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Abstract

The Flexible Job Shop Scheduling Problem (FJSSP)
is one of the most challenging combinatorial opti-
mization problems, with practical applicability in a
real production environment. In this work, we pro-
pose a simple Differential Evolution (DE) algorithm
to tackle this problem. To represent a FJSSP solution,
a real value representation is adopted, which requires
a very simple conversion mechanism to obtain a fea-
sible schedule. Consequently, the DE algorithm still
works on the continuous domain to explore the prob-
lem search space of the discrete FJSSP. Moreover, to
enhance the local search ability and to balance the ex-
ploration and exploitation capabilities, a simple local
search algorithm is embedded in the DE framework.
Also, the parallelism of the DE operations is included
to improve the efficiency of the whole algorithm. Ex-
perimental results confirm the significant improvement
achieved by integrating the modifications introduced
in this study. Additionally, test results show that our
algorithm is competitive when compared with most
existing approaches for FJSSP.

Keywords: differential evolution, flexible job shop
scheduling, parallelism

Resumen

El problema de planificación job shop flexible (FJSSP,
en inglés) es uno de los problemas de optimización
más desafiantes, con aplicabilidad práctica en ambi-
entes de producción real. En este trabajo, se propone
un algoritmo de evolución diferencial (DE, en inglés)
simple para resolver el problema en cuestión. Para
representar una solución al FJSSP, se adopta una rep-
resentación de vectores reales, la cual requiere un
mecanismo de conversión muy simple para obtener
una planifación factible. Consecuentemente, el algo-
ritmo DE continúa trabajando en el dominio continuo
para explorar el espacio de búsqueda del problema que
es de caracter discreto. Además, para mejorar la ha-
bilidad de búsqueda local y lograr un equilibrio entre

la exploración y explotación, se incorpora un algo-
ritmo de búsqueda local simple. También, se incluye
paralelismo a las operaciones del DE para mejorar la
eficiencia del algoritmo. Los resultados obtenidos con-
firman que el rendimiento del DE mejora en forma
significativa al incorporar las propuestas incluidas en
este estudio. Además, los resultados de las pruebas
muestran que nuestro algoritmo es competitivo en com-
paración con la mayorı́a de los existentes.

Palabras claves: evolución diferencial, paralelismo,
planificación de trabajos

1 Introduction

One of the main goals in modern manufacturing
systems is efficiency. In this sense, the production
scheduling can be considered an important issue. In
this field, the job shop scheduling problem (JSSP) [1]
is one of the most important and difficult problems.
JSSP consists of jobs and machines, where each job
consists of operations to be processed in a given order,
and each operation is processed by a specific machine.
The objective is to find an operation sequence on the
machines (schedule) so that the time needed to com-
plete all jobs is minimized.

The supposition that one machine only processes
one type of operation does not reflect the reality of
the modern manufacturing systems. The possibility
of selecting alternative routes among the machines is
useful in production environments where multiple ma-
chines, possibly not identical, can perform the same
operation (perhaps with different processing times).
This flexibility allows the system to absorb changes in
work demands or in machine performances. When this
factor is included, the problem is known as the Flexi-
ble Job Shop Scheduling Problem (FJSSP), becoming
in a more realistic production environment and with
practical applicability.

The solution of FJSSP involves two decisions: to
sequence the operations on the machines and to assign
each operation to the appropriate set of machines to
minimize the elapsed time to complete all the jobs
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(makespan or Cmax). These decisions suggest that
FJSSP is a complex optimization problem (NP-hard
problem [2]), consequently, the adoption of meta-
heuristic [3, 4] has led to better results than classical
dispatching or greedy heuristic algorithms [5, 6, 7].
Since introduced in 1997 by Storn and Price [8], the
Differential Evolution (DE) metaheuristic became very
popular among computer scientists and practitioners
almost immediately after its original definition.

DE is a population-based evolutionary algorithm,
utilizing real-valued vectors as a population for
each generation. DE employs simple mutation and
crossover operators to generate new candidate solu-
tions and applies a one-to-one competition scheme to
greedily determine whether the new candidate or its
parent will survive in the next generation. Besides, the
canonical DE requires very few control parameters,
a feature that makes it easy to use for the practition-
ers. Consequently, their success is due to its simplicity
and ease implementation, and reliability and high per-
formance. DE algorithms have been applied to many
combinatorial optimization problems ([9, 10, 11, 12],
among many others), but as far as we are aware, there
is few published research work that describes the use
of DE to deal with FJSSP [13].

In [14], we design a simple DE to solve FJSSP. As
DE was originally devised for solving continuous opti-
mization problems, we adopt a real value representa-
tion for FJSSP to make the continuous DE applicable
for solving the discrete FJSSP. This implies that al-
gorithmic operations (mutation and recombination)
should not be modified or adapted to solve the prob-
lem at hand. Another important feature of DE is the
little number of parameters to be set when compared
to other evolutionary algorithms: with only three pa-
rameters, the algorithm behavior can be controlled.
However, the success to find good solutions to a prob-
lem depends on discovering the correct values of these
parameters [15]. Therefore, we analyze this line to
determine the adequate values for these parameters for
solving the FJSSP instances. Moreover, a simple local
search procedure is embedded in the DE to improve
their exploration capacities by solving the problem.
Finally, parallelism at algorithmic level [3] is incorpo-
rated into the DE framework to improve its scalability
and reduce the computation time. Resuming, the con-
tributions of this work are:

• design of a simple DE to solve FJSSP in the real-
value search space without affecting the efficacy

• improvement of the DE performance with a sim-
ple and efficient local search procedure

• proposal of a parallel DE to deal with efficiency
issues

The experimental methodology we have followed
consists of computing the makespan or Cmax values
for the proposed DE and their improvements to solve

FJSSP. The obtained results are compared by consider-
ing different quality indicators. The current work is an
extension of the previous article [14], where we extend
and reorganize the problem and algorithm description.
Moreover, another DE parameter is considered in the
experimental study to determine its appropriate value
to solve FJSSP. Consequently, both the experimenta-
tion and the result analysis are enlarged, also including
other metrics to improve the comprehension of the
relation between the solution quality and the DE com-
putational effort.

The paper is organized as follows. In Section 2, we
introduce the problem formulation and show an illus-
trative example of input data. In Section 3, we present
the basic DE algorithm. In Section 4 we explain our
proposal based on DE to solve FJSSP. In the following
section, we introduce the experimental design and in
Section 6, we evaluate the results. Further, in Sec-
tion 7 we make a comparison between the proposed
DE and other solvers present in the literature. Some
final remarks and future research directions are given
in Section 8.

2 The Flexible Job Shop Scheduling
Problem

FJSSP is an extension of the classic JSSP where a set
of machines, not necessarily identical, can process an
operation. Consequently, a set of available machines
is provided for each operation. The goal is to decide
on which machine each operation will be assigned and
in what order the operations will be sequenced on each
machine so that the makespan is minimized.

FJSSP can be formally described as follows. A
set J = {J1,J2, . . . ,Jn} of independent jobs and a set
U = {M1,M2, . . . ,Mm} of machines are given. A job
Ji is broken down by a sequence of Oi1,Oi2, . . . ,Oini

operations to be performed one after the other accord-
ing to the given sequence. Each operation Oi j can be
executed on any among a subset Ui j ⊆U of compatible
machines. For this reason, the FJSSP can be classi-
fied into two categories, partial (P-FJSSP) and total
(T-FJSSP) [16]. We have partial flexibility whether
exists a proper subset Ui j ⊂U , for at least one oper-
ation Oi j, while we have Ui j =U for each operation
Oi j in the case of total flexibility. The processing time
of each operation is machine-dependent. Pre-emption
is not allowed, i.e., each operation must be completed
without interruption once started. Furthermore, the
machines cannot perform more than one operation at
a time. All jobs and machines are available at time 0.

The problem is to assign each operation to an appro-
priate machine (routing problem), and sequence the
operations on the machines (sequencing problem) to
minimize the makespan (Cmax). This measure is the
time needed to complete all the jobs, which is defined
as Cmax = maxi{Ci}, where Ci is the completion time
of the job Ji. Table 1 shows an instance of FJSSP
with 3 jobs, 4 machines and 8 operations. The rows



Table 1: Instance Example for FJSSP
J1 J2 J3

O11 O12 O13 O21 O22 O23 O31 O32
M1 - 4 9 2 4 9 8 3
M2 6 8 5 - 6 - 6 5
M3 5 5 - 1 8 2 - 8
M4 - 6 7 3 4 2 5 3

and columns correspond to machines and operations,
respectively, and the entries of the table are the pro-
cessing times.

3 DE: Background
Storn and Price [8, 17] proposed the Differential Evo-
lution (DE) algorithm to solve global optimization
problems over continuous search spaces. Due to its
simple algorithmic framework and inexpensive com-
putation in terms of CPU time but performing well
in convergence, DE has emerged as one of the most
competitive and versatile families of evolutionary al-
gorithms. Moreover, DE has been widely applied and
shown its strengths to solve a wide variety of very
complex problems from diverse domains of science
and technology [18, 19].

DE is a population-based optimization method, hav-
ing a very simple algorithmic structure, whose imple-
mentation requires only a few lines of code in any
standard programming language. The optimal or near-
optimal solution is obtained by an iterative process that
is applied to a set of solutions (population) to achieve
a new one. At each step of the process, known as itera-
tion, new solutions arise as a result of perturbations to
the current ones.

The general DE structure shares similar features
with other evolutionary algorithms (EAs), such as ge-
netic algorithms (GAs) [20]. However, DE differs
markedly from the well-known EAs because the first
one reinforces the mutation as the principal perturba-
tion operation. DE mutates the solutions with a scaled
difference(s) of distinct members from the current pop-
ulation. Consequently, DE is different in handling
distance and direction information to move the popu-
lation at the current iteration toward the next one, in
virtue of constructive cooperation between individuals.
The framework of DE is described in Algorithm 1. Af-
ter the initialization step, an iterative process begins
that includes the application of mutation, recombina-
tion, and selection operators. The iterations continue
until a termination criterion is satisfied. The next sec-
tions explain each of the operations performed during
the iterative process.

3.1 Initialization

The first step (Line 1 of Algorithm 1) consists in the
initialization of the population P0 of NP target vec-
tors of D real values (xi = (xi,1,xi,2, ...,xi,D) ∈RD(1≤
i ≤ NP)). Each vector forms a candidate solution to
the multi-dimensional optimization problem. Usually,

Algorithm 1 DE Algorithm
Require: F,Cr,Np
Ensure: xbest
1: initialize(P0,Np)
2: g← 0
3: while not meet stop criterion do
4: for each vector xg

i from Pg do
5: vg

i ← mutate(xg
i ,P

g,F)
6: ug

i ← recombinate(xg
i ,v

g
i ,Cr)

7: xg+1
i ← select(xg

i ,u
g
i )

8: add(Pg+1,xg+1
i )

9: end for
10: g← g+1
11: end while
12: xbest ←best solution(Pg)

each xi, j is bounded to a value in the range [lo j, lu j],
where lo j, lu j ∈ R are the lower and upper bound,
respectively. The NP target vectors are initialized ran-
domly by applying Equation 1.

xi, j = lo j +U(0,1)× (lu j− lo j) (1)

where U(0,1) is a random number with uniform dis-
tribution in the range [0,1].

3.2 Mutation

The mutation operator (Line 5 of Algorithm 1) obtains
a donor vector vg

i = (vi,1,vi,2, ...,vi,D) for each target
vector xg

i from the current population Pg (0 ≤ g ≤
maxiter) following Equation 2. To obtain vg

i , a base
vector xg

r0 and other two vectors xg
r1 y xg

r2 are randomly
selected from Pg, with r0,r1 and r2 chosen from the
set {1,2, ...,NP} and all of them are mutually exclusive
as well as different from i.

vg
i = xg

r0 +F× (xg
r1− xg

r2) (2)

The F ∈ [0...1) factor, known as scale factor, controls
the rate at which the population evolves, in order to
avoid their stagnation during the search process. The
mutation operator is important to the DE’s behaviour
because it focuses the search on the most promising
areas of the solution space.

3.3 Recombination

The donor vector is modified by the recombination
operator (Line 6), to increase the population diversity.
This operator creates a trial vector ug

i through mixing
components of the donor vector vg

i and the target vector
xg

i . The most frequently referred crossover operator is
the binomial crossover, which is shown in Equation 3:

ug
i, j =

{
vg

i, j si r j <Cr∨ j = jr
xg

i, j otherwise (3)

where r j = U(0,1) is a random value, jr is also a
random value in the set {1, 2, ...,D}, and finally, Cr
is a parameter known as recombination probability,
which controls the fraction of parameter values that
are copied from the donor.



3.4 Selection

The last step in the DE’s iterative process is the selec-
tion operation (Line 7). The trial vector ug

i competes
against the target vector xg

i regarding their objective
values (obtained applying the objective function to
each vector). The best vector is selected to be part
of the population Pg+1 of the next generation (Line
8) (see Equation 4). This competition creates a new
population with performance equal or superior to the
current one. Consequently, DE is an elitist EA.

xg+1
i =

{
ug

i if f (ug
i )≤ f (xg

i )
xg

i otherwise (4)

3.5 Stopping criterion

The stopping criterion can be set to a preset maximum
number of iterations (maxiter) or some other problem-
dependent criterion. Whichever stop of the iterative
process, the choice has a direct influence on the best
solution xbest obtained by the algorithm (Line 12).

3.6 DE Parameters

DE performance mainly depends on three parameters:
scaling factor of the difference vector (F), recombina-
tion control parameter (Cr), and population size (NP).
Some guidelines are available to choose the control
parameters [19]. In this work, NP is chosen based on
previous knowledge and keep it constant during all
runs. The factor F usually takes a value that ranges
from 0.4 to 1.0 [21]. On the other hand, a good value
for Cr is 0.1. However, greater values can be used
to speed up convergence. In consequence, a good pa-
rameter setting can enhance the algorithm’s ability to
search for the global optimum or near-optimum with
a high convergence rate. This assertion is the driving
force behind one of the objectives of this work.

Figure 1: Example of the decoding process used by
the DE to solve FJSSP.

4 Our proposal: DE for FJSSP
This section details our proposal to solve FJSSP. To ap-
ply the DE algorithm, it is crucial to design a suitable
encoding scheme that map real-valued vectors to a fea-
sible solution for FJSSP (see Section 4.1). Moreover,

our proposal is enhanced by a simple local search (Sec-
tion 4.2). Finally, a parallel version of our proposal is
introduced in Section 4.3.

4.1 Representation

In this work, we adopt a random key encoding
scheme [22], which was used early with genetic al-
gorithms for sequencing and optimization problems.
It is based on random real numbers in a continuous
space to encode solutions in a combinatorial space. In
this way, the DE algorithm manipulates a real-valued
vector to maintain the simplicity and properties in their
natural configuration.

For a n-job m-machine scheduling problem, each
vector’s position (a random key) is a real number in
U(-1,1). After a descending order of the random keys,
the vector can be translated to a unique list of ordered
operations. This procedure always obtains a feasible
schedule, which is a permutation with repetitions [23].

Figure 1 presents an example of the decoding pro-
cess considering the instance shown in Table 1. A fixed
ID for each operation is first given following the job
number and operation order within the job (represented
as an operation position). The order of occurrence
for each operation in the final schedule indicates its
scheduling priority. Given the vector xg

i =[0.6,-0.5,0.4,-
0.3,-0.1,0.9,-0.7,0.2]. The last one is converted to the
schedule [2,1,1,3,2,2,1,3], which is a permutation of
the set of operations that represents a tentative order-
ing to schedule them, each one being represented by
its ID number. This valid schedule corresponds to the
operation sequence O21, O11, O12, O31, O22, O23, O13,
and O32.

In order to evaluate xg
i , the objective value is the

makespan or Cmax value. To compute it, each operation
Oi j in xg

i is assigned to a feasible machine Mk in Ui j
with the shortest completion time, and then the load of
Mk must be updated. The initial solution is generated
by a random procedure (Equation 1), mainly because
high performing construction heuristics for FJSSP are
unknown.

4.2 DE and Local Search Method

DE is enhanced with a simple local search technique
to improve the exploitation of promising regions of the
search space. This new algorithm is called DELS. In
this work, the local search method is a simple swap
mechanism, which randomly selects two positions of
the target vector and interchange its values. After
that, a greedy selection takes place. If the modified
solution presents an improvement in its Cmax value,
then the swap is accepted, otherwise, it is discarded.
The frequency of the local search is controlled by the
probability pLS. The pseudo-code of the local search
procedure is given in Algorithm 2.

This local search procedure is applied to the target
vectors xi of the next population (just before Line 11



Algorithm 2 Local Search Procedure
1: for each xg

i from Pg do
2: if random()< pLS then
3: j , k← random(1,D)
4: ui← swap(xi, j,k)
5: if f (ui)≤ f (xi) then . for a minimization problem
6: xi← ui
7: end if
8: end if
9: end for

of Algorithm 1) but not to the trial vector ui, which
is beneficial to avoid both cycling search and getting
trapped in a local optimum. Another important feature
of this local search procedure is that it does not need
a backward conversion because it is applied over the
real-valued vector.

4.3 DE and Parallelism
In terms of designing parallel metaheuristics, the DE
can be parallelized in different ways [3]. In this work,
the aim of the parallelization is not to change the be-
havior of the metaheuristic but to speed up the search.
For that purpose, we focus on the parallelization of
each iteration of the DE [24]. The population is decom-
posed and handled in parallel, using the well-known
global parallelization model. The main process per-
forms the selection operation, which is generally se-
quential. The rest processes (workers) perform the
mutation, the recombination, and the evaluation of the
solutions in parallel. Consequently, this model main-
tains the sequence of the original algorithm, and hence
the behavior of the metaheuristic is not altered.

The local search method follows the same paral-
lelization approach as previously mentioned. The so-
lutions are assigned to different partitions, which are
improved in parallel.

5 Experimental Design

In this section, we describe the experimental design
followed in this approach. We have selected a wide
range of FJSSP instances used in the literature taking
into account their complexity, which is given by the
number of jobs and machines, and the wide variation
of flexibility in the number of available machines per
operation. In this sense, we considered the data set
proposed by Brandimarte [25] as a representative one.
The number of jobs ranges from 10 to 20, the number
of machines belongs to the set {4,15} and the number
of operations for each job varies from 5 to 15. Conse-
quently, the total number of operations ranges from 55
to 240. The flexibility is between 1.43 and 4.10.

Concerning the methodology followed to analyze
the results, first, we studied the behavior of these al-
gorithms with different F and Cr values, considering
the best Cmax found and the number of iterations to
reach them for each instance. This analysis allows us
to determine the best values for the control parameters.
Secondly, we determined the impact of incorporating

Table 2: Parameter Values
Parameter Values

NP 50
F 0.5, 0,7, and 0,9
Cr 0.1 and 0.9
pLS 0.5, 0,7, and 0,9

a local search procedure at different rates of pLS. For
this purpose, we take into account the best Cmax found,
and the number of iterations to reach the best solution
for each instance. Finally, we study DE’s behaviour
including parallelism regarding the execution time of
each approach. The analyses are principally validated
by the data in the tables and figures shown in the ex-
perimental research section.

The parametric configuration considered for DE’s
experimentation is the following. The population size
NP is set to 50. The F factor and the Cr probability are
tested with three different values (0.1, 0.5, and 0.9).
For the remaining parameter, pLS, three values are also
analysed (0.1, 0.5 and 0.7). Table 2 shows a summary
of the parameters.

Because of the stochastic nature of the algorithms,
we performed 30 independent runs of each test to
gather meaningful experimental data and apply sta-
tistical confidence metrics to validate our conclusions.
Before performing the statistical tests, we first checked
whether the data followed a normal distribution by ap-
plying the Shapiro-Wilks test. Where the data was
distributed normally, we later applied an ANOVA test.
Otherwise, we used the Kruskal-Wallis (KW) test to as-
sess whether or not there were meaningful differences
between the compared algorithms with a confidence
level of 99%.

The considered algorithms were programmed in
C++. Consequently, their runtimes are directly com-
parable. All algorithms were compiled on the same
computer with the same compilation flags, and run on
homogeneous hardware. All are positive attributes of
a comparison. The experimentation is carried out on a
cluster of 4 INTEL I7 3770K quad-core processors, 8
GB RAM, and the Slackware Linux with a 2.6.27 ker-
nel version. To implement the parallel version of DE,
a portable programming interface for shared memory
parallel computers such us OpenMP [26] is used.

6 Experimental Results

In this subsection, we analyze the result quality consid-
ering the Cmax values obtained from the DE algorithm
to solve FJSSP, described in previous sections. First,
the influence of Cr and F parameters in the DE perfor-
mance to solve FJSSP is studied (Section 6.1). Next,
the incorporation of the local search process to the DE
using different pLS values is analyzed in Section 6.3.
Finally, the parallel implementation of DELS is consid-
ered in Section 6.3.



Table 3: Best values of Cmax found by the DE algorithm with different F and Cr values for all FJSSP instances
F=0.1 F=0.5 F=0.9

Inst. Opt. Cr=0.1 Cr=0.5 Cr=0.9 Cr=0.1 Cr=0.5 Cr=0.9 Cr=0.1 Cr=0.5 Cr=0.9

Mk01 40 40 40 40 40 40 40 40 40 40

Mk02 26 26 27 27 26 27 26 27 27 27

Mk03 204 204 204 204 204 204 204 204 204 204

Mk04 60 60 60 65 61 60 60 62 63 62

Mk05 172 175 173 173 175 179 173 175 179 173

Mk06 58 65 59 63 66 69 59 67 70 61

Mk07 139 143 140 142 143 148 140 144 146 140

Mk08 523 523 523 523 523 523 523 523 523 523

Mk09 307 318 307 310 321 333 307 321 338 307

Mk10 197 237 210 221 238 245 206 240 246 215

5/10 5/10 3/10 4/10 4/10 6/10 3/10 3/10 4/10

6.1 Influence of DE Parameters

The first analysis focuses on the effect of using dif-
ferent combinations of F and Cr values on the per-
formance of DE to solve FJSSP. In particular, both
parameters take values in {0.1, 0.5, 0.9}, from low
to high values. For this purpose, we analyze the re-
sult quality taking into account the best Cmax values
obtained for the simple DE algorithm when solving
FJSSP instances, and also the number of evaluations
needed to reach their best values.

Table 3 shows the best Cmax values obtained for the
DE algorithm using the different combinations of F
and Cr values for each FJSSP instance. Column 2
presents the best-known value of Cmax (optimal) for
each instance. The last row displays the ratio of the
number of instances that an algorithm can find its opti-
mum to the total number of instances.

The DE finds the optimum in 3 instances (MK01,
MK03, and MK08) independently from the combina-
tions of F and Cr values considered. The highest value
of F offers the less chance of finding the best solutions
for the DE regardless of the Cr value used. This com-
bination presents the lowest number of optimal values
for the different instances (no more than 4 of the 10
instances). The DE algorithm with the combination
of F = 0.5 and Cr = 0.9 finds more times the optimal
Cmax value than the others (in 6 of the 10 instances).

An important metric is the relative error or gap of
the different best Cmax values obtained for each DE
regarding the optimum of each instance. This metric
allows us to normalized the data of the different in-
stances and, in this way, we focus the attention on how
different combinations of F and Cr values affect the
performance of the DE to solve FJSSP. On the one
hand, KW statistical test indicates that there are signif-
icant statistical differences between the DE combina-
tions (p-value= 2.2e−16 is lower to the significance
level α = 0.01). On the other hand, the gap distribu-
tion for each combination (see Figure 2) suggests that
the DE algorithm with F = 0.5 and Cr = 0.9 presents
the lowest median relative error, and also, its box is
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Figure 2: Relative error of the DE algorithm for differ-
ent combinations of F and Cr values.

comparatively short suggesting that overall gap values
have a high level of similarity with each other. These
observations indicate a superiority of the combination
over the other possible ones.

Finally, we proceed to study the distribution of the
number of evaluations to find the best Cmax value per-
formed by DE with different combinations of differ-
ent F and Cr values. For that purpose, Figure 3 il-
lustrates these results employing ten box plot graphs
(one for each instance). In general, we observe that
the DE algorithm with fewer evaluations is the one
with F ∈ {0.1,0.5} and Cr = 0.9, but the combina-
tion F = 0.5 and Cr = 0.9 outperforms the other ones
from the result quality point of view (see Table 3).
Consequently, we will adopt F = 0.5 and Cr = 0.9
as the parameter settings for the DE in the following
experimentation.

6.2 Results of the DE with Local Search

The following analysis goes into detail of what hap-
pened when the DE algorithm is enhanced with a local
search procedure to solve FJSSP. The resulting algo-
rithm is named DELS. For this study, we consider three
different pLS values in the set {0.1, 0.5, 0.7}, i.e. we
study how the frequency of the LS impacts the DE per-
formance by using low, medium, and high probability
values.
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Figure 3: Number of evaluations to find the best Cmax value of the DE for different combinations of F and Cr values
considering all FJSSP instances.

Table 4: Best and mean±sd Cmax values found by the DELS with different values of pLS for all FJSSP instances.
Best Cmax Mean±sd Cmax

Inst. Opt pLS = 0.1 pLS = 0.5 pLS = 0.7 pLS = 0.1 pLS = 0.5 pLS = 0.7

Mk01 40 40 40 40 40.00±0.00 40.00±0.00 40.00±0.00

Mk02 26 27 26 26 27.03±0.18 26.96±0.18 26.76±0.43

Mk03 204 204 204 204 204.00±0.00 204.00±0.00 204.00±0.00

Mk04 60 60 60 60 62.00±1.31 61.30±0.70 61.03±0.66

Mk05 172 173 173 173 174.30±0.75 173.00±0.00 173.00±0.00

Mk06 58 63 62 61 64.40±0.56 62.83±0.53 62.43±0.62

Mk07 139 142 140 140 143.20±0.69 142.00±0.90 141.80±0.92

Mk08 523 523 523 523 523.00±0.00 523.00±0.00 523.00±0.00

Mk09 307 309 307 307 313.10±2.20 310.00±1.33 309.00±1.72

Mk10 197 226 225 224 231.10±2.41 228.00±1.36 227.20±1.38

4/10 6/10 6/10

Table 4 shows the best and the mean Cmax values, to-
gether the standard deviation, found by the DELS with
the different pLS values. The DELS obtains more times
the optimum when pLS = 0.5 or pLS = 0.7. Moreover,
the KW test indicates that there are statistically sig-
nificant differences among the algorithms (p-values

are lower than the level of significance). The DELS
using the highest frequency (pLS = 0.7) has the lowest
mean Cmax values for all instances, suggesting that the
algorithm can find the optimum or near-optimal Cmax
values in the majority of the runs. This assumption is
reflected in the boxplot of the relative error presented
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Figure 5: Speedup by FJSSP instances.

in Figure 4, which shows that the median error value
is lower with the highest local search frequency. Now,
to determine if the DELS can improve the Cmax values
found by the DE, we perform a comparison of rela-
tive error values shown in Figure 2 and the ones from
Figure 4. We can observe that the DELS algorithm
with pLS = 0.7 obtains lower relative errors than those
presented by DE, which indicates the advantage of
incorporating local search into the DE framework.

6.3 Results of the DELS and Parallelism

In this section, we study the behavior of the parallel
DE described in Section 4.3. The most important mea-
sure of a parallel algorithm is speedup. This measure
is defined as the ratio of the sequential execution time
(DELS execution time, in this case) to the parallel exe-
cution time. For this analysis, we consider the weak
speedup [27]. For that reason and following the best
practice by Luque and Alba [4], the stopping criterion
is based on the quality of the final solution achieved by
the algorithms, which is set to the optimum for each
FJSSP instance (see column Opt. of Table 3). Conse-
quently, the speedup values are only reported for those
instances for which the DELS algorithm obtains the
optimum value.

Once we established the execution times of the
DELS and the parallel DELS, we calculate the speedup
values. Figure 5 shows that the use of parallelization
is worthwhile, as we expected. The parallel DELS al-
lows to reduce the search time and obtains a very good
speed up, nearby linear (the ideal speedup value is 4,
the number of available cores per machine).

7 Comparison of DELS with the Litera-
ture

Finally, we present a comparative assessment of the
Cmax values obtained by the DELS with the ones of sev-
eral competitive algorithms present in the literature to
solve FJSSP. This allows us to determine the goodness
of the metaheuristics considered in this work. In this
comparison different population-based metaheuristics
to solve FJSSP are considered:

i) hGA [5]: a hybrid algorithm combining chaos
particle swarm optimization with genetic algo-
rithm

ii) BEDA [6]: a bi-population based estimation of
distribution algorithm

iii) IACO [7]: an ant colony optimization

iv) HDE [13]: a hybrid differential evolutionary al-
gorithm

Table 5 shows that the Cmax values obtained by DELS
are similar to the ones of remaining algorithms, for the
majority of the ten instances. This observation sug-
gests that the DELS proposed in this work is a competi-
tive algorithm to solve FJSSP. Comparisons regarding
computational effort are hard to be carried out because
the majority of the works do not report the number
of evaluations. Consequently, the relative efficiency
of referred algorithms is difficult to contrast to obtain
meaningful comparisons.

8 Conclusions

This paper presented a simple DE algorithm to solve
FJSSP, which has significant application value in mod-
ern manufacturing environments. In this study, we
considered a real-valued representation to code a valid
schedule for FJSSP. Consequently, we maintained the
good properties of the DE as a problem optimizer be-
cause it still works on the continuous domain. The DE
was enhanced with a very simple local search proce-
dure (DELS) to balance the exploration and exploita-
tion of the search space. Furthermore, each iteration of
the DELS was parallelized to speed up the computation
using the global parallelization model.

Computational results indicated that the DE with
a combination of medium F and high Cr values ob-
tained good quality of Cmax values in a less number of



Table 5: Comparison between DELS and population-based metaheuristics from the literature
MK01 MK02 MK03 MK04 MK05 MK06 MK07 MK08 MK09 MK10

DELS 40 26 204 60 173 61 140 523 307 224
hGA 40 26 204 62 172 65 140 523 310 214
BEDA 40 26 204 60 172 60 139 523 307 206
IACO 40 26 204 60 173 60 140 523 307 208
HDE 40 26 204 60 172 57 139 523 307 198

evaluations. Moreover, the DELS with a high proba-
bility of application of the local search procedure was
able to improve the best solutions found by the DE
for FJSSP in a major number of instances. We also
obtained a decrease in execution times by introducing
parallelization to the DE framework without changing
the algorithm behavior. Finally, the comparison of
our proposal with several algorithms in the literature
indicated that we develop a competitive approach. As
a consequence, our simple DE proposal is an efficient
and competitive optimizer for this NP-hard problem.

As future research activities, we will plan to ex-
tend the study by including another set of instances
with high dimensionality. Furthermore, FJSSP variants
with more constraints will be evaluated considering
the approaches developed in this article.
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