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Abstract
Wheat is the main staple crop and an important commodity in the Mediterranean and the Middle East. These are among the few
areas in the world where the climate is suitable for growing durum wheat but also are among the most rapidly warming ones,
according to the available scenarios of climate projections. How much food security and market stability in the Mediterranean
and the Middle East, both depending on wheat production and its interannual variability, are going to be compromised by global
warming is an overarching question. To contribute in addressing it, we use a recently established indicator to quantify crop
production climate resilience. We present a methodological framework allowing to compute the annual production resilience
indicator from nonstationary time series. We apply this approach on the wheat production of the 10 most important producers in
the Mediterranean and the Middle East. Our findings shows that if no adaptation will take place, wheat production reliability in
the Mediterranean and the Middle East will be threatened by climate change already at 1.5 °C global warming. Average climate-
related wheat production losses will exceed the worst past event even if the 2 °C mitigation target is met. These results call for
urgent action on adaptation to climate change and support further efforts for mitigation, fully consistently with the Paris
Agreement recommendations.
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Introduction

Wheat originated approximately 10,000 years ago in the
Fertile Crescent in Western Asia, and it was the main
staple crop that accompanied the birth of Western civili-
zation there (Preece et al. 2017) and in the Mediterranean,
where the structural importance of wheat in building so-
cial resilience has been demonstrated (White 2011;
Xoplaki et al. 2018). Durum wheat is a species of wheat
mainly grown in the Mediterranean region nowadays
(Rharrabti et al. 2001; Nazco et al. 2014; Royo et al.
2014; Guzmán et al. 2016; Tidiane Sall et al. 2019).

Durum wheat flour is characterized by higher protein con-
tent than soft wheat, stronger gluten, lower glycemic in-
dex, and longer durability, which are all essential proper-
ties to make pasta (Nazco et al. 2014). As such, durum
wheat provides important cultural and commercial bene-
fits to the Mediterranean region, but it may be seriously
threatened by climate change. Climate model simulations
project that the ancient “Fertile Crescent,” where durum
wheat was originated, will disappear in this century
(Kitoh et al. 2008). Furthermore, evidences of recent cli-
mate events with serious social implications have been
already observed in the Eastern Mediterranean (Kelley
et al. 2015). Whether this trend will affect the entire
Mediterranean regions is an alarming open question.

The Mediterranean and Middle East wheat production is
tightly coupled with climate variability and is largely affected
by the occurrence of heat waves and droughts (Royo et al.
2014; Fontana et al. 2015; Guzmán et al. 2016; Zampieri
et al. 2017). Heat waves and droughts are projected to increase
in future climate (Dosio et al. 2018; Naumann et al. 2018),
threatening the general food production and security (Cramer
et al. 2018; Tebaldi and Lobell 2018a, b).
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This study addresses wheat production in countries in the
Mediterranean region and the Middle East. These regions are
usually characterized by sparse natural vegetation (Zampieri
and Lionello 2010) and dry summers that are typical of the so-
called Mediterranean climate (i.e., Köppen classifications Csa
and Csb, warm temperate climate with dry summer; Kottek
et al. 2006). We here focus on the top ten wheat producers
characterized by Mediterranean climate including Egypt,
where irrigation is used to alleviate the effects of a dry climate
along the Nile, allowing the wheat cultivation. Despite the
scarcity of detailed data on durum wheat production for all
the countries in the region, it is well established that durum
wheat represents a large proportion of the total wheat grown in
these countries (Royo et al. 2014; Tidiane Sall et al. 2019).
Contrarily, soft wheat is the most common wheat species pre-
dominantly cultivated in cooler climates.

We quantify the wheat production losses due to drought
and heat stress using a statistical method linking the observed
climate anomalies to the official production data recorded by
the Food and Agriculture Organization (FAO) for the top ten
wheat producing countries in the Mediterranean and the
Middle East. For these countries, we estimate the climate-
related wheat production losses at different global warming
levels using high-resolution climate model simulations. We
interpret the results in terms of the recently defined crop pro-
duction resilience indicator (Zampieri et al. 2019c, d), which
we further develop in order to be applicable to the nonstation-
ary time series characterizing observed and projected crop
production data.

Data and methods

Wheat production in theMediterranean and the Middle East is
dominated by Turkey with more than 20 million tons
(FAOSTAT average 2008–2017; Fig. 1). Italy – the country
that is most famous for pasta – is ranked at the fourth position,

with 7.5 million tons of wheat produced on average in the
period 2008–2017. We note that this selection excludes
France, which is the largest European wheat producer. This
choice is motivated by the fact that French production is most-
ly located north of the country, where the climate is no longer
Mediterranean, and mainly attributable to soft wheat varieties
(Ceglar et al. 2016). In Northern France, in fact, wheat pro-
duction is more sensitive to overwet conditions (Zampieri
et al. 2016; Ben-Ari et al. 2018) rather than droughts as typi-
cally occurs in the Mediterranean countries growing durum
wheat (Royo et al. 2014; Fontana et al. 2015; Dettori et al.
2017; Dixit et al. 2018).

It is worth noting that the production statistics reported by
FAOSTAT do not distinguish among the different wheat spe-
cies. However, the countries here analyzed are among the
main durum wheat producers in the world (Royo et al. 2014;
Tidiane Sall et al. 2019). Therefore, we can assume that the
links we find between the reported wheat production and the
climate anomalies represented by heat stress and drought are
the best current estimates achievable for durum wheat at the
country level using a statistical approach.

In order to quantify the links between climate and wheat
production variability, we adopt a statistical model defined as
a calibrated combination of heat and water stress indicators,
i.e., the Combined Stress Index (CSI; Zampieri et al. 2017).
The CSI has been widely used to estimate the effects of cli-
mate anomalies on crop yields anomalies in current climate
(Zampieri et al. 2017, 2018, 2019b); it was applied in the
context of seasonal forecasting (Ceglar et al. 2018) and in
economical modeling (Chatzopoulos et al. 2019). The CSI
procedure was further developed to quantify crop optimal
production and the climate-related losses from the recorded
crop production data available at the country level and to
estimate the future production losses according to climate pro-
jections (Zampieri et al. 2019a).

Here we apply the most recent version of the CSI procedure
computing the heat and water stress indicators over wheat
fields (Fig. 2) using climate data derived from observations
(Ruane et al. 2015). The CSI is computed during the period of
the year when wheat is more sensitive to climate anomalies
(Zampieri et al. 2017) and then aggregated at the country level
and calibrated with production data from the official
FAO statistics for the top ten wheat producers in the
Mediterranean and the Middle East in the period 1980–2010
(FAOSTAT, http://www.fao.org/faostat/).

It is worth noting that previous versions of the CSI
model (e.g., Zampieri et al. 2017) were based on the links
between climate and yield anomalies. However, focusing
on yield neglects significant impacts of climate on the har-
vested area variability (Cohn et al. 2016). Therefore, the
version of the CSI model developed for maize (Zampieri
et al. 2019a) and adopted here is modified in order to ac-
count for the correlations between climate and crop

Fig. 1 Average wheat production in period 2008–2017 of the top ten
wheat producing countries in the Mediterranean and the Middle East
(FAOSTAT, http://www.fao.org/faostat/)
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production (i.e., yield multiplied by harvested area) instead
of yield. This version of the CSI model explains a large
portion of the recorded crop production interannual vari-
ability, raising the global r2 of almost the 10% compared
with the overall level that could be achieved considering
the yield instead of production (Zampieri et al. 2019a).
Moreover, production from different regions can be
upscaled on a larger area by simply summing them, which
is relevant for the specific purposes of the present paper.

We use a high-resolutions ensemble of climate models sim-
ulation (HELIX, high-end climate impacts and extremes)
(Dosio et al. 2018; Naumann et al. 2018). The HELIX dataset
was obtained by dynamical downscaling of the coarse GCM
simulations listed in Tables 1. More specifically, sea surface
temperature and sea ice resulting from the GCMswere used as
boundary conditions for the atmospheric component of the
EC-EARTH model, running at 0.35 degrees resolution. This
procedure provides a global meteorological dataset with
enough spatial resolution to resolve complex orography and
land-sea contrasts that are found in regions such as the
Mediterranean area.

The HELIX ensemble considers only a high greenhouse
gases emission scenario (RCP8.5). In order to circumvent this
limitation and to provide results that are independent from the

emission scenario, we organize the analysis in terms of the
global warming levels instead of specific future time periods.
This strategy allows isolating the impacts of global warming
from the climate models’ sensitivities to different emission
scenarios (Dosio et al. 2018; Naumann et al. 2018). As a
result, the specific periods used in this study are based on
the model-dependent timings when the different global
warming levels are reached in the future (see Table 1). In
principle, these periods will occur later for more moderate
emission scenarios than the RCP8.5. However, the climate
impacts under RCP8.5 diverge significantly from those under
the more moderate RCP4.5 scenario only around 2050
(Tebaldi and Friedlingstein 2013). Moreover, the timings
when the 1.5 and 2 °C global warming levels are reached do
not depend significantly on the particular emission scenario,
even considering the stronger mitigation levels of the RCP2.6
scenario (Bärring and Strandberg 2018). Therefore, we can
assume that our results for the near-future period are realistic
albeit based on a single scenario. The method to identify time
windows follows the guidelines of the HELIX project (Betts
et al. 2018). The time windows are centered on the years when
the 20-year running mean of global average temperature ex-
ceeds 1.5, 2, and 3 °C. The timings of the 1.5, 2, and 3 °C
warming levels are listed in Table 1 and account for a warming
of 0.81 °C in 2005, compared with period 1880–1900.

The CSI method implemented here estimates the produc-
tion losses due to drought and heat stress (Zampieri et al.
2019a), which are the predominant yield limitation factors
for durum wheat in the Mediterranean regions (Fontana
et al. 2015; Dettori et al. 2017; Dixit et al. 2018), and it is also
able to estimate the optimal production in the calibration pe-
riod (Zampieri et al. 2019a). However, future production
trends driven by the increase of potential yields due to tech-
nological improvement and adaptation are unknown.
Furthermore, the physiological effects of elevated CO2 on
crops is largely uncertain as it depends on adaptation as well
(Kimball 2016). Therefore, we assume two extreme scenarios
of optimal production trends: one where the current trend con-
tinues linearly and one where the optimal production (i.e., the
production that would be observed with perfect climate con-
ditions) remains constant. Then, we remove the production

Table 1 Ensemble of climate
projections under the high-end
RCP8.5 scenario used in this
study, and the corresponding first
year when the running mean
global temperature exceeds 1.5, 2,
and 3 °C global warming levels
with respect to the preindustrial
period

Driving GCM Ensemble member Data availability 1.5 °C 2 °C 3 °C

1 IPSL-CM5A-LR r1i1p1 1971–2120 2024 2033 2053

2 GFDL-ESM2M r1i1p1 1971–2100 2033 2049 2077

3 HadGEM2-ES r1i1p1 1971–2125 2025 2037 2055

4 EC-EARTH r12i1p1 1971–2100 2028 2042 2066

5 GISS-E2-H r1i1p1 1971–2130 2029 2046 2074

6 IPSL-CM5A-MR r1i1p1 1971–2100 2025 2035 2052

7 HadCM3LC r1i1p1 1971–2100 2027 2039 2061

Fig. 2 Spatial distribution of wheat fields in the Mediterranean and the
Middle East around 2000, in percentage of total area, shown on a regular
grid at 5′ spatial resolution (data from MIRCA2000; Portmann et al.
2010)
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departures from the optimal yield due to the concurrent cli-
mate anomalies estimated by the CSI applied to the climate
model simulations. Shifts in the growing season, that may
occur under changing climate conditions, are not accounted
for. This limitation can be justified by considering that shifts
will not be very large (with respect to the temporal framework
of the method) and that changes in cultivars would limit the
anticipated advance of wheat phenology (Dixit et al. 2018;
Rezaei et al. 2018). Other potential forms of adaptations such
as shift in growing areas (Ceglar et al. 2019) are not consid-
ered in this study. In order to reduce the impacts of these
assumptions, we limit the analysis for the time period in the
near future when the climate normals are in the range of the
observed variability in the calibration period.

In order to quantify the production stability, we use a new
indicator combining the mean production with the production
variance, i.e., the crop production resilience indicator
(Zampieri et al. 2019d). For a stationary time series, the crop
production resilience indicator (RC) is defined as:

RC ¼ μ2=σ2 ð1Þ

where μ and σ represent the mean and standard deviation of
the production annual values, respectively. This indicator
carries the following advantages:

1. It is directly related to the ecological definition of resil-
ience, thus, theoretically more grounded than similar in-
dicators based on different functions of the μ over σ ratio.

2. It is inversely/directly proportional to the frequency/
return period of the extreme events leading to large
production losses.

3. It takes into account spatial heterogeneities and diversity
in a simple and intuitive manner, i.e., RC computed on the
sum of n uncorrelated time series with same μ and σ is
exactly n-times RC of the individual time series.

Observed production data often display significant
trends and low-frequency variability that are related to
technological improvements, changes in cropping areas,
and other exogenous factors. Since the crop production
resilience indicator definition (Eq. 1) only depends on the
ratio between mean production and fluctuation, it is possi-
ble to normalize the production time series by the baseline
trend or moving window means. This allows for computing
the resilience indicator using nonstationary data and im-
plies that there is no change of system resilience if the
standard deviation of the crop production anomalies varies
proportionally to the baseline mean values.

In order to account for the resilience related to the interan-
nual variability with respect to varying baseline production
values, we first compute the smoothed production time series
using LOESS procedure (Cleveland and Devlin 1988); then,

we compute the normalized production anomalies and the
standard deviation:

Pi ¼ loess pið Þ ð2Þ
πi ¼ pi−Pið Þ=Pi

�
ð3Þ

σ0 ¼ std πið Þ ð4Þ
where the pi represents the production values of the time series
under evaluation; πi are the normalized anomalies with re-
spect to the baseline values, i.e., the smoothed time series Pi;
and σ’ is the standard deviation of the normalized anomalies.
The nonstationary crop production resilience indicator is sim-
ply given by the inverse squared standard deviation of the
normalized anomalies:

R0
c ¼ 1=σ

02 ð5Þ

In case the production time series is stationary, R’C is
exactly equal to RC. This can be demonstrated mathemat-
ically, and it is also proven heuristically by computing the
resilience indexes of artificial crop production time series
with prescribed statistical properties as the examples
depicted in Fig. 3.

Typical situations that can be found with real production
data include, among other cases, stationary time series (Fig. 3,
blue line), increasing time series (Fig. 3, green line), and in-
creasing and then stagnating time series (Fig. 3, yellow line).

The blue line is a random realization of a stationary pro-
duction time series with mean equal to 10 and standard devi-
ation equal to 1. The theoretical crop production resilience of
such a time series is RC = 100, while the value computed for
this particular realization is 89.5. This difference is within the
acceptable accuracy range for the RC estimation which is
about 15% for 100 years (Zampieri et al. 2019d). The green

Fig. 3 Three randomly generated time series representing stationary
(blue), linearly increasing (green), and nonlinear (yellow) production data
(generic units). Dashed lines represent the smoothed baseline values after
the filtering procedure (LOESS)
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line represents a time series obtained by multiplying data of
the blue one for a factor that increases linearly, so the final
production is doubled. The size of the anomalies with respect
to the smoothed time series, i.e., the dashed line, representing
the baseline values, increases of the same factor. The nonlinear
crop production resilience value for this time series is R’C =
92.5. Data associated with the yellow line are derived similar-
ly to the ones represented by the green line, just multiplied by
a factor that grows faster and then stagnates. The nonlinear
crop production resilience value for this time series is R’C =
89.0. Thus, this procedure guarantees that the estimated resil-
ience depends only on the μ over σ running ratio despite the
presence of long-term trends and low-frequency variability.

Results

The climate-limited production estimated by the CSI for the
top ten wheat producers in the Mediterranean and the Middle
East matches the observed values reasonably well (Fig. 4).
The nonstationary crop resilience indicator computed on these
time series is 216 for the observations and 278 for the CSI
estimate. The discrepancy is within the range of uncertainty of
the resilience estimation for time series with limited duration,
which is about the 30% for 30 years (Zampieri et al. 2019d).
This analysis highlights the increasing climate influence on
production over the period 1980–2010, represented by the
increasing gap between the blue and the red lines shown in
Fig. 4. This trend is mainly related to increasing amplitude of
heat waves hitting the region (see e.g. Zampieri et al. 2016).
The worst observed loss of 21.7million tons occurred in 2008,
and it is well captured by the CSI. The optimal production
estimated by the CSI grows approximately linearly until
2005, followed by a slight decrease in the rate. The observed

production for the top ten producers displays a stagnation
lasting also for the latest years in the records (2011–2017).

A linear trend analysis for the individual countries
(Fig. 5) shows positive values for most of the top ten
wheat producing countries in the Mediterranean and the
Middle East (Fig. 1). However, the trend is stagnating in
Iran and Tunisia, while Italy, Syria, and Greece display a
recent negative production trend.

1. The analysis of the optimal production for the past
(Fig. 4), as well as the recent observed trend of the indi-
vidual countries (Fig. 5), suggests considering two main
overall scenarios for the near-future optimal production:
optimal production, linked to technological improvement,
is constantly increasing (by filling the so-called yield gap,
not increasing cultivated areas).

2. Optimal production is stagnating.

The ensemble average departure of the wheat produc-
tion levels with respect to the optimal values simulated for
the past (Fig. 6a and b, blue lines) is on average 11 mil-
lion tons and displays an increasing trend that is consis-
tent with the observed values (Fig. 4). In both scenarios,
differing only in the last 5 years, the ensemble mean pro-
duction averaged between 1980 and 2010 is 58.3 million
tons for scenario 1 and 57.6 for scenario 2. The ensemble
averaged resilience indicators are RC = 365 for scenario 1
and RC = 336 for scenario 2. The latter one is only slightly
overestimating the estimate obtained by using the ob-
served climate data (RC = 278).

The departures of the estimated future wheat production
levels with respect to the optimal values continue to increase
in the present and near-future climate projections in both sce-
narios (Fig. 6a and b, light blue lines). When the optimal
production increases linearly (scenario 1), however, the
climate-related losses are smaller than the gains, and the bal-
ance is positive compared to the earlier period. The interannu-
al variability increases as well, and it is similar between the
scenarios because they are based on the same climate data
(Fig. 6c and d). After 2010 but before reaching the 1.5 °C
global warming level, the ensemble mean production is esti-
mated to be 76 million tons for scenario 1 (RC = 336) and 62.5
million tons for scenario 2 (RC = 223) with a departure from
the optimal values of 17.5 million tons in both cases due to
heat stress and droughts and a 40% difference between the
average resilience indicators (Fig. 6e and f). The ensemble
mean computed from the seven climate models over a variable
period integrates information of more than 100 years altogeth-
er (see Table 1), ensuring a reliable estimation of resilience,
with a relative error lower than 15% (Zampieri et al. 2019d).

In the time window between 1.5 and 2 °C global warming
levels, the departures from the optimal productions surpass the

Fig. 4 Sum of top ten wheat production time series in the Mediterranean
and theMiddle East: estimated optimal production without climate effects
in the period 1980–2010 (i.e., heat stress and drought, blue line), estimat-
ed production including the effects of climate (red line), and the official
records from FAOSTAT in the period 1980–2015
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worst event recorded in 2008. The ensemble average of the
climate-related losses, consisting of about 22.4 million tons,
leads to an average production of 86 million tons for scenario
1 (RC = 387) and 57.6 million tons for scenario 2 (RC = 175).
The difference of resilience between the scenarios is 75%
during this period, meaning that the frequency of extreme
events leading to severe yield loss for the sum of the top ten
wheat producers in the Mediterranean and the Middle East is

75% larger in the scenario of increasing optimal production
(scenario 1) compared with the scenario of constant optimal
production (scenario 2). Results of such a statistical model can
be considered valid up to the period in the future when the
2 °C global warming level is reached (Zampieri et al. 2019a),
which is projected to happen in the 2040s according to the
RCP8.5 scenario. After that period, the CSI results are to be
considered qualitative (gray lines in Fig. 6).

Fig. 6 Future wheat production
estimated considering two
scenarios of optimal production:
scenario 1 with constantly
increasing optimal production
(panels a, c, and e) and scenario 2
with constant optimal production
(panels b, d, and f). The climate-
related losses are computed from
the seven climate simulations and
are the same for scenarios 1 and 2.
Panels a and b show the
smoothed wheat production time
series for the top ten wheat pro-
ducers in the Mediterranean and
the Middle East. Panels c and d
show the smoothed standard de-
viations computed on a 31 years
moving time window. Panels e
and f show the smoothed annual
crop resilience computed on a
31 years moving time window

Fig. 5 Recent production trends
for the top ten wheat producers in
the Mediterranean and the Middle
East (1998–2017) according to
the FAOSTAT data set
(FAOSTAT, 2019). Positive and
negative trends are statistically
significant at the 90% level (p <
0.1)
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Discussion

Wheat production in theMediterranean and the Middle East is
currently threatened by increasing heat waves and droughts
(Fontana et al. 2015; Zampieri et al. 2017, 2019a; Tebaldi and
Lobell 2018a). Given the socioeconomic importance of wheat
in theMediterranean (Asseng et al. 2018), as well as the global
consequences of regional yield anomalies and losses
(Chatzopoulos et al. 2019), we have here addressed the need
of reliable indicators to estimate agricultural resilience with
respect to climate extremes.

This study presents an application of a new indicator to
measure crop production resilience (Zampieri et al. 2019d).
The crop production resilience indicator is defined as the recip-
rocal of the squared coefficient of variance, which is a special
case of the generalized entropy index (Shorrocks 1980). The
crop production resilience indicator applied to crop production
time series is directly/inversely proportional to the return
period/frequency of extreme events causing severe production
losses (Zampieri et al. 2019d) and has been used to estimate
also general vegetation resilience and the reliability of the re-
lated ecosystem services (Zampieri et al. 2019c). Compared
with other indicators of stability, a concept close to resilience,
such as the reciprocal of the coefficient of variance (Kahiluoto
et al. 2019a; Renard and Tilman 2019), the crop production
resilience indicator is consistent with the original ecological
definition of resilience (Holling 1973, 1996).

In this paper, we have shown how to remove the trend from
the time series in order to compute the resilience indicator from
nonstationary crop production data. This method has been il-
lustrated assuming two contrasting agronomic scenarios. The
resulting time series, where also the climate limitation factor has
been added, are representative of the range of projections pro-
duced by crop models in the Mediterranean area (Dettori et al.
2017; Dixit et al. 2018; Tebaldi and Lobell 2018a, b; Webber
et al. 2018). It is worth noting that our methods do not consider
change of seasonality, which is consistent with the implemen-
tation of varieties characterized by slower phenology, adapted
to warmer climates (Dixit et al. 2018; Rezaei et al. 2018). The
estimated decline of wheat resilience due to climate change is
even more alerting when considering also the observed effects
of varieties’ diversity loss estimated for the current climate
(Kahiluoto et al. 2019a). In this respect, while the limited data
available in the observations can limit the reliability of the re-
silience estimation (Kahiluoto et al. 2019b; Snowdon et al.
2019; Zampieri et al. 2019d), we highlight the advantage of
multi-model-based results allowing to reach robust conclusions.

Conclusions

In this study, a framework for agricultural resilience assess-
ment has been introduced and applied to analyzing wheat

production projections for the top ten producing countries in
the Mediterranean and the Middle East (of primary impor-
tance for the durum wheat cultivation). Further evaluation of
the annual crop production resilience, here preliminarily esti-
mated under strong assumptions, is needed especially based
on a wider ensemble of crop production simulations such as
the ones done within the AgMIP-coordinated exercise
(Rosenzweig et al. 2013).

Nevertheless, this simplified analysis already provides
serious reasons to act. If no adaptation to climate change
will take place, the Mediterranean wheat production is ex-
pected to experience severe losses associated with higher
interannual variability already at 1.5 °C global warming.
These findings support the need of intensifying climate
change mitigation efforts consistently with the message
of the Paris Climate Agreement and act immediately to
develop effective adaptation strategies.

Adaptation measures, related to technological and agro-
management improvements, might balance out the effects of
the increasing variability when increasing constantly the pro-
duction levels. However, wheat production is already stagnat-
ing in some countries due to maximum potential yield having
already been reached (Brisson et al. 2010) and recent social
crises (Kelley et al. 2015).

With less ambitious global climate mitigation targets, and
with no effective adaptation strategies (needed to be consis-
tently sustainable considering the decreasing water resources
in the Mediterranean region), we anticipate that societies will
have to face significantly less reliable wheat production.
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