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a b s t r a c t

We searched for predictive models for alpha, beta and gamma plant diversity based in easy to measure
field indicators. The study was conducted on the upper belt of the Córdoba mountains (Argentina). We
established 222 permanent plots of 4 � 4 m distributed on sites with different physiognomy, topography
and management. At each plot we measured physical and physiognomic indicators and recorded the
presence of all vascular plants. We estimated alpha diversity as the number of species detected in a plot,
beta diversity as the floristic dissimilarity between two plots, and gamma diversity as the number of spe-
cies detected in a landscape. Through linear regression we found predictive models for alpha and pair-
wise beta diversity. Then we analysed if predicted average alpha and beta diversity were good estimators
of gamma diversity. We recorded a total of 288 species (5–74 species per plot). Alpha diversity was high-
est in sites on shallow soils with high structural richness (i.e. high number of cover categories), half cov-
ered by lawns, at sunny slopes and rough landscapes (r2 = 0.66). For beta diversity, the difference
between plots in structural richness and in cover of thick tussocks grasses and lawns were the best pre-
dictors (r2 = 0.45). For different sets of simulated landscapes, gamma diversity was well explained by pre-
dicted average alpha and beta diversity, plus the sampling effort (r2 = 0.92). We concluded that using easy
to measure field indicators it is possible to estimate plant diversity at different levels with a good
accuracy.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Biodiversity losses are an increasing threat for ecosystems
and the services we obtain from them (Millennium Ecosystem
Assessment, 2005). Implementing management strategies aiming
at biodiversity conservation is an urgent need, and an important
goal of conservation agencies (Pereira and Cooper, 2006; Klimek
et al., 2007; Henry et al., 2008). In this scenario, monitoring biodi-
versity behaviour under different management schemes becomes
of vital importance, both for protected areas and for other ecosys-
tems subjected to conservation goals (Critchley et al., 2003; Baillie
et al., 2008; Henry et al., 2008).

Plants are often used as indicators for whole ecosystem diver-
sity because they are sensitive to abiotic environment and are
the primary target of most land-use pressures (Landsberg and
Crowley, 2004; Lughadha et al., 2005). Also, plants are the basis
of food webs, constitute the habitat of animals, and their spatial
distribution influences animal diversity (Noss, 1990; Fuhlendorf
and Engle, 2001; Cingolani et al., 2008a). Given the importance of

plants, monitoring vegetation at different spatial scales is neces-
sary to implement sound and comprehensive management strate-
gies. Plant richness is a recognized indicator of biodiversity, both at
the local or regional scale, and its maximization is often a goal in
itself (Gotelli and Colwell, 2001; Rocchini et al., 2005; Pereira
and Cooper, 2006). The taxonomic richness of a whole region, por-
tion of landscape, or management unit (hereafter ‘‘landscape’’) has
been termed gamma diversity, and can be partitioned into two
components (Whittaker, 1972; Vellend, 2001; Melo et al., 2009).
One of them, alpha diversity, can be defined as the number of spe-
cies present at a single site or sampling plot. The other, beta diver-
sity, can be defined as the variation in species composition among
sites. For monitoring goals, it is important to consider plant taxo-
nomic richness at these three levels, because each of them can re-
flect different aspects of ecosystem complexity (Cingolani et al.,
2008a). However, estimating taxonomic richness is time-consum-
ing, and often material resources and experts trained in species
identification are scarce (Kati et al., 2004; Holck, 2008).

To deal with these difficulties, conservation ecologists have at-
tempted to find variables that are easier to measure and also highly
associated with taxonomic richness, for plants as well as for other
organisms (Jonsson and Jonsell, 1999; Kati et al., 2004). Sometimes,
selected taxa were used as indicators of other taxa which are more
difficult to identify and/or measure (Kati et al., 2004; Schmidt et al.,
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2007). This approach has shown good results for gamma diversity,
but was less successful for alpha diversity, because richness pat-
terns of different taxa are seldom congruent at the site scale (Faith
and Walker, 1996; Dauber et al., 2003; Kati et al., 2004). Another
promising approach is to combine physical and biological indica-
tors obtained from GIS and satellite images, to predict gamma
diversity for different portions of the landscape (e.g. Lobo et al.,
2001; Dumortier et al., 2002). A similar combination, but using
mostly fine-resolution field indicators, can be used to predict and
monitor plant alpha and beta diversity. Reported associations of
physiognomy with alpha diversity and botanic composition
(Collantes et al., 1999; Jauffret and Lavorel, 2003), suggest that
physiognomical parameters (e.g. cover of different growth-forms)
and their variation among sites could be good biological predictors
of alpha and beta diversity respectively. The advantage of such
structural variables is that they are relatively easy to estimate in
the field, and besides their potential as taxonomic richness predic-
tors, they can also be good indicators of ecosystem functional prop-
erties (Díaz and Cabido, 1997).

We aimed to explore this approach for the upper altitudinal belt
of the Córdoba mountains, in central Argentina. This is a key area in
the region because about three million people depend directly on
these mountains for their water supply. Alarming soil erosion pro-
cesses and loss of woodlands in the area were produced by four
centuries of domestic grazing and associated fires (Cingolani
et al., 2008b). To ameliorate these problems and to protect the rich
endemic flora and fauna of the region, in 1997 lands were expro-
priated to create a National Park, and in 1999 a buffer Provincial
Water Reserve was created, which remained under private owner-
ship. When livestock was excluded after the creation of the Park,
plant diversity began to decrease because highly competitive tus-
sock grasses advanced over more diverse short grasslands previ-
ously maintained by livestock and fire (Cingolani et al., 2003). To
revert these trends, livestock was re-introduced in some areas of
the Park.

As part of a more comprehensive monitoring program, we are
evaluating soil erosion and vegetation (both botanic composition
and structural characteristics) in the Park and surrounding Reserve
(Cabido, 2008). From these data, we aimed to generate a tool for ra-
pid evaluation of diversity changes without the need of experts, to
be used by government staff or local people (Danielsen et al.,
2008). Because previous studies in this area reported associations
of physiognomy and physical environment with plant richness
and botanic composition (Cabido, 1985; Cingolani et al., 2003;
Enrico et al., 2004), we explored the use of these variables as pre-
dictors of diversity. Specifically, our objectives were to: (1) find a
predictive model of alpha diversity based on easy to measure phys-
ical and physiognomic variables, (2) find a predictive model of beta
diversity based in the variability among sites in the same variables,
(3) explore the potential of both models to produce, by combina-
tion, an estimator of gamma diversity.

2. Materials and methods

2.1. Study area

The Quebrada del Condorito National Park and the surrounding
Provincial Water Reserve are located in the upper belt of the Cór-
doba mountains (North–South range; 1700–2800 m a.s.l.). Mean
temperature of the coldest and warmest months are 5.0 and
11.4 �C respectively, with no frost-free period. Mean annual precip-
itation is 924 mm, with most rainfall concentrated in the warmer
months, from October to April (Cabido, 1985; Colladon, 2008).
The landscape consists of a mosaic of woodlands, grasslands and
rocky oucrops and pavements. Woodlands are generally small

patches dominated by Polylepis australis Bitter. Grasslands can be
dominated by tussock grasses (Poa stuckertii (Hack.) Parodi,
Deyeuxia hieronymi (Hack.) Türpe and Festuca spp.), or by short
graminoids and forbs (‘‘grazing lawns’’ sensu McNaughton, 1984).
Rocky outcrops have variable levels of plant cover, including all
life-forms, while erosion pavements are always scarcely vegetated
(Cingolani et al., 2004). Most of the species within the local flora
are characteristic of this upper mountain belts and a good number
of endemic species is likely to be found in both grassland and
woodland communities (Cabido, 2008). In the National Park, differ-
ent grazing management schemes have been implemented, involv-
ing different stocking rates and timings of grazing. In the
surrounding Reserve area, stocking rates are generally higher and
fire is often used to reduce tussock cover and stimulate regrowth.

2.2. Field sampling

We established 222 permanent plots of 4 � 4 m distributed in a
large portion of the area, occupying a range of 50 km in the North–
South direction (from 31� 230 150 0S to 31� 460 330 0S), and about
20 km in the East–West direction (from 64� 410 220 0W to 64� 510

340 0W). In altitude, the study area ranged from 1800 m a.s.l. to
2300 m a.s.l. Of these plots, 173 were located within the National
Park, and 49 were in the surrounding Reserve. Plots were distrib-
uted in paddocks (or grazing areas limited by natural boundaries)
under variable grazing regimes and stocking rates, which include
grazing exclusion (41 plots), light to moderate grazing (112 plots),
and heavy grazing (69 plots). Plots were representative of the dif-
ferent plant cover units and topographic conditions present in the
paddocks, except that we did not sample closed woodlands (i.e.
more than 50% tree cover). The size of the plots was a trade-off be-
tween including as many species as possible and allowing reason-
ably accurate rapid visual estimations of indicator variables.

The plots were established and measured for the first time in
different years (142 in 2004, 40 in 2005, 18 in 2006, and 22 in
2008), always in September to standardize the estimation of the
biological indicator variables at the driest period of the year. When
setting up the plots we measured slope aspect (degrees from the
north), slope inclination (%), and soil depth (cm). Soil depth was
measured at each corner of the plot unless bare rock was encoun-
tered in which case we selected the nearest area with soil within
the plot. The four measures were later averaged to obtain one value
per plot. Location and altitude (m a.s.l.) were measured with a
Global Positioning System. Within each plot, we estimated the cov-
er (%) of bare soil and of bare rock in three categories (pavements,
loose rocks, and outcrops, following Cingolani et al., 2004). We also
estimated the cover of lichens (not considering those on rocks),
mosses and litter, and the following vascular plant growth-forms:
tussock grasses with thick leaves (mainly P. stuckertii, hereafter
‘‘thick tussock grasses’’), tussock grasses with thin leaves (mainly
D. hieronymi and Festuca spp, hereafter ‘‘thin tussock grasses’’),
short forbs, tall forbs (mainly sufruticose species and one vine),
perennial graminoids, annual graminoids, cacti, ferns, shrubs, and
trees. In all cases, cover was visually estimated in 5% categories
(10%, 15%, 20%, etc.) except for low cover values (<10%), which
were estimated in 1% categories (1%, 2%, etc.). When cover was
far less than 1%, we registered 0.1%. In the summer (January and
February) after setting up the plots we recorded the presence of
all vascular plants. This date was selected because only at this sea-
son are species fully identifiable.

2.3. Data analyses

2.3.1. Variables used in the analyses
To find a predictive model for alpha diversity we used the phys-

ical and physiognomic predictor variables measured in the plots or
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calculated from plot measures, together with two variables ob-
tained from a Geographic Information System (Cingolani et al.,
2008b). All the variables are listed in Table 1. For beta diversity,
we used between-plot differences of the same physical and physi-
ognomic variables, plus geographical distance between plots,
which is generally associated with botanic dissimilarity (Vellend,
2001). The index of local insolation (Table 1) was calculated as
the cosine of the aspect multiplied by the square root of the slope
inclination. In this way north facing slopes (i.e. sunnier) had posi-
tive values, grading towards negative values at south facing slopes
(this surrogate does not consider projected shadows). The struc-
tural richness (Table 1) was the total number of growth-forms
and other cover categories estimated in the plot, with a maximum
possible of 16 (trees, shrubs, thick tussock grasses, thin tussock
grasses, ferns, cacti, tall forbs, short forbs, perennial short grami-
noids, annual short graminoids, mosses, lichens, loose rocks, pave-
ments, outcrops and bare soil). Cover variables were reduced to
seven (by merging some cover categories on the basis of structural
similarity and co-variation along plots) to avoid variables with too
many zeros (details in Table 1).

2.3.2. Alpha diversity
To obtain the predictive model for alpha diversity (defined as

the number of species recorded in a plot) we used multiple regres-
sion analysis, with the indicator variables listed in Table 1 as pre-
dictors. To avoid over-fitting, and allow model validation without
losing valuable information for parameter calculation, we used a
jackknifing procedure as explained below.

First, we produced five data-sets, each one with 80% of the plots.
The discarded 20% of the plots were selected at random for each
data set, but with the restriction that each of the 222 plots were
discarded once.

Second, we selected only one group of predictor variables which
proved the best for all the five data-sets on average. To select this
group, we performed a manual forward stepwise multiple regres-
sion for each data set. When including a variable, we decided be-
tween a linear, logarithmic (or square root for variables with
zeros) or a quadratic unimodal relationship, according to the r2 ob-
tained by the different alternatives, and the visual analysis of the
scatter-plots. In this way we obtained five different alternative

multiple regression models, with very similar but not exactly the
same predictor variables or terms. Then, we tested the different
alternative group of variables/terms for the five data-sets with
multiple regressions, and selected the group which produced the
best average r2, and whose variables/terms were always significant
and not strongly correlated among them. In this way we obtained
five regression models differing only in the variables’ coefficients.

Third, we used each model to calculate the predicted alpha
diversity and the residuals for the excluded 20% plots. In this
way we obtained a validation data set of 222 predicted values
and their residuals. We examined the normality of residuals with
Q–Q plots and histograms. Additionally we controlled for possible
anomalies in the models by plotting the residuals against the pre-
dicted values, and against each one of the independent variables
(Afifi and Clark, 1984). Then, we calculated the linear regression
between the predicted and observed alpha diversity, and calcu-
lated the confidence intervals (95%) for the slope and intercept to
test if these parameters differ from 1 and 0 respectively. Finally,
to obtain a unique predictive model, we re-estimated the coeffi-
cients of the variables by performing a regression using all the
222 samples.

2.3.3. Beta diversity
Different indices have been proposed to estimate beta diversity,

i.e. the species composition variability among sites (Vellend, 2001;
Melo et al., 2009). Whittaker (1972) proposed to calculate beta
diversity as the inverse of the average proportion in which each
species is present in a pool of sites (sampling plots) representative
of a landscape. When multiplied by the average alpha diversity,
this estimator of beta diversity gives the total number of species
in the landscape (gamma diversity). The attractiveness of Whittak-
er’s calculations is that the three diversity indices are connected by
a simple mathematical operation, but the problem is that this in-
dex is sensitive to the number of plots (Vellend, 2001). It can vary
between 1, when all the plots have exactly the same species com-
position and N (the total number of plots), if all the plots have a
completely different composition. An alternative approach would
be to calculate all possible pair-wise dissimilarity indices between
plots, and then average (Vellend, 2001). We decided to use this last
approach, with the beta diversity index proposed by Whittaker to
calculate pair-wise dissimilarities. This index, when applied to a
pair of samples, is equivalent to the Soerensen dissimilarity index
+1 (Vellend, 2001). In this way, the average for any landscape can
vary between 1 and 2, independently of the number of sampling
plots considered.

To obtain a model to predict pair-wise beta diversity, we calcu-
lated the beta diversity index of Whittaker (bw) for all possible
combinations of two plots (i.e. 24,531 pairs). For each pair, we also
calculated the absolute differences in the values of the variables
listed in Table 1 and the geographical distance between both plots.
To normalize the dependent variable (bw), we applied a modified
logit transformation, in the following way:

bwðlogitÞ ¼ Lnððbw� 1:1Þ=ð1� ðbw� 1:1ÞÞÞ

We decided on this transformation because it produced the best
distribution of residuals. Then we choose at random the 80% of the
pairs (19,647 pairs), with the restriction that all plots should be
equally represented in this sub-sample. This precaution was taken
to avoid that some plots have more influence than others in the
posterior analysis. Using the 80% of the data set, we selected the
best predictive model for beta diversity by multiple regression,
using a manual backward stepwise procedure. In this case, we ex-
pected a beta diversity increase with increasing values of the pre-
dictor variables (i.e. absolute differences among plots in physical
and physiognomic characteristics, and geographical distance).
Thus, we only tested linear, logarithmic (or square root for

Table 1
Variables considered for predicting alpha and beta diversity, and their range of
variation in our data set.

Range

Lower Upper

Physical variables
Altitude (m a.s.l.) 1848 2274
Slope (%) 0 55
Soil depth (cm) 1.25 110
Local insolation (index) �4.6 7.4
Landscape roughness (index)a 0.0058 0.1259
Landscape topographic position (index)a 0 100

Physiognomic variables
Structural richness 1 14
Thick tussock grass cover (%)b 0.1 100
Thin tussock grass cover (%) 0 97
Lawn cover (%)c 0 105
Woody cover (%)d 0 62
Bare surface (%)e 0 52
Rock exposed by erosion (%)f 0 78
Outcrops (%) 0 50

a Obtained from a Geographic Information System Cingolani et al. (2008b).
b Thick tussock grasses + litter.
c Annual grasses + short perennial grasses + short dicots.
d Trees + shrubs + cacti + tall sufruticose forbs.
e Bare soil + lichens + mosses.
f Pavements + loose rocks.
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variables with zeros) and monotonic quadratic relationships (i.e.
using only the quadratic term), but not unimodal relationships.
To avoid over-fitting due to the high number of data not com-
pletely independent we only selected variables with P < 0.001.
After selecting the best model, we performed correlations among
predictors, to avoid including strongly correlated variables. Addi-
tionally, we performed 100 random permutations and compared
the distribution of t values in the randomized regressions with
the observed t values in the model. In this way we corroborated
that the effect of the selected variables on beta diversity differed
from chance (Vellend, 2001).

Finally, we calculated the predicted value and residuals for
remaining 20% of the pairs. We calculated the regression between
predicted and measured beta values, to test if the intercept and
slope differed from zero and one respectively. We examined the
normality of residuals by Q–Q plots and histograms.

2.3.4. Gamma diversity
To test the relationships of predicted alpha and beta diversity

with gamma diversity (defined as the total number of species de-
tected in a landscape), we needed a number of different landscapes
as units of analysis. We simulated our landscapes by grouping
plots according to geographical proximity. We considered four
alternative schemes. First, we randomly discarded two plots and
classified the 220 remaining plots in groups of 5, 10 or 20, obtain-
ing in this way three schemes of 44, 22 and 11 simulated land-
scapes. Additionally, we considered a fourth scheme where each
landscape was a management unit (paddock or grazing area), rep-
resented by different number of plots (a total of 25 landscapes rep-
resented by 4–31 plots, depending on the area). For each landscape
of the four schemes we computed gamma diversity.

Based in the predictive models previously obtained, we calcu-
lated the predicted alpha diversity for all plots in each landscape,
and the predicted beta diversity for all possible pair of plots. Both
predicted set of values were then averaged per landscape.

For each scheme, we performed a multiple regression with
gamma diversity as dependent variable, and predicted average al-
pha and beta diversity as independent variables. For the fourth
scheme, we also considered the total number of plots (ln trans-
formed) as independent variable, because when gamma diversity
is measured simply as the number of species detected in the land-
scape, it is sensitive to the sampling effort, independently of other
factors considered (Gotelli and Colwell, 2001). We also considered
all interaction (product) terms. In all cases, we discarded non sig-
nificant independent variables or terms. All data analyses were car-
ried on with Infostat (2002).

3. Results

We recorded a total of 288 species in the 222 plots, with a plot
minimum of five and a maximum of 74 species. The most frequent
were D. hieronymi (185 plots), Carex fuscula d’Urv. (155 plots),
Lachemilla pinnata (Ruiz and Pav.) Rothm. (147 plots), and Eryn-
gium agavifolium Griseb. (146 plots). Accordingly, thin tussock
grasses, perennial graminoids and short forbs were the most fre-
quent growth-forms (all present in more than 200 plots), while
cacti, trees and ferns were the less frequent growth-forms. In terms
of the number of species, we found 132 short forbs, 77 perennial
graminoids and 22 ferns, while the remaining growth-forms were
far less represented.

3.1. Alpha diversity

In the first run, the five data-sets (80% of the plots each) pro-
duced models with slightly different sets of predictor variables.

After our second selection procedure, five variables remained:
lawn cover, structural richness, soil depth, local insolation and
landscape roughness. The five r2 values varied from 0.648 to
0.673. When the model was run with all the data (N = 222), r2

was 0.657. According to these models, the highest number of spe-
cies was found in plots with shallow soils, located at sunny sites in
rough landscapes, half covered with lawns (i.e. the sum of short
forbs, short perennial graminoids and short annual graminoids
was around 50%), and with high structural richness (Fig. 1a–e).
The variables rock exposed by erosion, altitude, thick tussock
grasses and thin tussock grasses were significant for some of the
five data-sets but not for others, and for this reason they were
not used as predictors. The r2 values of the regression between pre-
dicted values (calculated for each plot from the model obtained
without that plot) and the observed alpha diversity was 0.615.
The slope and intercept of the fitting line did not differ from one
and zero respectively, validating the five models and thus the final
model using all data (Fig. 1f). Residuals were normally distributed.

3.2. Beta diversity

As expected, pair-wise beta diversity increased with the differ-
ences between plots in physical and physiognomic characteristics
(Table 2). The differences in thick tussock grass cover, lawn cover,
and structural richness were the three most important predictor
variables. Following were the differences in outcrops, altitude,
slope and geographical distance. Finally, the weaker variables in
the model were the differences in bare surface (bare soil, lichens
and mosses), rock exposed by erosion, soil depth, woody cover
and thin tussock grass cover. Local insolation, landscape topo-
graphic position and landscape roughness were not selected. The
r2 of the model was 0.45. The relationship between predicted and
observed values for the 4884 pairs used for validation had a slope
and intercept not different from zero and one respectively, and the
r2 was 0.44. Residuals were normally distributed.

3.3. Gamma diversity

For the four schemes tested, predicted average alpha and beta
diversity combined explained a large proportion of variance in ob-
served gamma diversity (r2 = 0.77, 0.87, 0.91 and 0.92 for land-
scapes represented by 5, 10, 20 and variable number of samples
respectively). As expected, for the last scheme the sampling effort
(number of plots) was also significant (Fig. 2). Interaction terms
were never significant, so they were discarded from the regression
models.

4. Discussion

We found a good predictive model for alpha diversity, a reason-
able predictive model for pair-wise beta diversity, and a fairly good
potential of these models to be combined to predict gamma diver-
sity. To our knowledge this is the first study which developed mod-
els to predict the three levels of diversity simultaneously, based in
easy to measure field indicators. This provides a powerful monitor-
ing tool for plant diversity, as well trained field biologists are
scarce, and they usually do not form part of government agency
staff, particularly in developing countries (Danielsen et al., 2008;
Holck, 2008).

In our models, variables that predict diversity can be classified
as independent or dependent regarding management. Independent
variables, such as landscape roughness and slope aspect are phys-
ical indicators fixed to each plot (or its surrounding landscape), and
by their very nature do not change with management. Manage-
ment-dependent variables, such as soil depth or lawn cover, are
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physical or biological indicators sensitive to changes in fire and
grazing regimes (Renison et al., 2002; Cingolani et al., 2003,
2008b). These are the most useful variables for our purposes,
because they allow tracking off the changes in diversity owed to
human decisions (Landsberg and Crowley, 2004). Models to predict
or explain the number of plant species have generally been devel-
oped using coarse resolution landscape indicators taken from GIS
and/or satellite images (e.g. Iverson and Prasad, 1998; Lobo et al.,
2001; Moser et al., 2005; Ranjeet et al., 2008). Less common are
models developed upon the use of field data (e.g. Wilson et al.,
2003; Chiarucci and Bonini, 2005) or a combination of GIS and field
data (e.g. Dumortier et al., 2002). Our models for alpha and beta
diversity (and hence gamma) are based mainly in fine-resolution
field indicators, allowing an early detection of community and
landscape trends. With our approach, it is possible to monitor
changes in diversity at any scale according to particular needs.
For example, we can track the changes in alpha, beta and gamma
diversity in the National Park as compared with the Provincial
Reserve, or alternatively, we can compare those changes among

Table 2
Linear predictive model for beta diversity (logit transformed).

B ta

Intercept �1.2646 �43.1

Thick tussock grass cover0:5
ðdifÞ

7.7 � 10�02 61.0

Lawn0:5
ðdifÞ 6.1 � 10�05 44.0

Structural richness(dif) 6.0 � 10�02 33.8
Outcrops(dif) 8.8 � 10�03 21.1
Altitude(dif) 8.3 � 10�04 20.6

Slope0:5
ðdifÞ

6.1 � 10�02 19.9

Ln (geographic distance) 5.7 � 10�02 17.5

Soil depth0:5
ðdifÞ

2.5 � 10�02 14.6

Rock exposed by erosion(dif) 2.3 � 10�03 10.8
Bare surface(dif) 3.3 � 10�03 7.9
Woody(dif) 2.6 � 10�03 7.2
Thin tussock grass cover(dif) 9.8 � 10�04 6.8

a In all cases t values were statistically significant (P < 0.001), and higher than t
values obtained from 100 random permutations.
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Fig. 1. (a–e) Observed alpha diversity per 16 m2 plot against selected predictor variables (circles), and the best fit curve for each case (dashed). (f) Observed alpha diversity
against predicted alpha diversity (circles) calculated using a jacknife procedure. Solid line represent the 1:1 relationship and dotted line the best fit line. The final predictor
model was: predicted_alpha_diversity = 7.1814 + 0.4714 � Lawn � 0.0046 � (Lawn)2 + 9.2302 � Ln_(structural richness) + 111.4958 � landscape_roughness � 0.087 � soil-
depth + 0.9919 � local_insolation.
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different paddocks within the Park. This is possible because our
beta diversity model is based on pairs of plots, and plots can be
flexibly combined to represent different landscapes. Additionally,
our results for gamma diversity indicate that the predictions can
be standardized by sampling effort, which is a necessary step for
comparison purposes (Gotelli and Colwell, 2001; Chiarucci and
Bonini, 2005; Chiarucci et al., 2008).

Our model explained about 66% of plant alpha diversity, which is
a similar value to that obtained by Chiarucci and Bonini (2005), for
predicting alpha diversity in Tuscan forests. In line with our results,
they found that a combination of management dependent (e.g.
stem density) and independent (altitude) variables were optimal
to predict plant richness at plot level. In our case, structural rich-
ness, soil depth and lawn cover were important predictors. These
three variables are highly sensitive to management and are also
influenced by topography and natural rockiness. Richer sites were
those with shallow soils, half covered with lawn vegetation and
structurally heterogeneous. A high structural heterogeneity is
linked with high microsite heterogeneity, a factor which generally
favors plant diversity at small scales (Lundholm, 2009). In our study
area, conditions supporting the highest number of species are found
in naturally rocky sites or in sites partially degraded by livestock
(Cingolani et al., 2003, 2008b). Conversely, the poorest sites are
those on deep soils, with low structural heterogeneity and scarce
lawn vegetation. These conditions are common in non-degraded
sites under light grazing or livestock exclusion, where tussock
grasses strongly dominate the community (Cantero et al., 1999;
Cingolani et al., 2003). Competitive dominance of tall grasses is a
common response to grazing exclusion in many productive grass-
lands (McNaughton, 1985; Osem et al., 2002). An exception in our
study area are sites close to woodlands, where the proximity of seed
rain from P. australis trees allows the occurrence of this species
(Torres et al., 2008), increasing structural richness. This is associ-
ated with an increase in alpha diversity, even at sites on deep and
well preserved soils under livestock exclusion. Landscape rough-
ness, a physical factor independent from management also helps
explain richness. In our study area, landscape roughness reflects
the heterogeneity of the matrix surrounding the stand (Cingolani
et al., 2008b) and probably the size of the species pool, which in
turn can influence on plot richness (Cantero et al., 1999; Dauber
et al., 2003). Finally, local insolation weakly influenced alpha diver-
sity, probably because of the more xeric and warmer conditions cre-
ated at sunny slopes (Cingolani et al., 2003).

Pair-wise beta diversity was moderately well predicted by
physical and physiognomical differences between the plots. Differ-
ences in environmental variables were found to be good predictors
of beta diversity for birds and mammals (Melo et al., 2009), and for
cacti (Mourelle and Ezcurra, 1997). In the same line, numerous
studies found that heterogeneous landscapes (both in terms of
physiognomy and physical variables) have higher richness of
plants and other taxa (Lobo et al., 2001; Dumortier et al., 2002).
The most accepted explanation of species turnover along environ-
mental gradients is the different physiological and ecological toler-
ance of species to external conditions, including those created by
other species (Faith and Walker, 1996). Besides physical and phys-
iognomical dissimilarity, we found that geographical distance per
se contributes to predict beta diversity between plots. This is an
expected result because species have limited dispersion capacity,
generating spatial autocorrelation in their occurrences
(Lawrence-Lodge et al., 2007). When beta diversity is estimated
for a whole landscape by averaging the predicted values of all com-
ponent pairs of plots, larger landscapes will have higher predicted
beta diversity averages (other factors being equal) as a result of
higher number of pairs separated by larger distances. Since pre-
dicted beta diversity is used to estimate gamma diversity, the var-
iable ‘‘geographical distance’’ incorporates into our estimations the
effect of the landscape area. This is very important because the
well known and widely documented species–area relationship
should not be ignored when comparing diversity or diversity tra-
jectories among landscapes of different sizes (Adler et al., 2005;
Chiarucci et al., 2008; Harte et al., 2009).

Some 92% of gamma diversity variability among landscapes was
explained by the average predicted beta and average predicted
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Fig. 2. (a) Observed gamma diversity (number of species detected in a landscape)
against sampling effort for simulated landscapes (diamonds) represented by
variable number of plots. (b) Residual gamma diversity (i.e. not explained by the
number of plots) against predicted average alpha diversity for each landscape. (c)
Residual gamma diversity (not explained by the number of plots nor by average
alpha diversity) against predicted beta diversity. Dashed lines represent the best fit
curves. The regression model including all variables was: gamma_diversity =
335.82 + 30.119 � Ln_(number_of_plots) + 2.634 � predicted_average_alpha_diver-
sity + 176.606 � predicted_average_beta_diversity.
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alpha diversity combined with sampling effort (number of plots in
the landscape). This value is higher than values obtained for mod-
els focused directly on gamma diversity, generally based on the use
of GIS and satellite variables only, which characteristically explain
60–85% of variance (e.g. Mourelle and Ezcurra, 1996; Lobo et al.,
2001; Dumortier et al., 2002). However, we considered this model
as preliminary, because it is additive and does not reflect the inter-
active nature of the relationships between alpha diversity, beta
diversity and the number of plots. Because the interaction terms
were not significant, we considered that the biases were very
small, but more exploration of the data is needed to obtain a more
realistic predictive model for gamma diversity.

A first step to tackle the global biodiversity crisis is to develop
monitoring programs to track changes (Danielsen et al., 2008;
Henry et al., 2008). To be realistic, these programs should be able
to be carried out by non expert people, and with low budgets
(Pereira and Cooper, 2006; Henry et al., 2008). Our study reaches
those aims for the Córdoba mountains. Future research would be
needed to test this and alternative approaches in other ecosystems,
land uses or threats.
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