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Abstract
Nitrous oxide  (N2O), a main greenhouse gas that contributes to ozone layer depletion, is released from soils. Even when it 
has been argued that agriculture is the main cause of its increase in the atmosphere, natural ecosystems are also an important 
source of  N2O. However, the impacts of human activities on  N2O emissions through biodiversity loss or primary productiv-
ity changes in natural ecosystems have rarely been assessed. Here, we analyzed the effects of vegetation attributes such as 
plant diversity and production, as drivers of  N2O emission rates, in addition to environmental factors. We measured  N2O 
emissions monthly during 1 year in 12 sites covering a large portion of the Rio de la Plata grasslands, Argentina, and related 
these emissions with climate, soil and vegetation attributes. We performed spatial and temporal models of  N2O emissions 
separately, to evaluate which drivers control  N2O in space and over time independently. Our results showed that in the spatial 
model,  N2O emissions decreased with increments in plant species richness, with concomitant reductions in soil NO−

3
, whereas 

 N2O emissions increased with primary productivity. By contrast, in the temporal model, monthly precipitation and monthly 
temperature were the main drivers of  N2O emissions, with positive correlations, showing important differences with the 
spatial model. Overall, our results show that biological drivers may exert substantial control of  N2O emissions at large spatial 
scales, together with climate and soil variables. Our results suggest that biodiversity conservation of natural grasslands may 
reduce regional greenhouse gas emissions, besides maintaining other important ecosystem services.

Keywords Ecosystem services · Greenhouse gases · Climate change · Biodiversity–ecosystem function relationship · 
Spatial and temporal drivers

Introduction

Nitrous oxide  (N2O) is one of the components in the atmos-
phere responsible for global warming and also causes ozone 
layer depletion (Ravishankara et al. 2009).  N2O is a long-
lived, infrared absorbing trace gas, with a global warming 
potential 265 times larger than  CO2 that accounts for 6.2% 
of total atmospheric greenhouse gas (GHG) emissions. Its 
global atmospheric concentration has increased 40% since 
1750 and continues increasing at a rate of 0.73 ppb year−l 
(IPCC 2014). It has been argued that agriculture is one of 
the main causes of  N2O increments in the atmosphere, but 
unmanaged ecosystems are also an important source (Saggar 
et al. 2013). Natural grasslands are one of the major sources 
of  N2O emissions worldwide, accounting for approximately 
18% of global  N2O emissions (Lee et al. 1997), and the 
current loss of biodiversity can have large impacts on the 
emission of this potent GHG from natural grasslands (Til-
man et al. 2014). Whereas the Montreal Protocol has helped 
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reverse the growth rate of the stratospheric ozone hole by 
regulating chlorofluorocarbon emissions,  N2O emissions are 
not regulated and, therefore, are expected to remain the dom-
inant ozone-depleting source over the next decades (Rav-
ishankara et al. 2009). Reducing nitrous oxide emissions 
would thus enhance the recovery rate of the ozone hole and 
simultaneously reduce the anthropogenic forcing of climate.

Nitrous oxide emissions from soils are mainly derived 
from denitrification (but see Butterbach-Bahl et al. 2013), a 
microbiological process controlled by several factors (Rob-
ertson 1989). Robertson’s model (1989) classifies the factors 
that control denitrification in a continuum from proximal 
(more direct factors, with large variability in time or space, 
affecting the process) to distal (factors at a larger scale, with 
low variability in time or space, that indirectly affect the 
process). On this continuum, proximal factors include soil 
nitrate ( NO−

3
 ) and ammonium contents ( NH+

4
 ), soil oxygen 

concentration, soil moisture and soil temperature, which 
have been frequently studied (Conrad 1996; Davidson et al. 
2000). In addition to these factors, ecological theory sug-
gests that distal controls, such as soil texture, climate, plant 
diversity and aboveground net primary productivity (ANPP), 
could constrain or enhance  N2O emissions through the influ-
ence on proximal controls (Chapin et al. 2002; Niklaus et al. 
2016). However, few studies have evaluated the impact of 
distal controls on  N2O emissions (but see Groffman et al. 
2000). Distal controls could be potentially modified through 
management practices to contribute to GHG mitigation strat-
egies (Saggar et al. 2013). In addition, some distal factors 
such as ANPP could be measured and monitored over large 
spatial scales, serving for national  N2O emissions invento-
ries with feasible and affordable methodologies.

The relationship between biodiversity and ecosystem 
functioning has been deeply demonstrated through theoreti-
cal work and field experiments (Tilman et al. 2014), but they 
have rarely involved  N2O emissions. The strong stabilizing 
effect of biodiversity on several ecosystem processes and 
its relationship with ecosystem services and human well-
being might include the mitigation of GHG emissions and 
consequent regulation of climate change (Balvanera et al. 
2006). Plant species may regulate  N2O emissions through 
resource use, by reducing available substrates for denitrifica-
tion (Niklaus et al. 2016). Highly diverse plant communities, 
such as those occurring in natural grasslands, constrain soil 
nitrogen (N) loss by niche complementarity that promotes 
elevated and continuous plant N uptake, decreasing soil inor-
ganic N content (Tilman et al. 1996; Scherer-Lorenzen et al. 
2013). However, the connection between biodiversity and 
 N2O emissions has not been assessed in natural field condi-
tions, and the few mesocosm studies have shown contrast-
ing results. Particularly, Niklaus et al. (2006, 2016) showed 
a negative relationship between plant species richness and 
 N2O emissions, while Abalos et al. (2014, 2017) showed that 

species identity or plant functional types determined  N2O 
emissions and not plant species richness.

Aboveground net primary productivity is a key ecosys-
tem process (Sala 2001). Both ANPP and  N2O share similar 
drivers and usually increase with growing annual precipita-
tion, mean annual temperature, and soil N availability (Sala, 
2001; Groffman et al. 2000). Higher ANPP likely increases 
litter quantity and root exudates, increasing labile soil carbon 
for decomposition and mineralization, and enhancing  N2O 
emissions through nitrification and denitrification process 
(Firestone and Davidson 1989). On the other hand, plant 
N uptake may compete with denitrifiers for available soil 
N, potentially decreasing soil  N2O emissions (Niklaus et al. 
2006). Previous studies analyzing the relationship between 
ANPP and  N2O emissions showed a positive correlation 
between them, both in grasslands and forest ecosystems 
(Groffman and Turner 1995; Wolf et al. 2011). Neverthe-
less, more studies are needed to generalize this pattern and 
to infer mechanistic relationships.

The relationships between ecosystem processes (such as 
 N2O emissions, ANPP or N mineralization) and its drivers 
may differ across space and time dimensions (Lauenroth 
and Sala 1992). For instance, Sala and colleagues (2012) 
discussed the variability of ANPP with annual precipita-
tion considering space (from arid to sub-humid ecosys-
tems, based on multi-year averages for each location) and 
time (based on year-to-year changes at each location) and 
argued that differences between these models are based on 
lag responses due to the inertial characteristic of the ecosys-
tem structure. In addition, the same factors may differ in the 
range of variation comparing spatial and temporal dimen-
sions. For instance, plant species composition and soil type 
vary more across space (comparing different sites) than over 
time, at least in short- to mid-term temporal scales (within 
a year or in a few years) (Perelman et al. 2001). Therefore, 
we do not expect that plant species composition or soil tex-
ture affects  N2O emissions in short- to mid-term time scales 
and, on the other hand, climate variables such as monthly 
precipitation and temperature may not vary within nearby 
sites (some kilometers away). So, these factors will not affect 
 N2O variability in spatial models of a climate-homogeneous 
region but are expected to influence in temporal models. 
Therefore, spatial and temporal models of ecosystem func-
tioning, including  N2O emissions, may show differential 
drivers and should therefore be treated separately (Groff-
man et al. 2009).

Here, we present a regional field study that separately 
analyzes spatial and temporal models of  N2O emissions con-
sidering distal controls, such as climate variables, plant spe-
cies richness, soil texture, and ANPP, and proximal controls 
such as soil nutrients, moisture and temperature. Our main 
objective was to assess the importance of plant attributes 
in determining  N2O emissions in both spatial and temporal 
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models separately, in addition to abiotic factors. First, we 
expected that a negative relationship between species rich-
ness and  N2O emissions will be evident when comparing 
different sites (spatial model), but not when the same sites 
are analyzed over time (temporal model), since species 
richness has a small range of variation throughout the year. 
Second, we hypothesize that ANPP (distal control) will be 
positively associated with soil N contents and  N2O emis-
sions because similar climate factors, such as precipitation 
and temperature, are distal controls of both processes (Rob-
ertson 1989; Groffman and Turner 1995; Groffman et al. 
2000; Wolf et al. 2011). Therefore, we expected that the 
relationship between ANPP and  N2O will be strong in both 
temporal and spatial models. On the other hand, variations in 
climate variables are larger in time throughout the year than 
in nearby sites of relatively climate-homogeneous region; 
we thus expect that climate factors explain  N2O emissions in 
the temporal model. We evaluated these relationships across 
12 sites in the Rio de la Plata grasslands region of Argen-
tina (Fig. 1) and constructed spatial and temporal linear 
mixed-effects regressions models, based on our best knowl-
edge of plant–soil interactions affecting  N2O emissions. We 
expected to find strong relationships between distal controls 
and  N2O emissions, in addition to proximal controls, and 
that these relationships will differ between temporal and 
spatial models.

Materials and methods

Site description and experimental design

The study was conducted at 12 field sites encompassing two 
sub-regions of the Rio de la Plata grasslands, the Inland 
Pampas and the Mesopotamic Pampas in Argentina (Table 1; 
Fig. 1; Soriano 1991). In both sub-regions, we selected 12 
sites with relict grasslands (6 sites per sub-region) between 
1 to 12 ha and installed one exclosure in each site (up to 
50 m2) to ensure lack of disturbances during the experiment. 
Sites were selected based on satellite images and landowners 
advice, to avoid relict grasslands that had disturbances such 

Fig. 1  Maps showing location of two sub-regions (stars) and location study sites (bubbles) in Rio de la Plata grasslands, Argentina (modified 
from: Soriano 1991). Insets on the right show site locations in each sub-region: Inland and Mesopotamic Pampas

Table 1  Summary of soil variables describing the Mesopotamic 
(MP) and the Inland Pampas (IP) sub-regions. CEC: cation exchange 
capacity. Values are average of six sites per sub-region ± 1 standard 
error. F and P values show differences between the two sub-regions

MP IP F P

Sand (%) 18.92 ± 3.3 46.90 ± 3.5 28.3 < 0.01
Silty (%) 58.30 ± 4.5 40.32 ± 2.4 11.7 < 0.01
Clay (%) 23.65 ± 2.6 12.80 ± 1.2 10.3 < 0.01
pH (1:2.5_H2O) 5.47 ± 0.1 6.07 ± 0.1 17.2 < 0.01
C (g kg−1) 26.59 ± 2.4 23.23 ± 1.9 1.0 0.33
N (g kg−1) 2.27 ± 0.2 1.97 ± 0.2 0.9 0.36
P (mg kg−1) 21.25 ± 11.2 15.85 ± 1.7 0.2 0.67
CEC (cmolc kg−1) 24.50 ± 3.1 18.62 ± 1.9 2.1 0.17
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as grazing, fertilization, cropping, etc. The climate at both 
sites is sub-humid, with long-term average annual rainfall 
around 960 mm (WorldClim global climate database version 
1.4; Hijmans et al. 2005). Rainfall during our study period 
was higher than average, 1012 mm and 1507 mm, in the 
Inland and the Mesopotamic Pampas, respectively (Online 
Resource 3). Mean monthly temperatures during the study 
period ranged from 9 to 23 °C and from 13 to 25 °C in 
the Inland and Mesopotamic Pampas, respectively (Online 
Resource 3). Both sub-regions have a history of land-use 
change where livestock development and crop production 
replaced natural grasslands (Soriano 1991). Nevertheless, 
relicts of natural tussock grasslands remain in small dis-
persed and linear fragments (between 1 and 12 ha) along 
fences, roadsides and train rail lines (Burkart et al. 2011). 
Typically, relict grasslands are scarcely or never grazed, fer-
tilized or sown, and are dominated by native perennial and 
annual grasses (Poaceae) and forbs (Asteraceae), and usu-
ally contain few exotic grasses (Table 2 and Online Resource 
1).

N2O fluxes measurements

Nitrous oxide emissions were measured near-monthly from 
November 2013 to October 2014 using two static chambers 
randomly located inside each exclosure (Parkin and Venterea 
2010; De Klein and Harvey 2015). A total of eight sampling 
dates were considered in our analyses for the Mesopotamic 
Pampas sub-region and nine sampling dates for the Inland 
Pampas. Plastic chambers were 37 cm × 25.5 cm × 14 cm 
high (13.2 L), covered by a light-reflecting aluminum film 
and vented with a 10 cm long stainless-steel tube to equalize 
air pressure inside and outside. The chambers were placed 
on iron bases previously buried and sealed with water, 
following strictly USDA protocols (Parkin and Venterea 
2010). Iron bases were buried 8 cm deep 1 month before 

measurements, to avoid effects derived from base installa-
tion (Parkin and Venterea 2010).

At each sampling date air samples were extracted from 
chambers using a manual vacuum pump and stored in 10 ml 
vials; this small volume of sample was collected so as to 
not generate any large pressure disturbances in the cham-
ber. Each sample consisted of three gas extractions from 
chambers at approximately 0, 20, and 40 min from chamber 
deployment, following the USDA protocol (Parkin and Ven-
terea 2010). Samples were taken from 10:00 AM to 12:30 
AM, when temperature approaches the daily average (Parkin 
and Venterea 2010; Cosentino et al. 2012).

Gas samples were analyzed within 10 days of collection, 
using a Gas Chromatographer (GC) 7890A with automatic 
sampler 7697A Agilent Technologies (Agilent Technologies 
Network) in the Facultad de Agronomía de la Universidad 
de Buenos Aires, Argentina. The GC was fitted with a 63Ni 
micro electron capture detector. The columns used were 
G3591-81004 6Ft 1/8 2 mm HayeSep Q 80/100 UM and 
G3591-81121 12Ft 1/8 2 mm HayeSep Q 80/100 UM. Oven 
temperature was 60 °C, both Loop and Transfer temperatures 
were 75 °C and detector (µEDC) temperature was 300 °C. 
 N2 was used as carrier gas and Argon Methane 5% as make 
up gas (µECD). The  N2O fluxes were calculated based on 
changes in three sub-samples of  N2O concentrations over 
time (at approximately 0, 20, and 40 min from chamber 
deployment) using linear regression and taken the regres-
sion slope parameter as the flux of  N2O emission, following 
De Klein and Harvey (2015).

Soil characterization and microclimate 
measurements

At the beginning of the experiment, soil samples were 
taken at each of the 12 sites for initial site characterization 
(Table 1). Five soil sub-samples were taken at each site 

Table 2  Average plant species 
composition and Normalized 
Difference Vegetation Index 
(NDVI) values of the two sub-
regions, the Inland Pampas (IP) 
and the Mesopotamic Pampas 
(MP)

Average abundance values are the mean cover of the most abundant families (Poaceae and Asteraceae) and 
species, ± 1 SE. See Online Resource 1 for the complete list of plant species

Sub-region Species 
richness

Mean NDVI ± SE Family Family 
frequency 
(%)

Most frequent species Average 
abundance 
(%)

MP 43 0.64 ± 0.03 Poaceae 29 Cynodon dactylon 27.7 ± 0.3
Paspalum dilatatum 39.1 ± 0.5
Setaria geniculata 12.2 ± 0.9

Asteraceae 7 Baccharis sp. 2.4 ± 0.3
IP 56 0.47 ± 0.03 Poaceae 17 Paspalum quadrifarium 70.3 ± 0.6

Festuca sp. 46.1 ± 0.8
Bromus unioloides 38.2 ± 1.7
Sorghum halepense 11.5 ± 2.0
Cynodon dactylon 11.4 ± 0.2

Asteraceae 9 Picris sp. 5.1 ± 0.0
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inside the exclosures with a 2-cm-wide soil corer from 0 
to 10 cm depth, and texture (sand, silt and clay percent-
age), total carbon, nitrogen and phosphorous content, soil 
pH and cation exchange capacity were measured from each 
composed soil sample, following standard laboratory pro-
cedures (Robertson et al. 1999). Soil texture (sand, silt, and 
clay percentage) was estimated by the Bouyoucos method 
(Bouyoucos 1962). Total organic carbon and nitrogen con-
tents were estimated by Walkley–Black technique and Kjel-
dahl digestion, respectively (Robertson et al. 1999). Phos-
phorous content was estimated following Bray and Kurtz 
method (Bray and Kurtz 1945). Soil pH (soil:H2O 1:2.5) and 
cation exchange capacity were estimated following Summer 
and Miller (1996). In addition, at each sampling date, after 
 N2O measurements, three 0–10 cm depth soil cores were 
extracted from within each iron base (two per exclosure) and 
analyzed for soil NO−

3
 and NH+

4
 content, soil bulk density, 

pH, porosity, and soil moisture, to estimate soil water filled 
pore space (WFPS). Samples were extracted with 2 M KCl 
and analyzed for inorganic N (N-NO−

3
 and N-NH+

4
 ) using the 

steam distillation method in the presence of MgO and Devar-
da’s alloy (Keeney and Nelson 1982). Soil bulk density was 
estimated following Blake and Hartge (1986). Soil porosity 
was calculated, assuming particle density of 2.65 g cm−3 
(Linn and Doran 1984), as:

From each soil sample, a 5 g sub-sample was dried at 
105 °C for 48 h to calculate soil water content and then 
WFPS was calculated as:

Soil temperature (average of 0–10 cm depth) and air 
temperature were also measured at each sampling date with 
handheld thermometers. Also, for both sub-regions, monthly 
precipitation and monthly mean, maximum and minimum 
temperatures were retrieved from nearby weather stations 
(Table 1).

Plant community measurements

At each  N2O sampling date, plants growing inside the 
iron bases were identified to the species level and their 
relative abundance was estimated visually based on their 
above ground cover (Table 2). Species richness was esti-
mated based on species census performed inside the two 
bases established at each site (24 census each month, 
Online Resource 1). We recorded 56 different plant spe-
cies in the Inland Pampas sub-region and 43 species in the 

Soil porosity = 1 −

(

Bulk density

Particle density

)

.

WFPS (% ) =

Soil water content
(

g

g

)

Soil porosity
×

Bulk density

Density of water
× 100.

Mesopotamic Pampas sub-region (Online Resource 1). 
Poaceae and Asteraceae were the most frequent families 
in both sub-regions (see Table 2 and Online Resource 1). 
Aboveground net primary productivity from each site was 
assessed through the Normalized Difference Vegetation 
Index (NDVI), estimated using a manual radiation sensor 
(Skye-SpectroSense2®) or a handheld digital camera. We 
took at least three NDVI measures inside each base and then 
averaged them to obtain a proxy of aboveground net primary 
productivity of each site (Piñeiro et al. 2006; Paruelo et al. 
1997). These measures were taken at each sampling date 
from 11:00 AM to 2:00 PM to avoid deviations from the 
solar zenith angle (Table 2).

Statistical analysis

To analyze  N2O emission drivers and the relationships 
between distal and proximal controls, we adjusted linear 
mixed-effects simple and multiple regression models, with 
sub-regions as a random factor, separately for a spatial data-
set (spatial model) and a temporal dataset (temporal model) 
as explained below. The rationale for including the sub-
regions as a random factor was the large variability in soil 
characteristics observed between sub-regions (Table 1). Lin-
ear effect models were fitted by maximum likelihood to com-
pare among models but the reported values of the selected 
models were fitted by restricted maximum likelihood follow-
ing standard statistical methods as proposed by Zuur et al. 
(2009) (see Online Resource 2 for details).  N2O emissions 
were log-transformed to approximate a normal distribution 
of residuals. Best spatial and temporal models were selected 
based on the lowest AICc (Aakike Index Criterion corrected 
by small samples) and when all selected variables were sta-
tistically significant with P < 0.05 (Zuur et al. 2009).

Using an automated stepwise procedure, we selected 
significant models for the spatial and the temporal models. 
We searched the best models that explain  N2O emissions 
but also species richness, NDVI, NO−

3
 and NH+

4
, which are 

our main biological and soil variables measured to elucidate 
potential mechanisms that could explain  N2O emissions. To 
evaluate spatial changes in  N2O emissions (spatial model), 
we used a dataset constructed with the averaged values of 
 N2O emissions across the sampling period for each of the 
12 sites (average of nine or eight temporal measurements, 
depending on the sub-region) resulting in 12 observations 
for each variable in the spatial model. For the temporal 
model, we constructed a dataset where we averaged meas-
urements made in the six sites of each sub-region performed 
in the same month, to eliminate variations due to local spa-
tial heterogeneity between sites. Therefore, we had two sub-
regions over nine and eight sampling dates, making a dataset 
with 17 observations for each variable. On all models, we 
did not include variables with autocorrelation in the same 
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model (see correlation matrices in the Online Resource 2). 
In spatial and temporal regression models, we analyzed our 
data considering the sub-regions (Inland and Mesopotamic 
Pampas) as a random factor in the mixed-effects models. 
These analyses were performed with package nlme, MuMIn 
and lmerTest in R software (Barton 2016; Kuznetsova et al. 
2016; R core team 2017), which allows the use of mixed-
effects models on the selection routine of the best models by 
dredge function in MuMIn package.

Finally, we also analyzed the effects of species composi-
tion on  N2O emissions, to detect effects associated with com-
munity assemblages. To analyze the relationship between 
 N2O emissions and species composition, we performed a 
correspondence analysis (CA), with the package vegan in R 
software (Oksanen et al. 2017). In each sampling date, plant 
species were determined inside the two iron bases (sub-sam-
ples), and these estimations were averaged considering a 
complete list of species richness between both bases. CA 
for spatial and temporal dimension was performed based on 
the same datasets as explained before. Thus, spatial values 
represent the mean species abundance throughout the year 
for each site and temporal values represent the mean abun-
dance across sites of each sub-region. We related the first 
two CA axes (in the spatial dimension: first and second axes 
explained 27% and 23% of the total variance, respectively; 
in the temporal dimension first and second axes explained 
47% and 13% of the total variance, respectively) with  N2O 
emissions for spatial and temporal dimensions separately 
considering the factor sub-region with two levels (Inland 
and Mesopotamic Pampas) as a random factor in the mixed-
effects models.

Results

Considering the spatial dimension,  N2O emissions were 
mainly controlled by distal variables (species richness 
and ANPP) that significantly explained variations in 
emissions throughout the region (Table 3). Nitrous oxide 
emissions significantly decreased with species richness 
(P < 0.01, R2 = 0.39, Fig. 2a, Table 3), whereas  N2O emis-
sions increased with NDVI, our proxy of ANPP (P < 0.01, 
R2 = 0.31, Fig. 2b, Table 3). As expected,  N2O emissions 
also significantly increased with soil NO−

3
 content (P < 0.01, 

R2 = 0.46, Fig. 2c, Table 3). In addition, species richness 
negatively affected soil NO−

3
 contents (P < 0.05, R2 = 0.44, 

Fig. 2d, Table 3) and soil NO−

3
 was positively related with 

NDVI (P < 0.01, R2 = 0.14, Fig. 2e, Table 3). Sand content 
negatively affected species richness (P < 0.01, R2 = 0.59, 
Fig. 2f, Table 3), whereas other soil variables such as pH, 
total soil carbon, nitrogen, phosphorous content, and cation 
exchange capacity (CEC) were not included in the best spa-
tial models (Table 3 and Table 1, Online Resource 2), due to 

their scarce variation in the region (Table 1, Fig. 2). Overall, 
the best spatial model, with two predictor variables, included 
the species richness and ANPP, estimated through NDVI, 
showing that NDVI explained a large portion of the variance 
not accounted for by species richness (Table 3, Fig. 2). The 
other variables tested with the selection procedure (soil NH+

4
 

content, WFPS, soil gravimetric and volumetric humidity, 
field soil and air temperature, mean monthly precipitation, 
and mean monthly temperatures) did not show significant 
relationships with  N2O emissions in the spatial models 
(see Online Resource 2). Finally, plant species composi-
tion assessed through the correspondence analysis scores 
was not related with  N2O emissions across sites (CA axis 1: 
P value = 0.72 and CA axis 2: P value = 0.84) (see Online 
Resource 2). 

Temporal controls of  N2O emissions, which described 
intra-annual variations in  N2O emissions during the 
experimental period, differed from the controls revealed 
by spatial models. In the temporal models selection, only 
mean monthly precipitation (P < 0.05, R2 = 0.28, Table 4, 
Fig. 3a) and mean monthly minimum temperature were 
associated with temporal variations in  N2O emissions 
throughout the year (P < 0.05, R2 = 0.27, Table 4, Fig. 3b). 
These two distal controls showed the larger intra-annual 
variations and, therefore, were both selected as the best 
temporal models with one variable (Table 4), whereas 
none of the other variables measured (species richness, 
NDVI, soil NO−

3
 and NH+

4
 content, WFPS, soil gravimetric 

Table 3  Best simple and multiple spatial linear mixed-effects regres-
sion models selected by AICc for  N2O emissions, species richness, 
NO

−

3
 and NDVI

Tested variables were: carbon content, Normalized Difference Veg-
etation Index (NDVI), soil ammonium ( NH+

4
 ) and nitrate content 

( NO−

3
 ), soil pH, Species richness, soil temperature and water filled 

pore space. Note that: NH+

4
 is not shown as response variable because 

no significant relationships were found
df  Degrees of freedom, AICc Akaike index criterion value corrected 
for small samples

Model Standard-
ized slope

df AICc R2

logN2O (simple regression)
 Species richness − 1.02 4 38.33 0.39
 NO−

3
0.77 4 37.54 0.46

logN2O (multiple regression)
 Species richness − 0.80 5 32.93 0.74
 NDVI 0.79

Species richness
 Sand − 0.78 4 55.53 0.59
NO

−

3

 Species richness − 0.68 4 41.29 0.44
NDVI
 NO−

3
0.55 4 − 23.61 0.14
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and volumetric humidity, soil temperature, and air tem-
perature) were significantly associated with  N2O emis-
sions through time (Table 4). Additionally, monthly pre-
cipitation was positively associated with NDVI (P < 0.01, 
R2 = 0.48, Fig. 3c, Table 4). Plant species composition 
assessed through the scores of the correspondence analysis 
as predictor variables were not related with  N2O emissions 
over the year (CA axis 1: P value = 0.07 and CA axis 2: P 
value = 0.44) (see Online Resource 2). 

Discussion

Our study showed for the first time that distal biological 
attributes, such as species richness and primary productiv-
ity, are as important as environmental controls in explaining 
spatial changes in  N2O emissions from natural unmanaged 
grasslands. Indeed, we only found sand content, in addition 
to biological variables, as an important distal driver of  N2O 
emissions at a regional scale, and its effect was indirect, 
through a decrease in plant species richness. By contrast, 
environmental distal controls, such as monthly precipitation 
and mean temperature, were the main drivers of  N2O emis-
sions throughout the year, suggesting that different drivers 
explained variations of the emissions of this potent green-
house gas in space and time (Fig. 4). To illustrate all results 
together, we performed two conceptual figures, synthesizing 
the best spatial and temporal linear mixed-effects regression 
models selected (Fig. 4), showing the significant relation-
ships between all variables.

Our spatial analysis in the Pampas region showed that 
plant species richness was the main control of  N2O emis-
sions at a regional scale (Table 3, Fig. 4a). This result sup-
ports the biodiversity–ecosystem function hypothesis based 
on niche complementarity, which states that higher plant 
species richness increases resource capture (such as soil 
NO−

3
 , Fig. 4a) and consequently decreases  N2O emissions 

Fig. 2  Estimated spatial linear mixed-effects regression models for all 
P < 0.05. Panels show the relationship between a  N2O emissions (log 
 N2O μg N m−2 h−1) from grassland soils and species richness; b  N2O 
emissions and Normalized Difference Vegetation Index (NDVI), con-
sidered as a second factor in a multiple regression model (response 
variable represents residuals of  N2O emissions, see Table 3); c  N2O 

emissions and soil NO−

3
 (μg N g soil−1); d soil NO−

3
 (ug N g soil−1) 

and species richness; e NDVI and soil NO−

3
 (μg  N  g  soil−1); and f 

species richness and soil sand percentage (see Table 3 for regression 
coefficients). Each point corresponds to an observation in the spatial 
dataset (see text for details)

Table 4  Best simple temporal linear mixed-effects regression models 
selected by AICc for  N2O emissions and Normalized Difference Veg-
etation Index (NDVI)

Tested variables were: monthly precipitation, NDVI, soil ammonium 
( NH+

4
 ) and NO−

3
 content, species richness, mean monthly tempera-

ture, and water filled pore space
df  Degrees of freedom, AICc Akaike index criterion value corrected 
for small samples

Model Standard-
ized slope

df AICc R2

logN2O
 Monthly precipitation 0.58 4 29.84 0.28
 Mean monthly temperature 0.56 4 30.60 0.27

NDVI
 Monthly precipitation 0.70 4 − 30.52 0.48
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(Tilman et al. 1996; Niklaus et al. 2016). In addition, we 
expected lower emissions from sandy soils, which were less 
likely to experience anoxia, known to stimulate  N2O emis-
sions (Brentrup et al. 2000). However, soil sand contents at 
regional scales would increase  N2O emissions, instead of 
decreasing it, probably through its potential indirect effect 
of decreasing plant species richness (Fig. 4a), supporting 
findings obtained by Niklaus et al. (2006, 2016) in meso-
cosm studies.

ANPP estimated through NDVI in our study was 
positively correlated with regional  N2O emissions after 
accounting for species richness effects, in support of find-
ings reported by Groffman and Turner (1995) and Wolf 
et al. (2011), although these studies had lower temporal 

sampling resolution (only 4 and 6 measurements per 
year). Primary productivity is usually associated with 
higher precipitation, temperature and soil N availability, 
all factors that increase  N2O emissions (Sala 2001; Groff-
man et al. 2000). Therefore, at large spatial scales NDVI 
can potentially be used to monitor  N2O emissions, creat-
ing maps and scaling up for reliable  N2O accounting in 
national greenhouse gas inventories. Other distal factors, 
in addition to ANPP, species richness or soil texture, can 
be explored in other regions and used to make spatial esti-
mates of  N2O emissions based on available datasets. More 
research on these findings should be encouraged, specifi-
cally considering spatial vs temporal models separately.

Fig. 3  Estimated temporal linear mixed effect regression models for 
all P < 0.05. Panels show the relationship between a  N2O emissions 
(log  N2O  μg  N  m−2  h−1) and monthly precipitation (mm); panel b 
 N2O emissions (log  N2O  μg  N  m−2 h−1) from grasslands and mean 

monthly temperature (°C); c Normalized Difference Vegetation Index 
(NDVI) and monthly precipitation (mm) (see Table 3 for regression 
coefficients). Each point corresponds to an observation in the tempo-
ral dataset (see text for details)

Fig. 4  Conceptual synthesis of linear mixed-effects regression models 
found for a spatial and b temporal models of  N2O emissions. Black 
arrows denote significant direct positive relationships between vari-
ables and dashed black lines show indirect relationships. Standard-
ized slope coefficients and R2 are shown near the arrows, together 

with their significance (*P < 0.05, **P < 0.01). Only significant var-
iables are included in the diagram (see text and Online Resource 2 
for details). This conceptual model synthesizes all the best models 
selected by AICc (see text for details)
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We did not detect significant effects of plant species com-
position on  N2O emissions, neither in spatial nor in tempo-
ral models, as opposed to findings reported by Abalos et al. 
(2014, 2017) and Niklaus et al. (2006) in mesocosms. These 
opposite findings could be due to the absence of legumes in 
our unmanaged grasslands that were intentionally included 
in the synthetic plant assemblages performed in mesocosm 
studies. Legumes were almost completely absent in our field 
sites and, when present, were particularly small sized (see 
Online Resource 1). In addition, in our natural grasslands 
plant community assemblages are a result of long-lasting 
interactions, contrary to mesocosm’s synthetic assemblages 
(Flombaum and Sala 2008).

As previously found for other ecosystem processes, sepa-
rating spatial vs temporal models in our analyses enhanced 
the detection of species richness and NDVI as key controls 
of the regional variations in  N2O emissions (Lauenroth and 
Sala 1992; Sala et al. 2012). Our spatial models linked dis-
tal controls (as species richness, primary productivity, and 
soil texture) with proximal controls ( NO−

3
 ) on denitrifica-

tion processes, as proposed by Robertson (1989). As pre-
viously proposed by Sala et al. (2012) by relating ANPP 
with precipitation, our results suggest that we should not 
use the patterns obtained from repeated measures in one 
site, to make inferences about  N2O emissions at different 
sites. Considering this premise, further research with large 
datasets would considerably expand our current knowledge 
on  N2O emissions based on both the classic “hole in the 
pipe” model (Firestone and Davidson 1989; Davidson et al. 
2000), and the continuum from distal to proximal controls 
proposed by Robertson (1989). We believe that our study 
represents the first showing spatial and temporal models of 
 N2O emissions from unmanaged grasslands, in addition to 
Groffman et al. (2000).

Also, according to Groffman et al. (2000), we found that 
distal climate factors such as precipitation and temperature 
were the main controls of intra-annual variations in  N2O 
emissions. However, our dataset included monthly meas-
urements over 1 year, so we did not evaluate interannual 
controls of  N2O emissions. Sala (2001) suggested that 
structural constraints in grasslands, such as plant commu-
nity or soil quality, may not show large temporal variations 
and, therefore, are not usually related to temporal changes 
in different ecosystem processes, such as  N2O emissions. 
In other words, intra-annual variations in species richness, 
or primary productivity were probably not large enough to 
significantly correlate with  N2O emissions over time in our 
study. In addition, previous studies showed that soil water 
content, soil inorganic nitrogen, and soil temperature are 
the main proximal controls of  N2O emissions in temporal 
models (Robertson 1989). The lack of significant relation-
ships among these proximal controls and  N2O emissions in 
our dataset could be due to the short time frame of analysis. 

Longer temporal datasets are needed to confirm the temporal 
connections between distal and proximal controls, and their 
effects on  N2O emissions (Groffman et al. 2000).

Although usually not explicitly separated, spatial and 
temporal dimensions have different implications for policy 
and decision-making. In this study, our proposed conceptual 
spatial model (Fig. 4) suggests two key policy strategies for 
climate change mitigation. First, conserving grassland biodi-
versity will reduce soil NO−

3
 contents and consequently,  N2O 

emissions. In fact, this would generate a tighter and closed 
N cycle, with additional benefits in terms of other kinds of 
environmental pollution like nitrate leaching (Tilman et al. 
1996; Erisman et al. 2013; Smith 2017). Second, grasslands 
conservation programs may focus mainly on sandy soils, 
where lower species richness produces higher  N2O emis-
sions. In the temporal dimension, by contrast, current cli-
mate change models forecast global warming increases in 
the frequency of extreme events (IPCC, 2014), which could 
enhance denitrification rates. In addition, global change 
involves biodiversity loss, which along with climate change 
predictions may hamper ecosystem stability and promote 
higher temperature increases through a feedback mechanism 
(Sala et al. 2000; IPBES see Díaz et al. 2015). As a conse-
quence, biodiversity conservation of natural grasslands may 
reduce greenhouse gas emissions, in addition to maintaining 
other important ecosystem functions.
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