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We study the finite-temperature properties of the half-filled two-band Hubbard model in the
presence of Hund’s rule coupling and orbital anisotropy. We use the mean-field treatment of the
Z2 slave-spin theory with a finite-temperature extension of the zero-temperature gauge variable
previously developed by Hassan and de’ Medici [Phys. Rev. B 81, 035106 (2010)]. We consider
the instability of the Fermi liquid phases and how it is enhanced by the Hund’s rule. We identify
paramagnetic solutions that have zero quasi-particle weight with bad metallic phases, and the first-
order transition temperature between it and the Fermi liquid phase as a coherence temperature that
signals the crossover to the bad metallic state. When orbital anisotropy is present, we found an
intermediate transition to an orbital-selective bad metal (OSBM), where the narrow band becomes
a bad metal while the wide band remains a renormalised Fermi liquid. The temperatures Tcoh and
TOSBM at which the system transitions to the bad metal phases can be orders of magnitude less
than the Fermi temperature associated with the non-interacting band. The parameter dependence
of the temperature at which the OSBM is destroyed can be understood in terms of a ferromagnetic
Kondo-Hubbard lattice model. In general, Hund’s rule coupling enhances the bad metallic phases,
reduce interorbital charge fluctuations and increase spin fluctuations. The qualitative difference
found in the ground state whether the Hund’s rule is present or not, related to the degeneracy of
the low energy manifold, is also maintained for finite temperatures.

I. INTRODUCTION

One of the most interesting new ideas about quan-
tum matter from the last decade is that of a Hund’s
metal.1–4 This is a strongly correlated metal that can oc-
cur in a multi-orbital material as a result of the Hund’s
rule interaction J , that favours parallel spins in differ-
ent orbitals. While strong correlation effects are of-
ten associated with the proximity to a Mott insulating
state, it has become clear in recent years that the Hund’s
rule coupling (rather than the Hubbard U) is responsi-
ble for strong correlations in multiorbital metallic ma-
terials that are not close to a Mott insulator, such as
the iron-based superconductors,1,2 and ruthenates.5,6 Be-
sides the enhanced electron correlation, this new type
of strongly correlated system is characterised by local
high spin configurations with slow dynamics and selectiv-
ity of the electron correlations depending on the orbital
character.2,4,5 Hund’s coupling considerably reduces the
low-energy quasiparticle coherence scale, that results in
an incoherent metallic state with frozen local moments
in an extended temperature range above it, i.e., a bad
metal.

It has been shown that Hund’s rule has a conflicting
effect on the correlations of multiorbital systems. At in-
teger fillings, its modifies the critical interaction where
the metal-insulator transition (MIT) occurs, UMIT, de-
pending on the number of electrons per site,3,7 and re-
duces the temperature scale Tcoh above which a bad
metal is formed.2,8 In the one band Hubbard model,
this coherence temperature Tcoh is orders of magnitude
smaller than the bare energy scales of the system (U and
bandwidth W ) and signals the breakdown of the low-
temperature Fermi liquid (FL) picture and the crossover
to a bad metal state. Several other signatures of this

FL to bad metal crossover at Tcoh exist: the resistiv-
ity becomes of order of the Mott-Ioffe-Regel limit (h ae2 ∼
0.1mΩcm), an incoherent electron spectral function, a
collapse of the Drude peak in the optical conductivity and
a shift of the associated spectral weight to higher ener-
gies, the entropy and specific heat become of order kB per
particle, the NMR Knight shift dependence with the tem-
perature becomes consistent with a local-moments domi-
nated behaviour (Curie-Weiss), and sometimes there is a
nonmonotonic temperature dependence of the Hall coef-
ficient and thermoelectric power.9–18 Usually associated
with the proximity to a Mott MIT, it is interesting to
ask how and why the Hund’s rule interaction and orbital
degeneracy and character change this low-temperature
crossover and enhance the formation of bad metals.

When orbitals have different bandwidths or their de-
generacy is lifted by a crystal field, correlations can
affect each band differently. Some orbital-dependent
correlations have been investigated in theoretical cal-
culations for iron-based superconductors3,19–29 and
ruthenates.3,6,30–32 Hund’s rule decouples the orbitals,
enhancing such orbital differentiation,19,25,32,33 and an
extreme case occurs at T = 0 when some orbitals transi-
tion to a Mott phase while others remain metallic, lead-
ing to an orbital-selective Mott phase (OSMP).30–32,34–36
The two-band Hubbard-Kanamori model with unequal
bandwidths is the simplest model where a transition to
an OSMP occurs,30–32,35,37–40 and some earlier numer-
ical works using dynamical mean-field theory (DMFT)
explore its effects at finite temperature.34,37,38,41–44

Based on scanning tunnelling microscope (STM), re-
cent quasi-particle interference measurements of the nor-
mal state Fermi surface and superconducting energy
gaps on FeSe, give support to the idea that orbital-
selective strong correlations dominate the parent state
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of iron-based superconductors.45,46 Including these val-
ues of orbital-selective quasiparticle weights into a spin-
fluctuation pairing theory in a random-phase approxi-
mation (RPA) study, some of the authors of the previous
papers obtain an accurate description for the supercon-
ducting gap, indicating the key role of orbital-selective
Cooper pairing.45,47 And more recently a good agreement
in the calculated magnetic excitation spectrum with in-
elastic neutron scattering experiments in FeSe.48

Angle-resolved photoemission spectroscopy studies on
several iron-based superconductors show a temperature-
induced crossover from a metallic FL state at low tem-
perature with well-defined Fermi surfaces for all the
bands, to a phase where the dxy orbital loses spectral
weight with increasing temperature and the associated
Fermi surface dissapears. See Ref. 24 for results in
AxFe2−ySe2 (A = K, Rb); Ref. 29 for FeTe0.56Se0.44,
K0.76Fe1.72Se2 and FeSe grown on SrTiO3; Ref. 28 for
Fe1+ySexTe1−x (0 < x < 0.59); Ref. 49 for single
layer FeSe/Nb:BaTiO3/KTaO3; and Ref. 50 for LiFeAs.
These results indicate an orbital-differentiated coherent-
incoherent crossover, and are consistent with a scenario
of a Kondo-type screening determined by the strength
of the Hund’s rule coupling. Other experimental probes
also find a coherent-incoherent crossover, with signa-
tures of a bad metal behaviour: temperature depen-
dence of the Knight shift consistent with a Curie-Weiss
behaviour51 and strong temperature dependence of the
Hall coefficient52 in AFe2Se2 (A = K, Rb, Cs), and a
collapse of the Drude peak in the optical conductivity of
KFe2Se2, where spectral weight is transferred from low
to high energy.53

An important question concerns the extent to which
slave-particle mean-field theories can capture the stabil-
ity of the Hund’s metal and its properties, including the
emergence of a bad metal above some coherence tem-
perature, Tcoh. In the single-band Hubbard model, the
strongly correlated metallic phase that occurs in prox-
imity to a Mott MIT is associated with a small quasi-
particle weight and suppression of double occupancy, re-
flecting suppressed charge fluctuations. This is captured
by slave-boson mean-field theory, including the small co-
herence temperature.54,55 In contrast, the strongly cor-
related Hund’s metal is associated with suppression of
singlet spin fluctuations on different orbitals, without
suppression of onsite charge fluctuations, and is seen
with the Z2 slave-spin mean-field (SSMF) theory at zero
temperature.56–58 To the best of our knowledge, there is
no work studying an extension of this Z2 SSMF theory
to finite temperatures, but only using other variants of
the method.24,29,59–61

In this paper, we propose a finite-temperature imple-
mentation of the Z2 SSMF theory that is a natural ex-
tension of the T = 0 formulation,58,62 and we apply it to
the two-band Hubbard-Kanamori model at half-filling.
We explore the effects of the Hund’s rule J and orbital
anisotropy in the coherence temperature Tcoh, and the
inter-orbital spin and charge fluctuations. We also in-

0 0.1 0.2 0.3 0.4 0.5

J/U

0

0.004

0.008

0.012

0.016

T
/U

c
1

T
coh

T
OSBM

U/U
c1

 = 0.5 - W
2
/W

1
 = 0.4

 Bad
Metal

  Orbital
 Selective
Bad Metal

Fermi
Liquid

Figure 1. Phase diagram for T vs J/U . Stabilisation of the
orbital-selective bad metal by Hund’s rule interaction. The
system is at half-filling, the interaction strength is U/Uc1 =
0.5 and orbital anisotropy W2/W1 = 0.4.

vestigate the appearance of an orbital-selective bad metal
phase, where one band has incoherent quasiparticles, i.e.,
bad metal, while the other remains a FL. Fig. 1 shows the
phase diagram for T vs J/U for the two-band Hubbard
Kanamori model with different orbital bandwidths and
at intermediate interaction U , and summarises our main
result. The Hund’s rule interaction enhances the stabil-
ity of the orbital-selective bad metal phase, strongly re-
ducing the (first) coherence temperature TOSBM. It also
increases correlations, reducing the (second) coherence
temperature Tcoh, where the remaining metallic band be-
comes a bad metal. At T = 0, a transition from the FL
to an OSMP occurs at a critical value of the Hund’s cou-
pling J/U ' 0.12. In this way, even for low-J the system
is close to an orbital-selective Mott phase, and an in-
crease in temperature favours the OSBM phase. This
occurs even in the case of small anisotropy (see Fig. 7).

It is worth clarifying that previous SSMF studies at
T = 0 identify the slave-spin paramagnetic phase where
the quasiparticle weight is Z = 0 with a Mott insula-
tor phase, while it has been pointed out that beyond
the single-site approximation this might be an orthogo-
nal metal, a type of fractionalised non-Fermi liquid.63 In
our paper we use the single-site mean-field approxima-
tion (valid in the large dimension limit). Although our
results in the slave-spin paramagnetic phase can suggest
a complex behaviour (e.g., see Sec. III C), the temper-
ature dependence of this phase follows a simple thermal
activation of the atomic slave-spin states.

The organization of the paper is as follows: In Sec.
II, we describe the Hubbard-Kanamori model and SSMF
method. Details on the finite-T implementation are in
Appendix A. In Sec. III, we present our results for the
temperature dependence of the quasiparticle weight, co-
herence temperature, spin and charge fluctuations, phase
diagrams and entropy contributions. We identify the
first-order transition temperature where the quasipar-
ticle weight Z vanishes to the coherence temperature
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Tcoh associated with the crossover to a bad metal. The
behaviour of Tcoh is qualitatively different whether the
Hund’s rule coupling is present or not, as it is found for
the ground state and explained from the degeneracy of
the low energy manifold.31,58 We found that the change
of Tcoh when moving J/U occurs only through the mod-
ification of the zero-T critical interaction where the MIT
occurs, UMIT. When orbital anisotropy is present the
width of the two bands are unequals (i.e. W1 6= W2), and
we found that the Hund’s rule facilitates the first-order
transition from the FL to a state where the narrow band
quasiparticle weight vanishes. We identify this with a
crossover to an orbital-selective bad metal state and this
additional coherence temperature as TOSBM. Details on
the construction of the solutions and an analysis of the
atomic states are in Appendices B and C, respectively.

II. MODEL AND METHOD

A. Model Hamiltonian

Our starting point is the general multi-band Hubbard-
Kanamori Hamiltonian3 which describes interacting elec-
trons in No orbitals,

Ĥ = Ĥ0 +
∑
i

(
ĤU + ĤJ

)
− µ N̂ , (1)

where,

Ĥ0 =
∑
i6=j,σ
m,m′

tmm
′

ij ĉ†imσ ĉjm′σ +
∑
i,m,σ

εmn̂imσ , (2)

is the non-interacting term, and N̂ =
∑
i n̂i the total

number of electrons. As usual, ĉ†imσ creates an electron
with spin σ = ↑, ↓ at the site i = 1, . . . , Ns on the orbital
m = 1, . . . , No, and n̂i =

∑
m,σ ĉ

†
imσ ĉimσ is the occupa-

tion for the site i. The hopping matrix element tmm
′

ij

satisfies tmm
′

ij =
(
tm
′m

ji

)∗
, has no inter-orbital hybridis-

ation (tmm
′

ij = δmm′t
m
ij ), and we write out explicitly the

orbital energies (tmii = εm). The interaction terms are,

ĤU = U
∑
m

n̂m↑n̂m↓ + U ′
∑
m 6=m′

n̂m↑n̂m′↓

+ (U ′ − J)
∑

m<m′,σ

n̂mσn̂m′σ , (3)

ĤJ = − JX
∑
m 6=m′

ĉ†m↑ĉm↓ĉ
†
m′↓ĉm′↑

+ JP
∑
m 6=m′

ĉ†m↑ĉ
†
m↓ĉm′↓ĉm′↑ (4)

where we omit the site label i. The density-density term
ĤU involves the on-site Coulomb interaction between
electrons in the same orbital with opposite spins U , in

different orbitals with opposite spins U ′, and different
orbitals with parallel spins U ′−J ; while ĤJ involves the
spin-flip (JX) and pair-hopping (JP ) interactions.

The model has rotational symmetry whether one
chooses JX = JP = J and U ′ = U − 2J , or sets JP = 0,
JX = J and U ′ = U−J . Although the former case refers
to the physical Hamiltonian for t2g states, the choice
does not affect the results qualitatively and for simplic-
ity we use the latter set of parameters.3,64 We restrict
our results to the two band case (No = 2) at half-filling
(n1 = n2 = 1), each with orbital energy εm = 0, band-
width Wm and a semicircular density of states,

ρm(ε) =
8

π

1

W 2
m

√(
Wm

2

)2

− ε2 (m = 1, 2) . (5)

Several previous works studied the two-band model at
zero temperature with the slave-spin method, calculating
its different phases and its dependence with Hund’s cou-
pling, orbital anisotropy, crystal field splitting, orbital
hybridisation, and different fillings.32,33,58,62,64 We use
those results as a guide to benchmark our results when
T = 0, and focus on how J , U and the orbital anisotropy
W2/W1 affects the system at finite temperature.

Throughout the paper we use the one-band critical in-
teraction as the energy unit,

Uc1 ≡ −16 ε(T=0) =
16

3π
W1 , (6)

which is the only relevant energy scale for the one band
case at the mean field level.55 It depends only on the
zero-T uncorrelated kinetic energy ε(T=0), that we define
later on Eq. (15). An extension of this energy scale for
generic filling is U∗n = −16

n (2−n) ε(T=0).55

B. Slave-spin mapping

We use the slave-spin mean-field (SSMF)
method32,58,62,65 to study the finite temperature
behaviour of the Hubbard-Kanamori Hamiltonian (1).
This method involves a slave-particle representation
where we express the physical electron as a product
of a fermion and slave spin-1/2 operator, allowing a
rewriting of the Hamiltonian more suitable for further
mean-field approximations. Here the slave-spin states
“up” or “down” labels occupied or unoccupied electronic
states, respectively. Within this mapping, the ĉimσ
operators in the non-diagonal part of Ĥ0 are replaced
by,

ĉimσ = f̂imσ Ôimσ , (7)

where f̂imσ is an auxiliary fermion operator, and Ôimσ is
a generic slave-spin operator. Its general form is,

Ôimσ =

(
0 cimσ
1 0

)
, (8)
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with cimσ an arbitrary complex number that we can
tune after an approximation scheme to reproduce solv-
able limits of the problem. At T = 0 and single-
site mean-field level, a set of choices for this param-
eter that recover the physical solution in the uncorre-
lated limit U = U ′ = J = 0 and work for generic
filling,58,62 give interesting results and have been thor-
oughly tested against DMFT, slave-boson and Gutzwiller
approximations.19,27,32,33,56,58,62 However, it fails to sat-
isfy the non-interacting limit when used at finite tem-
perature. In this paper, we develop an extension of this
choice of (real) c-parameter suitable for finite tempera-
tures. Details of the calculation are in Appendix A.

For the application of the slave-spin mapping on the
other terms of the Hamiltonian (1), it is convenient to
rewrite the density-density Hamiltonian in a particle-hole
symmetric form. For this, we shift all the number oper-
ators in ĤU by 1/2, n̂imσ → n̂imσ − 1

2 . By doing this,
we only add a one-body term that shifts the chemical
potential, µ→ µ−E0, and a constant total energy shift,
Ĥ → Ĥ − NsNo

2 E0, where,

E0 =
U + U ′(No − 1) + (U ′ − J)(No − 1)

2
=

3U

2
− 3 J

2
,

(9)
for two bands and our choice of parameters. These dis-
placed number operators in ĤU have the same quantum
numbers and are mapped to the z-component slave-spins
operators, n̂imσ = Ŝzimσ. The electron number operators
that are not shifted by 1/2, i.e., those accompanying µ
and εm, are represented by the auxiliary fermion occupa-
tion operator, n̂imσ = n̂fimσ = f̂†imσ f̂imσ. Finally, ĤJ in
Eq. (4) mixes the Hilbert spaces of the f fermions and
slave-spins, and we use here the approximate mapping
ĉ†imσ = Ŝ+

imσ and ĉimσ = Ŝ−imσ, which has the correct
slave-spin quantum numbers and captures the spin-flip
and pair-hopping physics in that Hilbert space.32,58

Due to the increase in the size of the Hilbert space by
slave-particle methods, constraints must be introduced to
reproduce the physical states by the auxiliary ones. In
the slave-spin formulation we only need one constraint
equation per introduced slave-spin degree of freedom,
namely

f̂†imσ f̂imσ = Ŝzimσ +
1

2
. (10)

C. Mean-field approximation

Following Reference [58], we perform a mean-field
decoupling for each site between the fermionic and
slave-spin degrees of freedom, Ô†Ôf̂†f̂ ' 〈Ô†Ô〉f̂†f̂ +

Ô†Ô〈f̂†f̂〉 − 〈Ô†Ô〉〈f̂†f̂〉, followed by a single-site mean-
field in the slave-spin Ô operators, Ô†Ô ' 〈Ô†〉Ô +

Ô†〈Ô〉 − 〈Ô†〉〈Ô〉. The constraints in Eqs. (10) are in-
cluded through a Lagrange multiplier λimσ by adding
the term

∑
imσ λimσ

(
Ŝzimσ + 1

2 − n̂
f
imσ

)
to the Hamilto-

nian (1) . Finally, we assume translational invariance
(Ôimσ = Ômσ, λimσ = λmσ and tmij = tmRj−Ri

) and
paramagnetic solutions (〈Ôm↑〉 = 〈Ôm↓〉, λmσ = λm and
〈f̂†km↑ f̂km↑〉 = 〈f̂†km↓ f̂km↓〉).

After the mean-field approximations and assumptions,
the Hamiltonian separate into a Hamiltonian on non-
interacting fermions,

Ĥf =
∑
m,k,σ

(
Zm ε

(0)
m,k + εm − µ− λm

)
f̂†kmσ f̂kmσ , (11)

and a purely slave-spin single-site Hamiltonian Ĥs =
Ĥs

0 + Ĥs
U + Ĥs

J , with

Ĥs
0 =

∑
m,σ

(
h∗m Ômσ + hm Ô

†
mσ

)
+
∑
m

λm
∑
σ

(
Ŝzmσ +

1

2

)
,

(12)

Ĥs
U = U

∑
m

Ŝzm↑Ŝ
z
m↓ + U ′

∑
m 6=m′

Ŝzm↑Ŝ
z
m′↓

+ (U ′ − J)
∑

m<m′,σ

ŜzmσŜ
z
m′σ , (13)

Ĥs
J = − JX

∑
m6=m′

Ŝ+
m↑Ŝ

−
m↓Ŝ

+
m′↓Ŝ

−
m′↑

+ JP
∑
m6=m′

Ŝ+
m↑Ŝ

+
m↓Ŝ

−
m′↓Ŝ

−
m′↑ , (14)

where Zm = 〈Ô†mσ〉 〈Ômσ〉 is the hopping renormalisation
factor and the quasiparticle weight for the orbital m, and
hm = 〈Ô†mσ〉 ε

(m)
(T ) , with

ε
(m)
(T ) =

∑
j( 6=i)

tmij 〈f̂
†
imσ f̂jmσ〉 =

1

Ns

∑
k

ε
(0)
m,k 〈f̂

†
kmσ f̂kmσ〉

=

ˆ ∞
−∞

ε ρm(ε)nm(ε)dε (15)

the average electronic kinetic energy of the band m.
Here ε

(0)
m,k =

∑
j(6=i) t

m
ij e
−ik·(Rj−Ri) is the dispersion

relation of the uncorrelated m-orbital, ρm(ε) its bare
density of states, nm(ε) =

(
1 + eβ(Zmε+εm−µ−λm)

)−1
is

the Fermi function for the orbital occupation per spin,
and f̂imσ = 1√

Ns

∑
k e
−ık·Ri f̂kmσ is the Fourier trans-

form to the reciprocal space for the fermionic opera-
tors. For convenience, we take the parameter cimσ in
Ôimσ to be real, hence 〈Ômσ〉 =

√
Zm is real too, and

hm =
√
Zmε

(m)
(T ) .

58,62

The total Hamiltonian, without taking into account
the µ and energy shifts, is Ĥ = Ĥf +Ns Ĥs − 2NsEMF ,
where

EMF =
∑
j(6=i)
m,m′,σ

tmm
′

ij 〈Ô†imσ〉〈Ôjm′σ〉〈f̂
†
imσ f̂jm′σ〉

= 2
∑
m

Zmε
(m)
(T ) (16)
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is the energy per site of the hopping Hamiltonian at the
mean-field level. The free energy density is f = − 1

β lnZi,

with Zi = Tr
(
e−β

Ĥ
Ns

)
the partition function for one site,

f = − 2

β

∑
m

ˆ ∞
−∞

ρm(ε) ln
(

1 + e−β(Zmε−µ−λm)
)
dε

− 1

β
ln (Zs1) (17)

− 4
∑
m

Zm ε
(m)
(T ) .

The first line of Eq. (17) is due to the fermionic degrees
of freedom, the middle one is the slave-spin part with
Zs1 = Tr

(
e−β Ĥ

s
)
s
its one-site partition function, and

the bottom term is the mean-field energy of the hopping
term. By minimising f against the mean-field parameters
Zm and λm, we obtain the self-consistent equations,

Zm =
1

4 ε
(m)
(T )

〈
hm

(
Ôm↑ + Ôm↓ + Ô†m↑ + Ô†m↓

)〉
s
,

(18)

nm =
〈(

Ŝzm↑ + Ŝzm↓ + 1
)〉

s
, (19)

where 〈Â〉s = 1
Zs

1
Tr
(
Â e−βĤ

s
)
s
is the expectation value

calculated on the slave-spin Hilbert space, and is solved
by diagonalising the 16 × 16 matrix for the single-site
Hamiltonian Ĥs.

In the Appendix A we calculate the finite temper-
ature extension of the real choice of the c-parameter
for one band. We obtain a self-consistent equation
F(c, T, ε0, n0) = 0 that depends on the c-parameter, the
temperature T , the uncorrelated kinetic energy for one
band, i.e., ε0 = ε(T )|Z=1,λ=0, and the occupation number
of the band in the non-interacting limit n0. The SSMF
yields a non-zero Lagrange multiplier in the uncorrelated
limit, λ0,27,57,58 an unwanted behaviour that is solved
by shifting λ to satisfy the physical non-interacting limit
λ = 0. Previous works use a numerical calculation of λ0
to perform this shift. In our case, we obtain in Eq. (A5)
an analytic expression for λ0 that depends on c, ε0 and
n0, and use it throughout our calculations.

In the multiorbital case, the non-interacting limit is
just a set of uncoupled one-band systems, and each or-
bital m has its cm and λm,0 determined by T , ε(m)

0 , and
its non-interacting occupation number nm,0. For a fixed
temperature T and total occupation of the site nsite, the
iteration scheme used is: (i) calculate the non-interacting
chemical potential through nsite =

∑
m nm,0, and conse-

quently each orbital occupation nm,0 and kinetic energy
ε
(m)
0 (ii) set the value of cm using the self-consistent equa-
tion, and consequently the value of λm,0, and (iii) solve
the self-consistent Eqs. (18) and (19) for Zm and λm.

III. RESULTS

A. Isotropic case (W1 = W2)

1. Quasiparticle weight and coherence temperature

For fixed U , we show how increasing J drives the metal
close to the Mott insulating phase and reduces the co-
herence temperature. In the top of Fig. 2 we plot in
red the quasiparticle weight Z1 = Z2 = Z for half-filling,
U/Uc1 = 0.5 and vary J/U . In thin dotted lines we plot
the solutions with finite Z in the whole range of temper-
ature where they are found to exist. These solutions are
the ones that evolve continually from the zero-T results.
For each case, at T = Tcoh the free energy of this finite-Z
solution crosses with the one corresponding to the “triv-
ial ” solution with Z1 = Z2 = 0, and the later becomes
the stable phase for T > Tcoh. For a description of the
construction of the physical solution refer to Appendix
B. For T < Tcoh the quasiparticle weight is almost con-
stant, slightly decreasing with increasing T , and jump-
ing to zero at T = Tcoh. We identify this temperature
with the coherence temperature of the fermionic quasi-
particles, associated with the crossover to a bad metallic
state.

It is known that the effect of the Hund’s coupling in
multiorbital systems at half-filling is to increase correla-
tions, and increasing U and/or J reduce the values of Z
and Tcoh,3,7 enhancing the stability of the bad metal. But
the reduction in the coherence temperature is more pro-
nounced than the reduction in the quasiparticle weight,
showing that the reduction of Tcoh is not just due to band
renormalisation.55 We also add in blue the solution for
J = 0 and U/Uc1 = 0.62, that has the same quasiparticle
weight at zero-T as the U/Uc1 = 0.5 and J/U = 0.2 case.
A similar increase in correlations at T = 0, due to J or
U , gives a slightly different reduction of Tcoh. This differ-
ence decreases when correlations are stronger (bigger J
and/or U) and the system gets closer to a MIT, and we
can conclude that regarding Tcoh there is no big differ-
ence here between the increase of correlations through J
or U . Although, there is a qualitative difference between
the J = 0 and J > 0 case, that we discuss below.

In the bottom of Fig. 2 we plot the phase diagram
for temperature T vs interaction U and how it changes
with increasing J/U . The solid lines are the coherence
temperature Tcoh associated with the crossover to a bad
metal regime. We can see that the SSMF method obtains
a very low coherence temperature close to the Mott MIT,
as expected for strongly correlated materials. The inset
of Fig. 2 shows the same plot, but with U normalised
to its value at the metal insulator transition, UMIT. We
can see that the J = 0 case is qualitatively different from
those with finite J , whereas for the latter Tcoh becomes
independent of the particular value of J/U > 0, and only
depends on the relative position of U to its zero-T metal
insulator transition value. In other words, for two equal
bands Tcoh only depends on J/U through its effect on the
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Figure 2. Destruction of the Fermi liquid by Hund’s cou-
pling. Top: Quasiparticle weight for half-filling as a function
of temperature, with U/Uc1 = 0.5 (red) for different J/U . See
Appendix B for details in the construction of the physical solu-
tion. An increase in temperature from T = 0 slightly reduces
the quasiparticle weight Zm on each band, and at T = Tcoh
a first-order transition to the trivial state with Z = 0 oc-
curs. We identify the trivial solution with a bad metal state,
and Tcoh with the coherence temperature associated with the
crossover to the bad metal regime. Also in thin solid blue
line, we show the case U/Uc1 = 0.62 and J = 0 that is com-
parable to the U/Uc1 = 0.5 and J/U = 0.2 one. Bottom:
Phase diagram for temperature versus interaction. We plot
the coherence temperature Tcoh as function of the interaction
U , for different values of the Hund’s coupling J/U = 0.0,
0.1, 0.25 and 0.5. An increase in Hund’s coupling J increases
the correlations, driving the system closer to a MIT, signif-
icantly decreasing Tcoh, and enhancing the stability of the
bad metal state. Inset: Same plot with the interaction U
normalised with the value at the metal insulator transition
UMIT. The universal behaviour of Tcoh when varying J re-
flects that changes in the Hund’s rule interaction affect the
system only through UMIT.

zero temperature critical interaction UMIT.
It is useful to focus on the atomic configurations to

understand the difference between zero- and finite-J . A
detailed list of the atomic states and its energies is in
Appendix C. At half-filling, it is easy to check from Eqs.
(3) and (4) that the states with two electrons onsite have
the lowest atomic energy.31,33,64 For J = 0, this low
atomic energy sector is six-fold degenerate with energy

E = −2U , and has states with total spin per site S = 0
and S = 1. While for J > 0, this degeneracy is lifted into
the two different spin sectors, each of them now three-fold
degenerate. Here, the triplet S = 1 sector has the lowest
atomic energy, ES=1 < ES=0. This change in the degen-
eracy and total spin of the lowest energy manifold is the
causes of the different behaviour of the ground state for
J = 0 and J > 0,31,58 and consequently, cause the differ-
ent behaviour observed in this work at low temperature.

The sector next in energy is ES= 1
2
, which have

one/three electrons per site and is eight-fold degenerate.
For J/U < 1

3 we have that ES=0 < ES= 1
2
, but this in-

equality is reversed when J/U > 1
3 (see Fig. 14) and we

can expect a change in the finite temperature behaviour.
We find no qualitative change when J/U crosses this
value and, as discussed before, the quasiparticle weight
Z has an almost constant value for T < Tcoh. This tells
us that the effective temperature is much lower than any
energy scale of the system and, within this range of tem-
peratures the system lives mostly in the low energy man-
ifold.

2. Charge and spin fluctuations

The calculation of spin and charge fluctuations is help-
ful to clarify the different nature of the correlations,
either due to an increase of J or U .56 We remember
here that the occupation operator of the orbital m is
n̂m = n̂m↑ + n̂m↓ and the z-component of its physical
spin is 2 Ŝzm = n̂m↑− n̂m↓, and we use the constraint Eq.
(10) to write them in the slave-spin Hilbert space. The
transversal components of the physical spin Ŝ±m are also
easy to express in the local slave-spin basis. In this way,
in Fig. 3 we plot the on-site inter-orbital charge (top)
and spin (bottom) fluctuations, 〈n̂1 n̂2〉s−〈n̂1〉s 〈n̂2〉s and
〈4 Ŝ1 · Ŝ2〉s, respectively. Here Ŝm stands for the spin op-
erator of the orbital m on the site, (Ŝxm, Ŝym, Ŝzm).

Regarding the inter-orbital charge fluctuations (top of
Fig. 3), they are negative for T < Tcoh, as expected
for repulsive interactions in a FL. As it is known from
Mott physics, an increase of correlations localise elec-
trons on sites and suppresses charge fluctuations. But
again, the effects are different whether we increase cor-
relations through U or J .56 The increase of the Hund’s
coupling polarizes the spin on the site and increase the
energy gap between ES=1 and ES=0, restricting the sys-
tem to the S = 1 triplet configurations, and making the
inter-orbital charge fluctuations approach to zero. At
the transition T = Tcoh a jump to zero (for J > 0) at
the trivial solution occurs, where this state can be un-
derstood within the method as two flat bands interacting
each other through an effective ferromagnetic interaction.
On the other side, for J = 0, increasing correlations via
the Coulomb interaction U makes the inter-orbital charge
fluctuations of the FL phase approach to the value −1/3
(not shown in plot). We can understand this by noting
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Figure 3. Top: Inter-orbital charge correlations for half-
filling with U/Uc1 = 0.5, varying J/U . For T < Tcoh, increas-
ing J increases localisation, the system prefers to have one
electron per orbital, and the charge fluctuation approaches to
zero. At the transition T = Tcoh the charge fluctuations jump
to zero for J > 0. For J = 0 it jumps to −1/3, which is the
same limit value when U → UMIT (see main text). High tem-
perature limit for all the cases is zero (not shown). Bottom:

Inter-orbital physical spin fluctuations 〈4 ~̂S1 ·~̂S2〉, same param-
eters as above. For T < Tcoh, increasing J increases electron
localisation and polarise their spins (one electron per orbital

and fully parallel spins). The limit value 〈4 ~̂S1 · ~̂S2〉 = 1 is
achieved at the transition temperature T = Tcoh. For J = 0
there is no inter-orbital effective interaction and the corre-
lation between orbital spins is zero in the trivial state, at
T > Tcoh. High temperature limit for all the cases is zero
(not shown).

that, if we restrict ourselves to the six-fold degenerate
manifold, two states have 〈φ| n̂1 n̂2 |φ〉 = 0 and the other
four 〈φ| n̂1 n̂2 |φ〉 = 1, obtaining a total 〈n̂1 n̂2〉 = 2/3
that account for the value −1/3 in the charge fluctuation
quantity (see Appendix C). The next available states are
at an energy gap of ES= 1

2
−ES=0,1 = U

2 , and are accessi-
ble to the system through the hopping Hamiltonian. Fi-
nally, increasing U towards the MIT makes this gap big-
ger and the system more restricted to the lowest energy
manifold, where we shown that 〈n̂1 n̂2〉− 〈n̂1〉〈n̂2〉 = − 1

3 .
We can interpret the jump to −1/3 in the J = 0 line in
a similar way: the transition at T = Tcoh to the trivial
phase with Z = 0 cancels the effect of the hopping Hamil-
tonian, restricting the system to the lowest manifold and
obtaining the value −1/3 at low temperatures. When
increased further the temperature, at around T ∼ U/2

thermal transitions to other available states occur, mak-
ing the inter-orbital charge fluctuation to approach slowly
to zero (not shown in plot).

The spin fluctuations (bottom of Fig. 3) grow with
increasing J/U , as expected for the spin polarisation due
to Hund’s coupling. The value 1 is the correct limit for
the picture of a ground state lying in the ES=1 mani-
fold. Similar arguments as before apply for the transi-
tion to the trivial state for J > 0, where two flat bands
are coupled with J and have a low temperature value
〈4 ~̂S1 · ~̂S2〉 = 1. For J = 0 in the trivial state there are

no interactions between the spins and 〈4 ~̂S1 · ~̂S2〉 = 0. We
can say that for T > Tcoh there is a qualitative difference
in spin-triplet correlation between J = 0 and J 6= 0. Fi-
nally, further increase in the temperature washes out the
effect of J on the trivial states, and at high temperatures
we approach the limit 〈4 ~̂S1 · ~̂S2〉 = 0 (not shown in plot).

B. Anisotropic orbitals

We explore now the effect of the Hund’s coupling at
finite temperature when we have an orbital anisotropy,
W2/W1 < 1, i.e., the two bands have different widths.
We will see how an orbital-selective bad metal becomes
possible.

1. Quasiparticle weights, coherence temperatures and
fluctuations

In Figure 4 we show the quasiparticle weight for orbital
1 (solid lines) and 2 (dashed lines), where the bandwidth
anisotropy is W2/W1 = 0.8 and U/Uc1 = 0.5, for three
values of Hund’s coupling, J/U = 0.0, 0.2 and 0.4. Same
as before, the dotted lines show the different solutions
in the whole temperature range they are found, and we
set the different first-order transitions where the differ-
ent free energies crosses each other (see Appendix B).
The increase of correlations affects more to the narrow
orbital, as we can see from the stronger renormalisation of
Z2 when J increases. Although the orbital anisotropy is
mild, with J/U = 0.4 we find an intermediate transition
to a solution with Z1 > 0 and Z2 = 0. Following our pre-
vious interpretation, here the narrow orbital 2 transitions
to a bad metal state while the wide orbital 1 remains FL,
although it suffers a renormalisation in the quasiparticle
weight Z1. We call this phase an orbital-selective bad
metal (OSBM), and the transition temperature TOSBM.
Further increasing temperature, another first-order tran-
sition occurs at T = Tcoh, where the wide orbital 1 also
collapse and both bands are in a bad metal state. For
this value of the correlation U , an increase of J stabilizes
the OSBM phase.

The physics of this new phase is better understood
from the charge and spin fluctuations, which we show
in Figure 5. From top to bottom we have inter-orbital
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Figure 4. Hund’s rule coupling produces an orbital-selective
bad metal. Quasiparticle weights Z1 and Z2 for half-filling
and W2/W1 = 0.8, with U/Uc1 = 0.5. From top to bot-
tom, J/U = 0, 0.2 and 0.4. For J/U = 0.4 an intermediate
transition to an orbital-selective bad metal (OSBM) occurs at
TOSBM, where Z2 vanishes while Z1 is further renormalised.
After this transition the inter-orbital charge fluctuations van-
ish (c.f. Figure 5 top) while spin fluctuations increase (c.f.
Figure 5 bottom), in a similar manner to the first-order tran-
sition in the isotropic case.

charge, intra-orbital charge, and inter-orbital spin fluc-
tuations. In black, red and blue we show result for
J/U = 0.0, 0.2 and 0.4, respectively. Solid and dashed
lines in the middle plot refers to wide and narrow or-
bitals, respectively. For the inter-orbital charge fluctu-
ations (top) we have the same general behaviour as in
the isotropic case of the previous section. The new as-
pect is that for J/U = 0.4 the jump to zero occurs at
the transition to the OSBM phase, at TOSBM. This
means that charge movement between orbitals cancels
when the narrow orbital collapses. The narrow orbital is
completely localised in this phase, and interaction with
the FL of the wide orbital is only through the spins and
the Hund’s rule coupling. The intra-orbital charge fluc-
tuations 〈n̂2m〉 − 〈n̂m〉2 (middle) shows clearly that when
TOSBM < T < Tcoh the wide band is still metallic (solid
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Figure 5. Charge and spin fluctuations for n = 1, with
W2/W1 = 0.8 and U/Uc1 = 0.5. Black, red and blue are for
J/U = 0, 0.2 and 0.4, respectively. Top: Inter-orbital charge
correlations. Same as in the isotropic case, increasing J with
T < (Tcoh, TOSBM) increases electronic localisation, and the
charge fluctuation approaches to zero. In the OSBM phase
there are no charge fluctuation between orbitals (J/U = 0.4
for T > TOSBM). Middle: Intra-orbital charge fluctuations.
Solid (dashed) line refers to the wide (narrow) orbital. In the
OSBM phase the wide orbital has local charge fluctuations,
while no fluctuations of the charge in the other orbital oc-
curs. This means that in the OSBM phase the wide orbital
remains a metal with renormalised quasiparticles, while the
narrow orbital is fully localised. Bottom: Inter-orbital spin
fluctuations. An increase in spin fluctuations occurs when
transitioning to the OSBM phase.

blue line) while the narrow band has 〈n̂22〉 = 〈n̂2〉2. When
the transition to the OSBM phase occurs, Z2 = 0 and
the system is more restricted to the S = 1 triplet config-
uration, which explains the rise on the spin fluctuations
(bottom). The non-interacting limit (U = J = 0) for
these qunatities are: 0 for the inter-orbital, 0.5 for the
intra-orbital, and 0.25 for the inter-orbital spin fluctua-
tions.
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Figure 6. Phase diagrams for T vs U/UMIT, for different
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lines, respectively. For simplicity, OSBM phase regions are
shaded grey. Red arrows mark U = 0.5Uc1 on each case.
In addition to the strong reduction of the critical interaction
UMIT for finite J , Hund’s coupling enhances the strong in-
teraction OSBM region and diminishes the weak interaction
OSBM region.

2. Phase diagrams

We now consider how the transition temperatures to
the bad metal (Tcoh) and the orbital-selective bad metal
(TOSBM) vary as a function of the interaction strenghts U
and J . In Figure 6 we plot forW2/W1 = 0.8 and different
values of J/U , the phase diagram for temperature T vs
interaction U . The transition temperatures TOSBM and
Tcoh are in blue and black, respectively, and the OSBM
regions are shaded in grey. The first thing to notice is
the appearance of an OSBM region at weak U , which can
be related to a weak inter-band coupling. The increase
of J/U reduces even further the inter-band coupling (U ′
and U ′ − J), and the low-U OSBM region shrinks. Also,
a high-U OSBM region appears for finite-J , which is the
OSBM phase seen in Figs. 4 and 5 when J/U = 0.4. This

region does not exist when J = 0 and gets enhanced
with increasing Hund’s rule coupling. We have now a
more complete picture of how the Hund’s rule coupling
enhances the OSBM phase, as discussed in the previ-
ous section, seen from two main effects: (i) the growth
of the high-U OSBM region with increasing J , and (ii)
the increase of correlations due to J that strongly reduce
UMIT and shift the OSBM region over the U = 0.5Uc1
point. Similar to the inset in Figure 2 there is a qual-
itative difference between J = 0 and J > 0 when U is
normalised with UMIT (not shown in the plot), i.e., the
Tcoh vs U/UMIT lines for J > 0 superpose each other and
are different than the J = 0 case.

In Figure 7 we plot for U/Uc1 = 0.5 and different
values of W2/W1, the phase diagram for temperature
T vs Hund’s coupling J/U . The transition tempera-
tures TOSBM and Tcoh are in blue and black, respectively.
The inset in W2/W1 = 0.6 is an enlargement of the low
J/U part. An increase in anisotropy enhance the region
where an OSBM phase exist, and an increase in J/U
favours this phase when anisotropy is present. The Tcoh
vs J/U line when an OSBM phase is present at lower
temperatures is always the same, disregarding the value
ofW2/W1. When entering the OSBM region, the narrow
orbital becomes flat (Z2 = 0) and electron localise, while
the wider orbital remains itinerant and interact with the
full electron spin of the former through the Hund’s cou-
pling. Considering the low energy physics of this phase
the interaction U ′ cancels, and the effective Hamiltonian
for the system is a ferromagnetic Kondo lattice with an
additional Hubbard interaction (U) in the wide band.38
In this sense, the coherence temperature Tcoh is a Kondo
temperature TK which does not depend on W2 (dashed
line in Fig. 7).

C. Entropy analysis

An interesting question is about how much of the tem-
perature dependence of the entropy of the system can
be captured by the SSMF method. The slave-spin map-
ping (7) increases the Hilbert space by the incorporation
of a spin- 12 degrees of freedom for every fermionic one,
expanding it from a 16-dimensional to a 162-dimensional
one. The constraint (10) removes any possible unphysical
states, making the mapping exact. But at the mean-field
level, we impose the constraint only on average, allowing
the participation of unphysical states and more specif-
ically their contribution to the entropy. This is seen
easily in the high temperature behaviour of the solid red
lines in Figs. 8 and 9, where we plot the total entropy,
incorporating all the degrees of freedom of the method.
The entropy (per site) is calculated using the thermody-
namic relation

s(T ) = β (u− f) (20)
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Figure 7. Stabilisation of the OSBM with increasing J and
W2/W1. Phase diagrams T vs. J for U/Uc1 = 0.5 and differ-
ent anisotropies. For W2/W1 < 1 exist a critical Jc where for
J > Jc and increasing temperature, the system goes a first-
order transition at TOSBM (blue) toward an OSBM phase that
is stable up to Tcoh. At Tcoh (black) the quasiparticle weight
of the wide band vanishes, and we have a bad metal in both
bands. In the OSBM phase the narrow orbital is localised,
in a high spin configuration, and no charge fluctuations be-
tween orbitals are present. The effective model of the system
is a metallic band coupled to a localised band through only
a spin-spin interaction, i.e., a ferromagnetic Kondo-Hubbard
problem. This manifests in the fact that the Tcoh curves that
are above in temperature to an OSBM phase become inde-
pendent of the anisotropy, and has a decay that depends ex-
ponentially with the coupling J . We plot this temperature
TK with a dashed line for W2/W1 = 1, 0.8 and 0.6, while for
W2/W1 = 0.4 it coincide with Tcoh (black solid).
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Figure 8. Entropy for the isotropic case with J = 0. In red,
blue and green we plot the total, fermionic and slave-spin
entropy, respectively. Left: For T < Tcoh the slave spin con-
tribution is very small, and the fermionic degrees of freedom
contribute almost all of the total entropy. Right: For High-
T , each of the 16-dimensional subspaces (fermions/slave-spin)
reach the corresponding value ln(16). The total entropy re-
flects the expansion of the Hilbert space to 162 degrees of free-
dom per site and the approximation in the implementation of
the constraint. Dashed green line is the slave-spin contribu-
tion to the entropy at the trivial solution for J/U = 0.4.

where f is the free energy calculated in Eq. (17), and
u = 1

Zi
Tr
(
Ĥ
Ns

e−β
Ĥ
Ns

)
is the internal energy. The de-

coupling of the fermionic degrees of freedom from the
slave-spin ones at the mean-field level allows us to sepa-
rate their contribution explicitly. In the free energy, the
first, second and third lines of Eq. (17) are due to the
fermions, the slave-spins and the hopping mean-field en-
ergy (ENF), respectively. The same occurs for u, and we
can separate the entropy in the fermionic and slave-spin
contributions, s = sf + sss, which are the blue and green
lines, respectively, in Figs. 8 and 9.

Solid lines in Fig. 8 shows the isotropic case with
W2 = W1 and no Hund’s coupling. In the FL phase (left),
for T < Tcoh, we can see that the slave-spin contribution
(green) is very small, which supports the atomic picture
that the energy gap between the ground state and the low
energy excitations is larger than the temperature scale
in this range. The linear behaviour of the total entropy
(red) in the FL phase is all due to the fermionic contribu-
tion (blue), whose physics is that of the free electrons in
a renormalised band. For T > Tcoh we are in the trivial
phase with Z = 0. Looking at the fermionic part of the
free energy, we can think of Z as a renormalisation factor
for the inverse temperature β = 1

T , and the trivial phase
as the free fermion gas being in the infinite temperature
limit with an entropy of sf = ln(16). For the slave-spin
contribution, the transition to the trivial state makes the
entropy jump to ln(6) ≈ 1.8, for J = 0 (solid green),
and to ln(3) ≈ 1.1, for finite J (dashed green). Here, the
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Figure 9. Entropy for the anisotropic case where the
OSBM phase occurs. In red, blue and green we plot the
total, fermionic and slave-spin entropy, respectively. Left:
For T < Tcoh the slave spin contribution is very small, even
when the OSBM phase occurs and Z2 = 0. In this case,
the fermionic degrees of freedom contribute almost all of the
total entropy in the FL and OSBM phase. Right: For High-
T , each of the 16-dimensional subspaces (fermions/slave-spin)
reach the corresponding value ln(16). The total entropy re-
flects the expansion of the original Hilbert space to 162 de-
grees of freedom per site and the approximated treatment of
the constraint.

transition to Z = 0 vanishes the hopping terms between
atomic states, and the system is restricted to the man-
ifold where the ground state lives, which is six-fold and
three-fold degenerate for J = 0 and J > 0, respectively
(see Appendix C). As expected, at T = U/2 = Uc1/4
other atomic states start to be accessed by thermal fluc-
tuations and the slave-spin entropy approaches ln(16) as
T is increased further.

In Fig. 9 we plot the same quantities for the case
when an OSBM occurs. We have the same behaviour
as for Fig. 8 respecting the FL phase (T < TOSBM)
and the trivial phase (T > Tcoh). For the intermediate
OSBM phase, the narrow orbital collapse, Z2 = 0, while
the wide one remains metallic. This explains the ln(4)
jump in the fermionic entropy (blue), where the narrow
orbital behaves as a free fermion gas (Z2 = 0 implies
infinite-temperature behaviour in orbital 2). The slave-
spin contribution starts to grow in the OSBM phase, but
it remains very small.

IV. CONCLUDING REMARKS

In conclusion, we have used the Z2 slave-spin mean-
field method to study the two-band Hubbard system at
finite-temperature in the presence of Hund’s rule cou-
pling and band anisotropy. We have developed a finite-T
extension of the single-site approximation of the zero-
T formulation, that reproduces the physical limit for

the uncorrelated case. We have identified the temper-
ature where the first-order transition between finite-Z to
Z = 0 solutions occurs with the coherence temperature
Tcoh that signals the crossover to a bad metal regime
with incoherent quasiparticles. When orbitals have dif-
ferent bandwidths, we have found a first-order transition
to a phase where the quasiparticle weight of the narrow
band vanishes (Z = 0), the orbital-selective bad metal
phase. This intermediate phase between FL and bad
metal phases is enhanced by the Hund’s rule coupling,
and its behaviour with a further increase in temperature
can be related to a ferromagnetic Kondo-Hubbard lat-
tice model.38 As expected, an increase in the Hund’s rule
coupling increase correlations, reducing the interorbital
charge fluctuations, but increases the interorbital spin
fluctuations. We highlight the qualitative difference be-
tween the J = 0 and J > 0 case, noting that it can be
understood in term of the energy and degeneracy of the
low-energy atomic configurations.

V. FUTURE DIRECTIONS

From the point of view of the method, there are sev-
eral improvements to the single-site SSMF that could be
explored. The freedom on the phase of the c-parameter
allows exploration of the effects of using a complex quan-
tity. Also, a complex c-parameter becomes mandatory
when performing a cluster mean-field approximation on
the model.62 Other studies that utilise different slave-spin
variants use the Schwinger boson representation to solve
the quantum slave-spin Ising model,23,66 or construct a
path-integral formulation that allows to perform Gaus-
sian corrections to the single-site mean-field.67 Recent
calculations benchmark a variant of the Z2 SSMF against
the two-site Hubbard model, showing that slave-spin
methods reproduce the exact behaviour of the ground
state at half-filling, but also that special care has to be
taken when moving away from the particle-hole symme-
try, in which case the unphysical states have a big impact
on the results.61 Also, in a recent work a general formal-
ism for slave-spin has been introduced68 that reproduces
the holon-doublon peak found in the two-band Hubbard
model with accurate DMFT calculations.69

An interesting question to investigate in the future is to
what extent the increase in the number of orbitals mod-
ifies the stability of the different phases of the Hund’s
metal at finite temperature. It is suggested that the
Hund’s physics is more pronounced with increasing the
number of orbitals.56 For three orbitals or more, the
Hund’s rule acts for some commensurate fillings in an
antagonistic “Janus-faced” manner, driving the system
away from the Mott insulating phase while making the
metallic phase more correlated.3,7 DMFT with numeri-
cal renormalisation group calculations in the three-band
model with two electrons (1/3 filling) show that spin-
orbital separation is a generic feature of these systems,
and that spin screening occurs at a much smaller energy
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scale than orbital screening or any other bare atomic exci-
tation scale.70–72 In a future study, we plan to extend the
finite temperature SSMF method to more orbitals and
away from half-filling (especially conmensurate fillings),
investigating how Tcoh is modified by Hund’s rule and the
number of orbitals, the “Janus-faced” behaviour, spin-
orbital separation, and the “spin-freezing” crossover.5,7

Our results show qualitative agreement with fi-
nite temperature DMFT calculations in the two-band
model,34,37,38,41–44 and future DMFT calculations should
provide more precise test for our predictions, in particular
the appearance of an OSBM phase and its dependence
on J and orbital anisotropy. DMFT calculations with
realistic band structures find that the coherence temper-
ature is different for different bands in Sr2RuO4,6 and
support the result of a temperature-induced coherent-
incoherent crossover found experimentally in LiFeAs50
and KFe2Se2.53 A systematic study of the coherent-
incoherent crossover should be done regarding the dif-
ferent signatures of bad metallic behaviour, such as: a
very small crossover temperature (compared with other
bare energy scales), an increase of resistivity with tem-
perature to rather large values, an orbital-selective de-
pletion of the spectral weight, and the partial collapse of
the Drude peak in the optical conductivity along with the
transference of that spectral weight to higher frequencies.
Moreover, STM measurements of quasi-particle scatter-
ing interference should show a significant temperature de-
pendence near the crossover to the orbital-selective bad
metal.
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Appendix A: Finite temperature gauge parameter

For zero temperature, Hassan and de’ Medici calcu-
lated in Ref. [62] a choice for the parameter c in the one
band case. At the one-site mean-field level and restrict-
ing to real numbers, the expression c = 1√

n
2 (1−n

2 )
− 1

reproduces the uncorrelated limit with Z = 1, and only
depends on the occupation number n of the band.58,62

We follow the steps and notation of Appendix A of Ref.
[62], and extend the calculations to finite temperatures,
obtaining for the expectation values of Ŝz and Ô,

〈Ô〉 =− c a∗ + a

2R
tanh (β R) (A1)

〈Ŝz〉 =− λ

4R
tanh (β R) , (A2)

where a = h+c h∗ and R =
√

λ2

4 + |a|2. These quantities
have to satisfy the self-consistent equations Z = 〈Ô†〉 〈Ô〉
and 〈Ŝz〉 = n

2 −
1
2 . Assuming a real c, we have h =

√
Z ε

and a =
√
Zε (1 + c), leading to the coupled equations,

tanh (β R)

2R
=

1

−ε (1 + c)
2 =

1 + n

λ
. (A3)

In the uncorrelated limit U = 0 we set the physical solu-
tion Z = 1, and we determine the c parameter by solving
the equation,

tanh

(
β
−ε0 (1 + c)2

2

√
(1− n0)2 +

4

(1 + c)2

)

=

√
(1− n0)2 +

4

(1 + c)2
. (A4)

Also, the Lagrange multiplier is,

λ0 = −ε0 (1− n0)(1 + c)2 . (A5)

Here, the subscript “0” refers to the calculation of quan-
tities in the uncorrelated limit and at temperature T ,
i.e., using the occupation n(ε) =

(
1 + eβ(ε+εm−µ)

)−1
,

where the omission of λ in n(ε) relates to the physical
limit. The SSMF yields a non-zero λ in the uncorre-
lated limit,27,57,58 an unwanted behaviour that is solved
by shifting λ to satisfy the physical non-interacting limit
λ = 0. Previous works use a numerical calculation of
λ0 to perform this shift. Here, for each temperature, we
solve first Eq. (A4), then use the analytic formula (A5),
and insert the shifted quantity λ − λ0 throughout the
calculations.

The parameter c and the shift λ0 depend now on the
occupation n0, but also on the temperature T and the
non-interacting kinetic energy of the electrons ε0 (which
exclusively depends on the filling and the shape of the
bare density of states). It is easy to check that Eq. (A4)
recovers the known formula for c at T = 0, and also
that λ0(T = 0) = −4 ε0

1−n
n (2−n) . Also, at half-filling, we

recover the physical value λ0 = 0, for all temperature.
With the use of the parameter c obtained from Eq.

(A4), Z = 1 satisfy the one-band self-consistent equa-
tions at any temperature when U = 0. For the applica-
tion to multiband systems, we use the same approach as
for one band. The non-interacting limit is just a set of
uncoupled one-band systems, and each orbital m has its
cm and λm,0 determined by solving Eq. (A4) and (A5)
for a particular T , occupation number nm,0 and kinetic
energy ε(m)

0 .

Appendix B: Construction of the physical solution

For the construction of the physical solutions, we ex-
plore the family of solutions to the self-consistent Eqs.
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Figure 10. Construction of the physical solution in the
isotropic case. Top: Several solutions to the self-consistent
Eqs. (18) and (19) for the isotropic case W2 = W1 and
J/U = 0 and 0.2. Bottom: The corresponding free energy
value of each solution (same colours used). The temperature
where each finite-Z solution free energy crosses the Z = 0 one
is the corresponding Tcoh (dotted lines). The solutions shown
in the main text are constructed by concatenating the solu-
tions with the lower free energy on each temperature range.

(18) and (19). We have to remember that these solutions
extremise the free energy (as a function of the mean-field
parameters), but we still need to choose the solution that
minimises it at each temperature. As an example, in Fig.
10 we show the construction of the physical solutions of
Fig. 2 corresponding to J/U = 0.0 and 0.2. On the
top, we show the family of solutions for each case, be-
ing the solution with finite Z1 = Z2 and the one with
Z1 = Z2 = 0. The dotted lines show the temperatures
at which the free energy of the Z = 0 solution becomes
lower than the free energy for Z > 0 (bottom), signalling
a first-order transition from the later to the former.

The same method is used when we have orbital
anisotropy, obtaining this time a larger family of solu-
tions of the self-consistent equations, as we can see on
top of Fig. 11. Here, each colour means a different so-
lution, and solid and dashed lines state for Z1 and Z2,
respectively. Again, dotted lines mark the temperatures
where a first-order transition occurs between black and
red solutions, and red and orange (trivial) ones. The red
solution, where Z1 remains positive but Z2 = 0, is what
we call the orbital-selective bad metal (OSBM) phase.

1. Limitations of the method

We know that this method has limitations for the non-
interacting limit U = J = 0, which we discuss first in
the interacting case of Fig. 11 for simplicity. The total
free energy of Eq. (17) is the quantity minimised to find
the final solution on each case, where the gradient is zero
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Figure 11. Construction of the physical solution in the
anisotropic case. Each colour is a different solution. Top:
Several solutions to the self-consistent Eqs. (18) and (19)
for W2 = 0.8W1, U = 0.5Uc1 and J = 0.4U . Solid and
dashed lines are Z1 and Z2, respectively. Bottom: The cor-
responding free energy value of each solution (same colours
used). Two transition temperatures exist in this case, namely
TOSBM and Tcoh. The former signals the first-order transition
to the OSBM red solution, while the latter the transition to
the Z1 = Z2 = 0 trivial state (orange). The solutions shown
in the main text are constructed similarly to the isotropic
case, concatenating those with the lower free energy.

and f has a minimum value. In the general case, we can
separate this free energy as f = ff + fs, where

ff = − 2

β

∑
m

ˆ ∞
−∞

ρm(ε) ln
(

1 + e−β(Zmε−µ−λm)
)
dε− EMF

(B1)

fs = − 1

β
ln (Zs1)− EMF . (B2)

Here, the fermionic part (B1) corresponds to the free
energy of non-interacting fermions where each band has
a bandwidth Z ×W . The quantity EMF shift the zero
energy level to the Fermi surface. The Z1 = Z2 = 0
solution corresponds to a non-interacting flat band with
f = −T ln(16), while any increase in the renormalisa-
tion Zm adds dispersion to the bands and increases the
value of the free energy (top of Fig. 12). Because of
the slave-spin mapping, all the complexity of the original
model goes exclusively into the slave-spin Hamiltonian,
Eqs. (12-14). In this sense, the transition between solu-
tions are driven by the slave-spin contribution, as we can
see in the middle of Fig. 12. The effect of the fermionic
contribution ff to the total free energy f is to reduce the
transition temperatures observed in the slave-spin con-
tribution fs (bottom of Fig. 12).

Regarding the non-interacting limit U = J = 0, shown
in Fig. 13, even though the slave-spin free energy con-
tribution for the Z = 1 solution is lower than the fs for
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Figure 12. Different contributions to the total free energy.
For W2 = 0.8W1, U = 0.5Uc1 and J = 0.4U , we plot the
fermionic (top), slave-spin (middle), and total (bottom)
free energy (see main text). We use the same colours as
in Fig. 11 for the three solution with the lowest free en-
ergy: renormalised Fermi liquid with Z1 and Z2 finite (black),
OSBM with Z1 finite and Z2 = 0 (red), and bad metal with
Z1 = Z2 = 0 (orange).
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Figure 13. Different contributions to the total free energy in
the non-interacting, isotropic case. (top) fermionic contribu-
tion, (middle) slave-spin contribution, and (bottom) total
free energy. The slave-spin contribution to the free energy for
the Z = 1 solution is lower than the corresponding to Z = 0
for all temperature. The addition of the fermionic contribu-
tion ff to obtain the total free energy results in a crossing of
the free energy of both solutions.

Z = 0 at all T , the opposite effect on the fermionic con-
tribution ff results in an unphysical crossing between the
total free energy of the Z = 1 and Z = 0 solutions at a
finite temperature.

Table I. Atomic states in absence of hopping hybridization,
with its corresponding energy, electron number and total spin
per site. Different colour clusters same energy states, and
correspond with the colours used in Fig. 14. Last column list
the energy at half-filling (h-f) for the atomic states.

State n1+n2 Total spin Energy Energy (h-f)
| O1; O2〉 0 0 0 0
| ⇑1; O2〉
| ⇓1; O2〉 1 1

2 0− µ − 3U
2 + 3 J

2
| O1;⇑2〉
| O1;⇓2〉
| ⇑⇓1; O2〉
| O1;⇑⇓2〉 2 0 U − 2µ −2U + 3 J

|⇑1;⇓2〉−|⇓1;⇑2〉√
2

| ⇑1;⇑2〉
| ⇓1;⇓2〉 2 1 U − 2 J − 2µ −2U + J

|⇑1;⇓2〉+|⇓1;⇑2〉√
2

| ⇑⇓1;⇑2〉
| ⇑⇓1;⇓2〉 3 1

2 3U − 3 J − 3µ − 3U
2 + 3 J

2
| ⇑1;⇑⇓2〉
| ⇓1;⇑⇓2〉
| ⇑⇓1;⇑⇓2〉 4 0 6U − 6 J − 4µ 0

0 1/3 1/2 2/3 1J/U
-2

-3/2

-1

-1/2

0

En
er
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 [U

]
n = 0, 4
n = 1, 3
n = 2 ( S = 0 )
n = 2 ( S = 1 )

(2)

(8)

(3)
(3)

Figure 14. Dependence of the energies of the atomic con-
figurations in function of J/U . The numbers in parentheses
denotes the degeneracy of the state. For J = 0 we can see that
the S = 0 and S = 1 sectors are degenerated. This degener-
acy is lifted as soon as J becomes finite, and the S = 1 sector
becomes the lowest in energy. The next in energy states are
those corresponding to the S = 0 sector for 0 < J < U/3, and
those corresponding to the total spin S = 1

2
for U/3 < J < U .

Appendix C: Atomic states of the two-band system

We can achieve a good understanding of the physics
underlying the system by looking at the possible atomic
states and its energies, i.e., the eigenstates of the local
Hamiltonian terms, ĤJ+ĤU−µ (n̂1+n̂2). Using Eqs. (3)
and (4), and the known value of the chemical potential
at half-filling µ = E0 = 3U

2 −
3 J
2 , we show in Table I

the energy and total spin of these states. We colour the
states in four groups regarding their atomic energies and
plot its evolution with J/U in Fig. 14. Here the energy
is in units of U , and we also write in parentheses the
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degeneracy of each energy state. For J = 0 the lowest
(atomic) energy states live within the six-fold manifold
involving the S = 0 and S = 1 sectors, while a finite
J lifts this degeneracy into the two spin sectors, making
the S = 1 triplet the lowest energy sector.64 This change
in the degeneracy of the lowest energy sector whether

J = 0 or J > 0 change qualitatively the behaviour of the
ground state,31,58 and is expected to also affect the low
temperature properties. Another relevant energy scale
can be J = U

3 , where the energy of the S = 0 and S = 1
2

sectors crosses, signalling a possible qualitative change in
the low energy excitations.
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