemma 3.4. Let Q be an oblique projection. Then

VQ = PR(Q)|Q |.

Proof. It suffices to combine the last two results: VQ = VQ |Q |VQ = VQ (V∗
Q |Q |) = PR(Q)|Q |. #

Lemma 3.5. Let Q be an oblique projection. Then

Q = PR(Q)Q
∗Q .

Proof. By Lemma 3.4, it holds Q = VQ |Q | = PR(Q)|Q |2 = PR(Q)Q
∗Q . #

Lemma 3.6. Let Q be an oblique projection. Then

|Q |VQ |Q | = |Q |.
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Proof. By Lemmas 3.4 and 3.5, it holds VQ |Q | = PR(Q)|Q |2 = Q ; thus, |Q |VQ |Q | = |Q |Q . Observe now
that |Q |Q = |Q | on R(Q) and on N(Q), so we get the result. #

For later reference we state the following lemma.

Lemma 3.7. For any oblique projection Q, the positive part and the partial isometry part of Q∗ are related
to those of Q in such a way that |Q∗| = VQ |Q |V∗

Q , VQ∗ = V∗
Q and Q = |Q∗|VQ .

We collect these results, and their analogous for the reverse polar decomposition, in the next
statement.

Theorem 3.8. Given an oblique projection Q ∈ L(H) with polar decompositions Q = VQ |Q | = |Q∗|VQ ,
the following identities hold:

1. VQ = PR(Q)|Q | = |Q∗|PN(Q)⊥;
2. VQ |Q |VQ = VQ = VQ |Q∗|VQ ;
3. |Q |VQ |Q | = |Q | and |Q∗|VQ |Q∗| = |Q∗|;
4. |Q |VQ = V∗

Q |Q | = PN(Q)⊥ and VQ |Q∗| = |Q∗|V∗
Q = PR(Q);

5. PR(Q)Q
∗Q = Q = QQ∗PN(Q)⊥ .

Proof. The first identity of each 1, 2, 3 and 4 follows directly from Lemmas 3.4, 3.1 and 3.6. The second
identities can be easily derived by using Lemma 3.7. #

Corollary 3.9. The mapping Q −→ VQ is continuous with respect to the operator (uniform) topology.

Proof. By a result of Kato [14, Theorem 6.35, p. 58], ‖PR(Q) − PR(Q ′)‖ " ‖Q − Q ′‖ for every Q, Q ′ ∈
Q. The continuity of T −→ |T| is well known and holds not only on Q but on L(H). Therefore, the
factorization VQ = PR(Q)|Q | proves the result. #

Remark 3.10. (1) Since PR(Q) andQ are idempotentswith the same range, by Lemma 2.2 it follows that
PR(Q)Q = Q and QPR(Q) = PR(Q), so that PR(Q)Q

∗Q = PR(Q)Q = Q .
(2) The decomposition of Lemma 3.4 is a polar decomposition, in the sense that |Q | is a positive

semidefinite operator and PR(Q) is a partial isometry. However, the nullspace condition does not hold
and, of course, the positive factor is not |X| in either case X = VQ , V

∗
Q . Higham [11] suggests the name

of “canonical polar factorization" for the one we are using. Observe that, in general, the literature in
matrix computations is not uniform in this respect.

(3) GivenQ ∈ Q, it is well known [9] that the orthogonal projection PR(Q) can be explicitly obtained

from Q by means of the formula PR(Q) = QQ∗(I − (Q − Q∗)2)−1. We present a short proof of this

fact: observe first that I − (Q − Q∗)2 = I + (Q − Q∗)∗(Q − Q∗) is positive and invertible. Also using
Lemma 2.1 several times we get PR(Q)(I − (Q − Q∗)2) = PR(Q)(I − Q − Q∗ + QQ∗ + Q∗Q) = QQ∗.

Observe also that QQ∗ = PR(Q)(I − (Q − Q∗)2) has some of the features of a polar decomposition

in the sense that PR(Q) is a partial isometry with the same nullspace as QQ∗ and I − (Q − Q∗)2 is

positive. However, this is not the polar decomposition of QQ∗. In fact, the operator I − (Q − Q∗)2 has
a trivial nullspace. In order to get the polar decomposition of QQ∗, it suffices to observe the identity
QQ∗ = PR(Q)QQ

∗ and verify that PR(Q) and QQ∗ satisfy the nullspace condition. In general, if A is a
positive (semidefinite) operator then its polar decomposition is provided by the identity A = PR(A)A.

It is well-known that the study of projections is closely related to the study of diverse types of
generalized inverses. The sets S = {(A, B) : A, B ∈ L(H), ABA = A, BAB = B} and SQ = {(A, B) : A, B ∈
L(H), AQ = A, QB = B, BA = Q}, for a fixedQ ∈ Q, have been studied froma geometrical point of view
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in [3,7], respectively. Notice that S = ∪Q∈QSQ . As a consequence of Theorem 3.8, we get that (VQ , |Q |)
belongs to S. Moreover, the following result shows that this property characterizes Q:

Proposition 3.11. Given T ∈ L(H) with polar decomposition T = VT |T|, it holds T ∈ Q if and only if
(VT , |T|) ∈ S.

Proof. If T ∈ Q, from Theorem 3.8, it follows that (VT , |T|) ∈ S.
On the other hand, if VT |T|VT = VT then T2 = VT |T|VT |T| = VT |T| = T , so that T ∈ Q. #

Very recently, much attention has been paid to the so-called Aluthge transform. This notion has
been introduced by Aluthge [1] as a useful tool for studying generalized hyponormal operators. If
T ∈ L(H) has polar decomposition T = V |T| then the Aluthge transform is T̃1/2 :=|T|1/2V |T|1/2 and,

more generally, for 0 < λ< 1, T̃λ :=|T|1−λV |T|λ. The Duggal-Porta transform corresponds to the
extreme caseλ = 0, i.e., T̃0 = |T|V . The reader is referred to [4,2,13] formany results on these notions.

It turns out that, for an oblique projection, all these transforms coincide:

Proposition 3.12. If Q ∈ Q then for all λ, 0" λ < 1 it holds

Q̃λ = PN(Q)⊥ .

Proof. Weprove the case 0 < λ< 1; the case λ = 0 has been proven in Lemma 3.2. Observe first that
every Q̃λ is anobliqueprojection: in fact Q̃2

λ = (|Q |1−λVQ |Q |λ)(|Q |1−λVQ |Q |λ)=|Q |1−λVQ |Q |VQ |Q |λ
= |Q |1−λVQ |Q |λ = Q̃λ, becauseVQ |Q |VQ = VQ (see Lemma3.1). Obviously,R(Q̃λ)=R(|Q |1−λVQ |Q |λ)
⊆ R(|Q |1−λ) = N(Q)⊥, because, in general, R(|T|t) = R(T∗) = N(T)⊥ for t > 0.

On the other hand, from the definition Q̃λ = |Q |1−λVQ |Q |λ we get |Q |λQ̃λ|Q |1−λ = |Q |VQ |Q | =
|Q |, by Lemma3.6, and therefore, since |Q |λ†|Q |λ = PN(Q)⊥ = |Q |1−λ(|Q |1−λ)†, we also get Q̃λPN(Q)⊥

= PN(Q)⊥ . In particular, N(Q)⊥ ⊆ R(Q̃λ); we conclude that R(Q̃λ) = N(Q)⊥. But, obviously, N(Q) ⊆
N(Q̃λ) and, using Lemma 2.1, we obtain Q̃λ = PN(Q)⊥ because both oblique projections have the same

range and comparable nullspaces. #

Remark 3.13. Observe the identity |Q |λV∗
Q |Q |1−λ = |Q |1−λVQ |Q |λ, which follows from the fact that

Q̃λ is an orthogonal projection.

4. On the Moore–Penrose inverse of an oblique projection

The next result is essentially due to Greville [10], who proved it for matrices, but part of it was
proven by Penrose [16]. With the addition of a closedness hypothesis, his proof is still valid for Hilbert
space operators.

Theorem 4.1. If Q ∈ L(H) is an oblique projection then Q † = PN(Q)⊥PR(Q). Conversely, if M and N are

closed subspaces of H such that PMPN has closed range, then (PMPN )† is the unique oblique projection
with range R(PN PM) and nullspace R(PMPN )⊥ = N(PN PM).

Proof. If Q2 = Q , then Q † = Q †QQ † = Q †Q2Q † = (Q †Q)(QQ †) = PN(Q)⊥PR(Q).

Since R(PMPN ) is closed, the operator Y = (PMPN )† is well defined. Observe that, by the proper-
ties of the Moore–Penrose inverse, R((PMPN )†) = R((PMPN )∗) = R(PN PM). Then R(Y) ⊆ N . Since
R(PN PM) is also closed, Y∗ = (PN PM)† and R(Y∗) = R(PMPN ) ⊆ M. Thus PNY = Y and PMY∗ =
Y∗, so that Y2 = (YPM)(PNY) = Y(PMPN )Y = Y , by one of the defining properties of (PMPN )†. #
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Remark 4.2. Observe thatR((PMPN )†) = R(PN PM) = PN MandN((PMPN )†) = R((PMPN )†
∗
)⊥ =

R(PMPN )⊥ = (PMN )⊥ and the fact that (PMPN )† is an oblique projection implies

PN M +̇ (PMN )⊥ = H.

This means that the mapping (M,N ) −→ (PN M, PMN ) sends a pair (M,N ) such that M + N⊥ is
closed into a pair (PN M, PMN ) such that PN M +̇ (PMN )⊥ = H.

We prove now one of themain result of the section, namely, that themap Q −→ Q † is Lipschitzian
of constant 2.

Theorem 4.3. Given Q1, Q2 ∈ Q it holds

‖Q †
1 − Q

†
2‖ " 2‖Q1 − Q2‖.

Proof. Recall a result by Kato, which states that ‖PR(Q1) − PR(Q2)‖ " ‖Q1 − Q2‖ [14] (see alsoMbekhta
[15]). Then:

‖Q †
1 − Q

†
2‖ = ‖PN(Q1)⊥PR(Q1) − PN(Q2)⊥PR(Q2)‖

" ‖PN(Q1)⊥(PR(Q1) − PR(Q2))‖ +‖ (PN(Q1)⊥ − PN(Q2)⊥)PR(Q2)‖
" ‖PR(Q1) − PR(Q2)‖ +‖ PN(Q1)⊥ − PN(Q2)⊥‖ " 2‖Q1 − Q2‖

because ‖PN(Q1)⊥‖ =‖ PR(Q2)‖ = 1 and ‖PN(Q1)⊥ − PR(Q2)⊥‖ =‖ PR(Q∗
1 ) − PR(Q∗

2 )‖ " ‖Q∗
1 − Q∗

2 ‖ =
‖Q1 − Q2‖. #

Remark 4.4. (1) The continuity of Q −→ Q † follows from Apostol’s result [5] that T −→ PR(T) is
continuousonΓε = {T : γ (T) ! ε} for anyε > 0and the fact that for anyQ ∈ Q it holds thatγ (Q) ! 1,
which follows bymultiplying I ! PR(Q) at left byQ and at right byQ∗. The continuity of T −→ PN(T) on

the same set Γε is analogous and Greville’s identity Q † = PN(Q)⊥PR(Q) completes the proof. However,

the approach followed here gives the finer result ‖Q †
1 − Q

†
2‖ " 2‖Q1 − Q2‖.

(2) If Q† = {Q † : Q ∈ Q} then † : Q −→ Q† is a bijective continuous map. However, it is not

a homeomorphism. Observe, for H = C2, that the sequence of projections Qn =
(
1 n
0 0

)
does not

converge; however, it is easy to check thatQ
†
n =

(
(1 + n2)−1 0

n(1 + n2)−1 0

)
converges to the nullmatrix, which

is its own Moore–Penrose inverse.

5. Partial isometries of oblique projections

Observe that the polar decomposition of an orthogonal projection P is the trivial factorization
P = P2: in fact, P is at the same time a positive operator and a partial isometry. However, for an
oblique projection Q , the natural question arises about how special are both, the partial isometry VQ

and |Q |. This section is devoted to the first case.
There are partial isometries V for which V /= VQ for all Q : in fact, if V /= I is an isometry then

N(V) = {0}, and there is only one projection Q such that N(Q) = {0}, namely, Q = I. Of course, the
polar decomposition of I is the trivial I = I · I. Observe that even if dimH < ∞ not every partial

isometry is contained in JQ. Take, for instance, V =
(
0 1
0 0

)
on H = C2.

Inwhat followswedenotebyGL(H) thegroupof invertiblebounded linearoperators andbyGL(H)+
the subset of GL(H) of positive operators. The next theorem characterizes the set JQ:
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Theorem 5.1. For a partial isometry V ∈ L(H) the following conditions are equivalent:

1. there exists Q ∈ Q such that V = VQ , in fact Q is uniquely determined as Q = PR(V)//N(V);
2. V |R(V) ∈ GL(R(V))+;
3. there exists A ∈ L(H)+ such that R(A) = R(V) and V = APN(V)⊥;
4. there exists α > 0 such that V2V∗ ! αPR(V).

Proof. 1 → 2: If V = VQ , for Q ∈ Q, then R(V) = R(Q) and Q = |Q∗|V , or V = |Q∗|†Q . Therefore,

VPR(V) = VPR(Q) = |Q∗|†QPR(Q) = |Q∗|†PR(Q) = |Q∗|† because R(|Q∗|†) = R(|Q∗|) = R(Q); then

VPR(V) = |Q∗|†. This implies that V |R(V) = VPR(V)|R(V) = |Q∗|†|R(V) ∈ GL(R(V))+.

2 → 1: If V |R(V) ∈ GL(R(V))+ then (VPR(V))
†VPR(V) = PR(V). Define Q = (VPR(V))

†V ; it is easy to

see that Q = PR(V) + (VPR(V))
†V(I − PR(V)) and then Q2 = Q : in fact, PR(V)(VPR(V))

†V(I − PR(V)) =
(VPR(V))

†V(I − PR(V)) because R((VPR(V))
†V(I − PR(V))) ⊂ R(V); obviously, (VPR(V))

†V(I − PR(V))

PR(V) = 0 and (VPR(V))
†V(I − PR(V))(VPR(V))

†V(I − PR(V)) = 0 because R((VPR(V))
† ⊂ R(V).

Since (VPR(V))
† is positive and R((VPR(V))

†) = R(V), it follows from the uniqueness of the polar

decomposition that (VPR(V))
† = |Q∗| and V = VQ .

2 ↔ 4: V |R(V) ∈ GL(R(V))+ is equivalent to V |R(V) ! βI, on R(V), for someβ > 0; but observe that

this is equivalent to V2V∗ ! βPR(V).
1 → 3 is proved in Theorem 3.8, 1.
Toprove3 → 1 suppose that there existsA ∈ L(H)+ such thatV = APN(V)⊥ andR(A) = R(V). Then

VV∗ = APN(V)⊥A = PR(V) and V∗V = PN(V)⊥A
2PN(V)⊥ = PN(V)⊥ , because V is a partial isometry. Let

Q = A2PN(V)⊥ , then Q2 = Q . Also, QQ∗ = A2PN(V)⊥A
2 = APR(V)A = APR(A)A = A2, so that |Q∗| = A

and VQ = APN(V)⊥ = V because R(Q) = R(|Q∗|) = R(A) = R(V) and N(Q) = N(AV) = N(V). #

We have just proved that

JQ = {V ∈ J : V |R(V) ∈ GL(R(V))+}.
Our next result shows that the correspondence between Q and VQ is a homeomorphism between

Q and JQ.

Theorem 5.2. The map

ϕ : JQ −→ Q, ϕ(V) := QV = (V2V∗)†V

is a homeomorphism, which is the inverse of the map Q −→ VQ .

Proof. Notice first that if T ∈ L(H), then T −→ TT∗ and T −→ T∗T are always continuous. In par-
ticular, if V is a partial isometry, we get that V −→ PR(V) = VV∗ and V −→ PN(V)⊥ = V∗V , are
continuous. But if V ∈ JQ then ϕ(V) = PR(V)//N(V) = PR(V)(PR(V) + PN(V)⊥ − I)−1PN(V)⊥ ; the first
equality has been proved in the last theorem, and the second follows by a well-known formula (see
[17,6]); therefore, the continuity of ϕ follows. On the other hand, the continuity of the inverse of ϕ
has been proved in Corollary 3.9. Also |Q∗

V | = (V2V∗)† and VQV = V . Observe that if V ∈ JQ then

R(V) +̇N(V) = H, which is not true in general for an arbitrary partial isometry. #

6. Positive parts of oblique projections

In this section we characterize all (closed range) positive operators A such that A = |Q | for some
Q ∈ Q. Of course, such A must satisfy γ (A) ! 1. However, this condition is not sufficient. The next
theorem describes the set L(H)+Q:
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Theorem 6.1. Let B ∈ L(H)+. There exists Q ∈ Q such that |Q | = B if and only if γ (B) ! 1 and

dim R(B2 − PR(B)) " dimN(B).

Proof. By interchangingQ andQ∗,wewill study the equation |Q∗| = B. Suppose, then, thatB2 = QQ∗,
so that R(B2) is closed and so is R(B) and R(B) = R(V). If the matrix representation of Q along

the decomposition H = R(B) ⊕ N(B) is Q =
(
1 a
0 0

)
, where a : N(B) −→ R(B), a = Q |N(B), then

QQ∗ =
(
1 + aa∗ 0

0 0

)
and B2|R(B) = 1 + aa∗. Therefore, B2 ! PR(B) and it is easy to see that therefore,

B ! PR(B) and γ (B) ! 1. Also, dim R(B2 − PR(B)) = dim R(aa∗) = dim R(a) " dimN(B), because since

a is a linear map from N(B) to R(B) we can conclude that dim R(a) " dimN(B).
Conversely, if γ (B) ! 1 then γ (B2) ! 1 so that B2 − PR(B) is positive. Let D = (B2 − PR(B))

1/2 and

consider a subspace S ⊆ N(B) such that dim S = dim R(D). This is possible because dim R(D) =
dim R(B2 − PR(B)) " dimN(B). If U is a partial isometry with initial space S and final space R(D),

then DU(DU)∗ = D2 = B2 − PR(B). Hence, if Q = PR(B) + DU, it follows that Q2 = Q and QQ∗ =
PR(B) + D2 = B2, so that B = |Q∗|. #

In contrast with the case of partial isometries, which uniquely determine their corresponding
oblique projections (see Section 5), the fibres of the maps Q −→ |Q | and Q −→ |Q∗| are not sin-
gletons. The following theorem characterizes the fibre {Q ∈ Q : |Q∗| = B}, for B ∈ L(H)+Q; the case
of {Q ∈ Q : |Q | = B} is analogous.

Theorem 6.2. Consider B ∈ L(H)+Q. For Q ∈ Q the following conditions are equivalent:

1. |Q∗| = B;
2. Q = PR(B) + (B2 − PR(B))

1/2U, where U ∈ J has final space R(B2 − PR(B)) and initial space con-
tained in N(B);

3. VQ = B† + (PR(B) − B2
†
)1/2U, where U ∈ J has final space R(B2 − PR(B)) and initial space con-

tained in N(B).

Proof. 1 −→ 2 follows from the proof of Theorem 6.1.
2 −→ 3: if Q = PR(B) + (B2 − PR(B))

1/2U then QQ∗ = B because UU∗ = P
R(B2−PR(B))

. Therefore

VQ = B†Q = B†(PR(B) + (B2 − PR(B))
1/2U) = B† + (PR(B) − B2

†
)1/2U.

3 −→ 1: Observe first that VQV
∗
Q = PR(B) so that R(VQ ) = R(B). From the proof of 1 −→ 2 of

Theorem 5.1 it follows that VQPR(VQ ) = |Q∗|†. In this case |Q∗|† = VQPR(VQ ) = VQPR(B) = B† so that

|Q∗| = B. #

The next result characterizes the image L, in L(H)+ × L(H)+, of the map Q −→ (QQ∗, Q∗Q).
Observe that this is related to a paper of Horn and Olkin [12] about the relationship between AA∗ and
A∗A, for a matrix A.

Theorem 6.3. Let A, B ∈ L(H)+ with a closed range. Then, there exists Q ∈ Q such that |Q | = A1/2 and

|Q∗| = B1/2 if and only if PR(A)BPR(A) = PR(A) and PR(B)APR(B) = PR(B).

Proof. IfQQ∗ = BandQ∗Q = A thenR(Q) = R(B)andN(Q) = N(A), or equivalently,Q = PR(B)//N(A).
Applying Theorem 3.8(5) we get that Q = BPR(A) = PR(B)A. Therefore PR(A)BPR(A) = PR(A)Q = PR(A)
because PR(A) and Q have the same nullspace; in the same way, PR(B)APR(B) = QPR(B) = PR(B) because
Q and PR(B) have the same range.

Conversely, suppose that PR(A)BPR(A) = PR(A) and consider Q = BPR(A). It follows that Q is idempo-
tent. To compute the nullspace of Q observe that
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N(A) = N(PR(A)) = N(PR(A)BPR(A)) = N(B1/2PR(A)) = R(A) ∩ N(B) +̇N(A).

Therefore R(A) ∩ N(B) = {0} and N(PR(A)BPR(A)) = N(A). Then N(Q) = N(BPR(A)) = N(B1/2PR(A))
= N(A). Observe that R(Q) = B(R(A)). In a similar way, from PR(B)APR(B) = PR(B) we get that R(B) ∩
N(A) = {0} so that H = R(Q) +̇N(Q) = B(R(A)) +̇N(A) ⊆ R(B) +̇N(A). This implies that R(Q) =
B(R(A)) = R(B). Hence Q = PR(B)//N(A). To see that QQ∗ = B observe that multiplying both sides of

the equality PR(A)BPR(A) = PR(A) by B1/2 it follows that B1/2PR(A)B
1/2 is an orthogonal projection, in

fact B1/2PR(A)B
1/2 = PR(B). Then QQ∗ = BPR(A)B = B.

In the same way, using that PR(B)APR(B) = PR(B), Q̃ = APR(B) is an oblique projection such that

R(Q̃) = R(A), N(Q̃) = N(B) and Q̃ Q̃∗ = A. Therefore Q̃ = PR(A)//N(B) so that Q̃ = Q∗, which shows

that Q∗Q = Q̃ Q̃∗ = A. #

Corollary 6.4. The inverse of the map Q −→ (QQ∗, Q∗Q), for Q ∈ Q, is given by (B, A) −→ BPR(A)(=
PR(B)A), for (B, A) ∈ L.
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