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Abstract
This work presents an extended and age-band compartmentalised SEIR model that
allows describing the spread evolution of SARS-CoV-2 and evaluating the effect of
different detection rates, vaccination strategies or immunity periods. The model splits
up the population into fifteen age groups of 5 years each, linked through a statis-
tical interaction matrix that includes seventeen health states within each age group.
An age-dependent transmission rate takes into account infectious between the groups
as well the effect of interventions such as quarantines and mobility restrictions. Fur-
ther, the proposal includes a nonlinear switched controller for model tuning purposes
guarantying a simple and fast adjusting process. To illustrate the model potentials,
the particular case of COVID-19 evolution in Argentina is analysed by simulation of
three scenarios: (i) different detection levels combined with mobility restrictions, (ii)
vaccination campaigns with re-opening of activities and (iii) vaccination campaigns
with possible reinfections. The results exhibit how the model can aid the authorities
in the decision making process.
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Variables
Variable Description
S Susceptibles
V Vaccinated
ENI Exposed (Not Isolated)
EI Exposed (Isolated)
ANI Asymptomatics (Not Isolated)
AI Asymptomatics (Isolated)
MSNI Mild Symptomatics (Not Isolated)
SSNI Severe Symptomatics (Not Isolated)
MSI Mild Symptomatics (Isolated)
SSI Severe Symptomatics (Isolated)
Ha Hospitalised
ICU Intensive Care Unit
Hb Hospitalised (After ICU)
D Dead
MSLI Mild Symptomatics Late Detected (Isolated)
R Recovered (Detected)
RNI Recovered (Not Detected)
SWV Binary variable for enable temporal immunity
VR Vaccination rate
β Transmission rate
()i The variable for each age band

Abbreviations
Abbreviation Description
ICU Intensive care units
NPIs Non pharmaceutical interventions
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SEIR Susceptible - Exposed - Infected - Recovered
SIR Susceptible - Infected - Recovered
SIS Susceptible - Infected - Susceptible

Parameters
Variable Description
Te Average time on EI and ENI

Ta Average time on AI and ANI

Tt Average time from Ha to ICU

Tl1 Average time on MSNI and MSI

Tl2 Average time on MSLI

Tr1 Average time from Ha to R

Tr2 Average time on Hb

Td Average time from ICU to D

Th Average time from ICU to Hb
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Tr Average time on R and RNI

Tim Average time on V

σs Probability of severe symptoms
μ Probability of Ha to ICU

ρ Probability of ICU to D

λ SARS-CoV-2 free transmission coefficient
δ Detection probability
ε Probability of late detection
N Total population under study
ra Transmission capability of non-hospitalised isolated infectious
rh Transmission capability of hospitalised isolated infectious
rc Transmission capability of non-isolated infectious
()i The parameter for each age band

1 Introduction

The present SARS-CoV-2 epidemic has triggered lots of enthusiastic research in dif-
ferent scientific fields with the objective of understanding its behaviour and finding
tools to mitigate its effects. Non pharmaceutical interventions (NPIs) like quar-
antines, social distancing, school/university attendance suspension, massive events
prohibition, the use of masks and exhaustive testing have been up to the moment the
only effective measures found to retain the virus spread [1]. These interventions only
aim to diminish the virus dissemination speed to avoid the health service saturation,
especially in the case of intensive care units (ICU) with ventilators. At the time of
writing this paper some countries were starting to vaccinate a reduced number of
people, using vaccines approved for emergency use. However, due to the reduced
production numbers and logistics problems, NPIs are still the only effective measures
available for most countries administrations.

The delayed effect that interventions have on the SARS-CoV-2 dissemination
makes difficult to impose long social restrictions affecting entire populations and
economy. In this uncertain context, and taking in mind the close vaccines availability,
it is important to have systematic and reliable tools that allow predicting the relative
efficiency of different pharmaceutical and non-pharmaceutical interventions, their
potential combinations, length, intermittence, depth, etc. helping to take appropri-
ate decisions. Then, it becomes relevant to develop and tune new epidemic dynamic
models able to describe the behaviour of new infectious illnesses [2–5].

The disease transmission process can be described by mass-action kinetics using
differential equations resulting in analytic expressions [6]. In this sort of models,
the community members are aggregated into a few compartments identified with
the different states of the disease. These models are characterised by the rates of
transition among compartments. Then, the model complexity is determined by the
number of compartments and pathways required to describe the disease dynamics
with sufficient accuracy [7, 8]. An homogeneous population is implicitly assumed in
the above definitions. Age, geographic, social-economic and activity heterogeneity
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can be included into the model yielding more compartments and a contact matrix
interconnecting the groups [9–11].

Simpler and well-known compartmental models are the Susceptible - Infected
(SI), the Susceptible - Infected - Susceptible (SIS), the Susceptible - Infected - Recov-
ered (SIR) and the Susceptible - Exposed - Infected - Recovered (SEIR). All of
them consider a reduced number of health status states setting up the basis for more
exhaustive dynamic models [16, 17]. To deeply evaluate the health system occu-
pancy level, consider the effects of undetected cases, assess the effectiveness of social
restrictions, and look for optimal vaccination strategies among other alternatives,
dynamic models that consider a greater number of intermediate health status are nec-
essary. It is also essential to classify the considered population into several age bands
and to incorporate their social interconnections. Besides, these models must present
enough inputs, coefficients or parameters to describe possible pharmaceutical and
non-pharmaceutical interventions [12, 13, 18]. Interesting reviews about these topics
can be found in [14, 15].

In the described context, the present work introduces an extended compartmen-
tal SEIR dynamic model that allows predicting the disease evolution, the detection
campaigns and isolation policies effectiveness (jointly applied or not), the effects of
different vaccination strategies with or without immunity loss, and the local con-
sequences produced by imported cases. To this end, the considered population is
divided in fifteen age bands of 5-year width, each one of them described by a seven-
teen health status dynamic model. All of these models are interconnected through a
function that interprets the epidemic transmission channels, including several param-
eters and coefficients that allow representing different intervention policies (social
distancing, general quarantines or mobility restrictions, use of masks, etc.). This func-
tion is modulated by a matrix that considers the risky contacts (in terms of virus
transmission) among people from different age bands. This matrix, usually called risk
contact matrix, characterises in some way the social behaviour of a given population.
The proposed segmented model permits the user to include different parameters val-
ues for each age band, thus allowing a better characterisation of their particularities
and dynamic behaviours. Differing from other epidemiological models, the proposed
one here can be used to evaluate different vaccination campaigns, the potential loss
of immunity and considers the imported cases. Also, the contagion rate function
uses the risk contact matrix only for the non-isolated cases and considers different
control coefficients for the hospitalised, isolated and not isolated cases. Further, the
proposal includes a switched controller for model tuning purposes. This controller is
only used for adjusting unknown parameters due to the NPI policies. The inclusion
of this controller simplifies adjusting the model against actual data. The proposed
model was tuned to the Argentinian case using the official statistics properly pro-
cessed. Three simulation scenarios (including different testing levels and vaccination
strategies, the opening of some activities and possible immunity loss) illustrate the
model capacity and potential as a decision support framework for this and future
pandemics.
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2 Model

The proposed epidemiological dynamic model is built around a classic SEIR topol-
ogy properly modified to take into account an extended set of intermediate health
status compartments, the effect of imported cases, detection campaigns, isolation and
mobility restrictions interventions, the risky contacts among individuals, the medium-
term consequences of partial vaccination schemes and lost of immunity. To represent
these effects the whole model is developed in fifteen 5-year width layers (or age
bands) linked through a transmission rate function which depends on an inter-age
risk contacts matrix, typical of each country (cultural effects).

A schematic representation of each one of these model layers is depicted in Fig. 1.
This plot shows a compartmental structure with seventeen health status blocks. They
are mainly organised in two branches that partially converge at the right side of the
figure where several blocks related to health conditions that require hospitalisation
take place.

Specifically, the upper orange branch represents the health status sequence cor-
responding to infected people early detected and isolated. The bottom branch in
blue considers the health status progress of infected people not early detected. Start-
ing from a healthy population of N individuals without specific antibodies against
SARS-CoV-2, the upper branch model describes the health status sequence followed
by infected individuals early detected and isolated through testing campaigns. After
being infected with a transmission rate β and detected with a probability δ, these
exposed isolated individuals (EI ) become contagious after Te days without present-
ing any symptoms. This asymptomatic contagious illness stage (AI ) lasts Ta days
on average. After this period, an age-dependent portion σs of these individuals start
to exhibit severe symptoms (SSI ) and require hospitalisation. The rest of them only
experiment mild symptoms (MSI ) being capable to go through the illness process
without any serious trouble, recovering their healthy status (R) after Tl1 days on
average. On the other hand, non-detected exposed individuals (ENI ) develop an iden-
tical health status evolution characterised by the same illness parameters (Te, Ta and

Fig. 1 Schematic structure of the compartmental COVID-19 model
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σs). However, unlike the previous case, the model considers that a portion ε of non-
isolated individuals presenting mild symptoms can be late detected (MSLI ) by testing
campaigns or medical consultation, and properly isolated during a safe period of Tl2
days. The rest of them (MSNI ), like in the upper line, can be considered completely
recovered (RNI ) after a period of Tl1 days on average. All individuals presenting
severe symptoms, being previously isolated or not, are finally admitted in health insti-
tutions for control and care. Typically, after Tt days on average, an age-dependent
portion μ of these patients develop breathing complications and must be moved to
ICU equipped with ventilators. The remaining patients run through the illness pro-
cess with common cares and, after an average period of Tr1 days, they are discharged
from hospital and considered recovered (R). Regretfully, an age-dependent portion
ρ of those who were admitted in ICU will finally die after an average period of
Td days. The others will stay there for average period of Th days, after which they
will return to common care units (Hb) to complete recovery treatments before being
discharged from hospital. This last process will demand a period of Tr2 days on
average. As it can be seen in Fig. 1, the compartment of recovered people is com-
posed by two sub-blocks, R and RNI , allowing differentiating between individuals
who have been detected and isolated in any moment of the illness period or not.
Anyway, all recovered patients are supposed to acquire temporal specific antibod-
ies against SARS-CoV-2. Despite that it is even uncertain nowadays, the possible
specific medium-life of immunity is modelled through a period of Tri days, after
which these individuals would return to the susceptible compartment and could be
reinfected. This path can be enabled in simulations through the binary parameter
SWR , where SWR = 0 means that immunity is permanent. Vaccination campaigns
are also considered through the V state which is feed by the vaccination rate (VR).
A possible Tim days average period of temporal immunity can be enabled through
the binary parameter SWV . Imported cases (IC) can be considered through direct
input feed paths to the exposed, symptomatic and asymptomatic compartments, on
the detected or non-detected branch either. For a matter of simplicity and available
data, the imported cases enters at the isolated asymptomatic compartment.

At this point, it is important to emphasise that the explained model assumes the
following simplifications: severe cases are treated at hospital while patients develop-
ing smooth symptoms stay at home; no previous co-morbidity nor sex distinction is
taken into account; ICU patients come from previous hospital stages only and finally,
each age band has a fixed initial population, i.e. births, mortality by other causes
and moving between age bands are not considered. This last assumption is fairly
true for short/medium term simulations. Following the previous description and tak-
ing into account the nomenclature of Fig. 1, the dynamic expressions corresponding
to the states of each age band (i = 1 . . . 15) can be analytically written as shown
in Table 1.

The sub-index i is also used to denote the age-dependent parameters typical of
each age band (see Table 1). Besides, it should be noted that γx = 1/Tx .

The proposed age-dependent transmission rate allows considering different kinds
of epidemic qualitative control measures including pharmaceutical treatments, NPIs
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Table 1 System dynamics
Ṡi = −βiSi + γimV SWV + γri (R + RNI ) SWR − V R

V̇ = V R − γimV SWV

ĖNIi
= (1 − δ)βiSi − γeENIi

ĖIi
= δβiSi − γeEIi

ȦNIi
= γeENIi

− γaANIi

ȦIi
= γeEIi

− γaAIi
+ IC

ṀSNIi
= (1 − σsi )γaANIi

− (1 − ε)γL1MSNIi
− εMSNIi

ṠSNIi
= σsi γaANIi

− γsSSNIi

ṀSIi
= (1 − σsi )γaAIi

− γL1MSIi

ṠSIi
= σsi γaAIi

− γsSSIi

Ḣai
= γs(SSNIi

+ SSIi
) − μiγtHai

− (1 − μi)γr1Hai

˙ICUi = μiγtHai
− (1 − ρi)γhICUi − ρiγdi

ICUi

Ḣbi
= (1 − ρi)γhICUi − γr2Hbi

Ḋ = ρiγdICUi

ṀSLIi
= εMSNIi

− γL2MSLIi

Ṙ = γl1MSIi
+ γr2Hbi

+ (1 − μi)γr1Hai
+ γl2MSLIi

ṘNI = (1 − ε)γl1MSNIi

(quarantines, isolation, social distance, etc.) and stepped/partial vaccination cam-
paigns. In this way, the proposed dynamic model constitutes a worthy tool to
appropriately evaluate different schemes of epidemic control measures and vaccina-
tion. Thus, it can be used as a decision support framework to reduce the fatal cases
and the epidemic length. Specifically, this age-dependent transmission rate βi can be
written as shown in Table 2.

This expression presents several terms, tuning coefficients and a general constant
parameter λ that affects the whole expression because it represents the SARS-CoV-2
characteristic transmission coefficient. The first term of the equation in Table 2 takes
into account the total non-detected infected people able to freely spread the virus
into the community. This transmission effect is not uniform over all the age bands.
It is weighted considering a risk contact matrix of elements kij that compute those
risk contacts among individuals of equal or different age bands where the SARS-
CoV-2 can be transmitted [19, 20]. Figure 2 graphically shows the aspect of the risk
contact matrix. It is interesting to note that this matrix assumes different shapes for
each society or culture. Specific activities suspension like school, university, etc. are
considered through modulation of the risk contact matrix on the block correspond-
ing to the particular age bands involved. The effect of quarantines, social distance
measures or partial mobility restrictions is uniformly modulated by the coefficient
rc. The second term of the equation in Table 2 involves the total amount of
non-hospitalised isolated infectious people. Because of their condition, these patients

Table 2 Contagion rate function

βi = λ

(
rc	

15
j=1kij

(ANIj
+MSNIj

+SSNIj
)

Nj
+ ra	

15
j=1

(MSLIj
+AIj

+MSIj
+SSIj

)

Nj
+ rhi

	15
j=1

(Haj
+ICUj )

Nj

)
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Fig. 2 Risk contacts matrix (5-year width bands)

do not transmit the virus freely. Indeed, they could only transmit the infection to
housemates, ideally. However, to simplify the model construction a reduced and uni-
form disease distribution effect is considered. Then coefficient ra is used to reflect the
transmission capability of this group of people. Finally, the third term of the equation
in Table 2 considers the transmission capability corresponding to hospitalised people
over each one of the fifteen age bands. Given that these patients can only infect hos-
pital workers, this effect is taken into account through a vector of elements rhi

. It is
straightforward to see that some of these vector elements are zero (the first and last
four age bands).

Partial or stepped vaccination campaigns can be considered through a double
action on the described model. Firstly, the equivalent percentage of artificially
immunised people must be removed from the susceptible compartment of the corre-
sponding age band. This group stays in a separate compartment (see Fig. 1) during the
immunisation period before returning to the compartment of susceptible people. On
the other hand, the risk contact matrix column corresponding to the vaccinated age
band should be affected by a coefficient equal to the immunised people percentage
to take into account close contacts between susceptible and immunised persons.

3 Model Adjustment: the Argentinian Case

The model presented in the previous section was adjusted to represent the pandemic
evolution in Argentina by using the National Health Ministry database adequately
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Table 3 Transition speeds
Transition Parameter Value

E → Ax γe = 1/Te 1/5.1

Ax → Sx γa = 1/Ta 1/2

SSx → Ha γs = 1/Ts 1/10

MSx → R γl1 = 1/Tl1 1/11

MSla → R γl2 = 1/Tl2 1/11

Ha → R γr1 = 1/Tr1 1/10

Ha → ICU γt = 1/Tt 1/3

ICU → Hb γh = 1/Th 1/19

ICU → D γd = 1/Td 1/14

Hb → R γr2 = 1/Tr2 1/10

R → S γri = 1/Tri 1/180

V → S γim = 1/Tim 1/360

processed [21]. Although this public register presents many data fields, it does not
allow to determine all the model parameters. To overcome this gap some of them were
then taken from the specialised literature. Table 3 shows the parameters obtained
from the literature [22–24]. Tables 4 and 5 show the parameters obtained from
National Health Ministry databases. In Table 4, σs , μ and ρ are shared by more than
one age band due to their similarities.

As it was established in the equation of βi (Table 2) the transmission rate is highly
dependent on the daily risk contacts matrix [19, 20]. This matrix, obtained from [20],
counts and classifies by age band all those interpersonal contacts considered as a pos-
itive virus transmission meet in a day. Figure 2 shows a 3D bars representation of the
symmetrised risk contact matrix used for simulations. It is interesting to note in this
plot the high number of risky contacts among low-age bands clearly determined by
school attendance. This matrix is helpful to recreate partial restrictions or particular

Table 4 Transition probabilities
Age band (years) Ax → SSx Ha → ICU ICU → D

σs μ ρ

0–19 0.0489 0.0192 0.3193

20–29 0.0287 0.0138 0.5167

30–39 0.0349 0.0205 0.5657

40–44 0.0414 0.0412 0.6579

45–49 0.0512 0.0634 0.6938

50–54 0.0632 0.0873 0.7046

55–59 0.0810 0.1115 0.7563

60–64 0.1146 0.1479 0.8158

65–69 0.1510 0.1581 0.8541

+70 0.2508 0.1032 0.8847
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Table 5 Argentinian population
by ages (Population Census
2010)

Age band Population Age band Population

(years) (years)

0–4 (N1) 3,306,953 40–44 (N9) 2,176,030

5–9 (N2) 3,327,517 45–49 (N10) 2,074,112

10–14 (N3) 3,447,535 50–54 (N11) 1,932,694

15–19 (N4) 3,456,528 55–59 (N12) 1,761,202

20–24 (N5) 3,154,614 60–64 (N13) 1,491,271

25–29 (N6) 2,965,049 65–69 (N14) 1,188,958

30–34 (N7) 2,952,844 +70 (N15) 2,811,587

35–39 (N8) 2,536,248 Total 38,583,142

activities cancellation during simulations. For example, school attendance suspension
can be emulated by reducing the matrix values corresponding to age bands involved
in these activities. In the same way, elderly people staying at home can be repre-
sented by affecting the last three rows and columns of the risk contacts matrix by an
appropriate reduction factor.

At this point, to completely characterise the model, it remains to determine the
coefficients ra , rh and rc involved in βi (Table 2) and the parameters δ, ε and
λ. As it was previously specified, ra is a factor that modulates the transmission
rate of infected isolated individuals over the rest of the population. Considering the
effectiveness of isolation in transmission reduction, this constant was assumed as
ra = 0.05 for all the age bands. In the case of the vector rh, each one of its fifteen
elements (rhi) modulates the transmission effect of the hospitalised patients (patients
in Ha and ICU ) over the considered age band. Supposing that the hospital’s staff
only involves middle-age workers, the first five and the last three elements of rh were
considered zero. Assuming that these institutions preserve a high prophylaxis level,
the remaining elements of rh were fixed in 0.05. Finally, coefficient rc represents a
transmission rate modulation factor that mainly considers the population mobility.
Given that it is hard to accurately determine this time-dependent factor, it was used
to dynamically adjust the model by matching the predicted cases to the registered
ones. With this purpose, a control algorithm that regulates the rc value to match the
detected infectious population in the model (AI +MSI +SSI +Ha +ICU +MSLI )
with the same kind of registered patients was implemented.

To show the effectiveness of this adjustment methodology some simulations were
run and are presented in Fig. 4. To start the local virus spreading, these simulation
were conducted using the arrival date of the positive imported cases registered in
Argentina, temporally distributed through the fifteen age bands according to Fig. 3.
Detection campaigns were considered by choosing δ = 0.2 and ε = 0.01. The typical
SARS-CoV-2 transmission rate was taken as λ = 0.22 [3].

Figure 4 shows the adjustment process result. Specifically, it presents the active
cases, the cumulative recovered patients, people in ICU and the fatal cases. In all
these plots solid blue, cyan and black lines represent the model predictions cor-
responding to the isolated (detected), not isolated (not detected) and total cases,
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respectively. The y-axis values were normalised to the total population N. On the
other hand, green solid lines depicts the corresponding registered cases. The adjust-
ment process was carried out using the isolated active cases because they are the only
ones that can be contrasted against public databases. Registered active real cases were
divided into two time periods. The first period was used to adjust the model (solid
red line) using the proposed algorithm. The second period (solid green line) was
employed to validate the previous tuning. During this last stage, the rc coefficient is
hold constant at the last value registered during the adjustment period. More details
about the tuning procedure are developed in Appendix. As it is clearly shown, Fig. 4
reveals a very good model adjustment, not only during the tuning process but also
after it. This positive validation result endorses the proposed model and its possible
use to predict the epidemic evolution in different scenarios, helping to qualitatively
evaluate social and economic consequences of possible interventions.

4 Simulation Results

Several computing simulations were conducted to show the proposed dynamic model
potential in predicting the effectiveness of public health policies against SARS-
CoV-2 pandemic. These simulations were organised in three scenarios, recreating
possible pharmaceutical and non-pharmaceutical interventions. The first one only
considers detection campaigns (with different degrees of intensity) and social dis-
tance or mobility restrictions as the unique possible public actions. The second and
third scenarios take into account different combinations of vaccination by age bands,
immunity length (on vaccinated and recovered people) and partial activity’s restoring
like school attendance.
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All these scenarios were simulated considering the Argentinian context during
the local SARS-CoV-2 spreading, which involves school/university attendance sus-
pension and a sustained mobility reduction for people over 60 years old. As it was
mentioned in the previous section, these situations are recreated on the risk contacts
matrix reducing the values corresponding to the age bands involved in these activi-
ties. Following this criterion, the first five age bands (school to university age bands)
and the last three rows and columns (+60 years old) of the original risk contact matrix
presented in Fig. 2 were multiplied by a 0.1 and a 0.4 factor, respectively. After this
action, the risk contacts matrix effectively used assumes the shape shown in Fig. 5.
These kinds of restrictions can be voluntary removed (partial or totally) during sim-
ulations to analyse the consequences of possible public interventions. It is important
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to distinguish that general mobility restrictions, social distancing measures and sim-
ilar actions are jointly represented through the rc coefficient and not through the risk
contacts matrix manipulation.

4.1 Scenario A: Detection Campaigns andMobility Restrictions

In the previously referred context, this scenario presents the predicted pandemic evo-
lution considering detection campaigns with different intensities (δ) in combination
with several social distancing/mobility restrictions levels expressed through the rc
value. These simulations were carried out taking the parameters values previously
obtained and specified for the Argentinian case and starting from an initial state
where all the population is considered into the susceptible compartment. The local
pandemic simulations were triggered by considering the imported cases time profiles
mentioned at the end of Section 3.

Figure 6 presents the simulation results corresponding to the evolution of ICU
occupancy, the cumulative number of recovered patients and the cumulative fatal
cases for nine combinations of rc and δ values. The plots of this figure are organised
in two columns considering different ICU situations. The boxes on the left column
account for an unlimited ICU capacity, while the ones on the right column take into
account the actual ICU saturation.

Like in the previous case y-axis values are normalised with respect to N. As it
can be observed, curves corresponding to different rc values are characterised by
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different colours (rc = 0.2 in black lines; rc = 0.4 in blue lines and rc = 0.6 in red
lines) and curves for different δ values are distinguished through three classes of lines
(δ = 0.1 in solid lines; δ = 0.2 in dashed lines and δ = 0.4 in dotted lines). Looking
at this figure it is straightforward to conclude that increasing efforts in detection do
not produce a substantial reduction in the final fatal or recovered cases when mobility
and social distancing are not restrained in a moderate way at least. On the contrary,
holding a relatively low rc value (reduced social mobility, social distancing, mask
wearing, etc.) strengthen in a considerable way the positive effect of heavy detection
campaigns on the final number of fatal cases. This behaviour can be clearly observed
in the curves corresponding to rc = 0.2 (Fig. 6). These simulation results reinforce
the importance of jointly manage this kind of NPIs. Analysing both figure columns it
is straightforward to see that the impact of considering ICU saturation is not substan-
tial except for the regrettable final number of fatal cases. This fact is directly related
to the high probability of dying (ρi) in ICU. Considering this result, all the simula-
tions presented in the following subsections do not consider ICU saturation. The idea
behind this decision is to put in evidence the hypothetical extra ICU capacity, nec-
essary to attend to all critical patients. This information is crucial if new treatments
which improve the survival rate of people in ICU arise. Also, a high ICU capacity
saturation shows an undoubtedly wrong epidemic handling.

4.2 Vaccination and Partial Activities Restoring

The simulation scenarios presented in this subsection show the effects of dif-
ferent vaccination strategies combined with the reopening of specific activities
like school/university attendance, mobility changes for people that belongs to
the last age bands (elderly people) and a possible delayed reinfection. All these
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simulations include the period of adjustment to the Argentinian case already
explained in Section 3. After this tuning process, the rc coefficient is hold constant
up to the end of the simulations. This condition supposes no new general mobility
restrictions or confinements nor substantial changes in the new social habits acquired
during the pandemic time. The reopening of activities focused on specific age bands
is emulated through appropriate risk contacts matrix manipulations, as it was estab-
lished at the beginning of this section. A 100% vaccine effectiveness was considered.
Other similar immunity percentages were tested without essential result changes and
therefore are not reported here.

4.2.1 Scenario B: Vaccination without Reinfection

This subsection presents several vaccination strategies in combination with the
school/university reopening, the end of elderly people confinement and permanent
immunisation by vaccination. All the vaccination campaigns start on January 15,
2021 and last 60 days. The reopening of school/university activities and the end of
mobility restrictions for elderly people is settled on February 15, 2021. These events
are respectively marked with solid and dashed vertical lines in Fig. 7 where simu-
lations results, in terms of susceptible population (S), active cases, people in ICU,
vaccinated people (V ), cumulative recovered patients (R) and cumulative fatal cases
(D) are presented. Vertical axis values are normalised with respect to N with the
exception of vaccinated (V). Some of these plots show in solid green line the corre-
sponding registered cases up to 12/11/2020. The active cases were used to adjust the
model as it was previously explained. After the tuning process the rc coefficient is
hold constant up to the end of all the simulations. In this context, solid blue lines refer

0 200 400 600
days

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
pt

ib
le

s

0 200 400 600
days

0

0.1

0.2

0.3

0.4

0.5

R
ec

ov
er

ed

0 200 400 600
days

0

0.01

0.02

0.03

0.04

A
ct

iv
e 

ca
se

s

NPI w/o change & vac >60 (total)
NPI w/o change & no vac (total)
NPI changes & vac >25, <59 (total)
NPI changes & vac <29, >60 (total)
NPI changes & vac >60 (total)
NPI changes w/o vac (detected)
NPI changes w/o vac (total)
real data
starting vaccination
ending vaccination
ICU limit

0 200 400 600
days

0

0.5

1

1.5

2

2.5

V
ac

ci
ne

d

107

0 200 400 600
days

0

1

2

3

4

5

IC
U

10-4

0 200 400 600
days

0

1

2

3

4

5

D
ea

d

10-3

Fig. 7 Scenarios considering vaccination and activities restoring. Violet lines (solid and dashed): no
changes in restrictions nor activities resumption. Violet solid lines: without new pharmaceutical interven-
tions. Violet dashed lines with vaccination for +60 YO population. Blue, black, cyan, brown and grey lines
consider the reopening of school/university activities and the end of mobility restrictions for elderly peo-
ple. Solid blue lines (detected cases) and black lines (total cases) for no vaccination at all. Cyan dashed
lines: vaccination for +60 YO people. Brown dashed lines: vaccination from 25 to 59 YO. Grey dashed
lines: vaccination for up to 29 and over 60 YO. Green lines: real registered cases
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to the model evolution for detected cases. Lines in black represent the total cases for
identical conditions. As it can be seen, this case is characterised by a heavy second
wave with an unbearable number of fatal cases.

Violet lines (solid and dashed) represent the pandemic evolution when no changes
in restrictions nor activities resumption takes place. The solid lines correspond to
the case without new pharmaceutical interventions while dashed lines consider vac-
cination for over 60 years old population. As can be seen from the figure, although
vaccination of this age group (without new activities) produces a somewhat faster
drop of the active cases than without vaccination, the effect is not very noticeable
given that these age bands do not actively participate in the distribution of the virus
for being “self-isolated”. Thus, the effect of vaccination on this age range does not
have a remarkable effect on the pandemic extension, but it has an important collat-
eral advantage which is the end of elderly people auto isolation and a decrease of
disease mortality (since it is the range most affected age group). In this sense, it
should be noted that the violet lines represent a fictional scenario because isolation
measurements cannot be sustained indefinitely. It is only included for comparative
issues.

The remaining-coloured dashed lines represent different vaccination alternatives,
always considering the reopening of school/university activities and the end of mobil-
ity restrictions for elderly people on the dates already specified. In this context, cyan
dashed lines represent the pandemic evolution when the vaccination campaign only
includes over 60 years old still susceptible people (4.8M people approximately),
brown dashed lines consider vaccination on still susceptible people from 25 to 59
years old (12.1M people approximately) and grey dashed lines take into account
vaccination on still susceptible people up to 29 and over 60 years old (22M people
approximately). It should be noted that all these last fictional vaccination campaigns
only consider susceptible people to reduce the number of vaccines necessary for the
first campaign. It is interesting to note that the first two vaccination strategies present
an important second wave. The height of this wave is lower in the second alterna-
tive (brown lines) because of the higher number of vaccinated people. Paradoxically,
as it can be observed, this last option also determines a bigger number of fatal cases
and people in ICU because elderly susceptible people are not being protected. The
second alternative (brown lines) reach the ICU saturation limit, whose total capacity
is denoted by the horizontal dotted black line, meanwhile the first alternative (cyan
lines) remains below it. Further reductions on the ICU occupancy and fatal cases fig-
ures can be reached by conditioning vaccination to sensitive population segments,
i.e. with the higher values of σs and μ on Table 4.

Finally, the third vaccination strategy (dashed grey lines) avoids the second wave
at expenses of the high number of vaccines applied (22M of people approximately).
This case allows a fast epidemic extinction, a reduced ICU occupancy and the low-
est number of fatal cases, even below to the strategy corresponding to the dashed
violet lines that consider vaccination over 60 years old people without any activities
reopening.

Despite that Fig. 7 only shows the temporal evolution of the added main gen-
eral variables, the model contains a lot of internal information. In this sense, Fig. 8
presents the time evolution corresponding to all the model variables by age bands.
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Fig. 8 Time evolution corresponding to all the model variables by age bands for vaccination over 60 years
old still susceptible people with activities reopening (dashed cyan lines in Fig. 7)

The case plotted is one of the previously seen (dashed cyan line in Fig. 7) and con-
siders vaccination over 60 years old still susceptible people with activities reopening.
It is interesting to note how the vaccination period and immunised age bands can be
clearly observed in the first and last plots of this figure. Besides, it should be noted
that the last age bands are the most affected by fatal cases and that vaccination stops
the deaths rising after the unavoidable delay originated by people already infected at
the vaccination time. It is very important to see from this plot that, to significantly
reduce fatality, vaccination should also include the previous age band (55 to 59 years
old — green solid line). Finally, it is valuable to observe that is the population into
the lower age bands (non-vaccinated) the one that dominates the virus transmission
from the activities reopening.

4.2.2 Scenario C: Vaccination with Reinfection

Until the submission of this work there was no certainty about permanent immu-
nisation against SARS-CoV-2. In this context, this subsection analyses some of the
scenarios previously presented but considering that antibodies by cure or vaccina-
tion only provides for a temporal immunisation. Like in the previous subsection, all
the simulated vaccination campaigns start on January 15, 2021, and the reopening of
school/university activities and the end of mobility restrictions for elderly people is
settled on February 15, 2021. These events are respectively marked with solid and
dashed vertical lines in Fig. 9, where simulations results in terms of susceptible pop-
ulation (S), active cases, people in ICU, vaccinated people (V ), cumulative recovered
patients (R) and cumulative fatal cases (D) are presented. Vertical axis values are
normalised with respect to N with the exception of vaccinated (V).
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Fig. 9 Scenarios considering vaccination, activities openings and reinfection. Solid blue (detected) and
black (total infected people) predicted by the model without vaccination and activities restoring. Violet
dashed lines: permanent immunisation for both vaccinated and cured people. Cyan lines: consider a period
of 180 days immunity length for recovered people. Brown dashed lines consider a period of 180 days
immunity length for recovered people and a year of immunity length for vaccinated people. Green lines:
real registered cases

Specifically, Fig. 9 depicts in solid blue and black lines the detected and total
infected people respectively predicted by the model in the case of considering no vac-
cination nor activities restoring. Green lines denote the corresponding real registered
cases. Different immunity length scenarios are presented in violet, cyan, and brown
dashed lines. All of them consider vaccination over 20 years old people from the
specified date. The first scenario, in violet dashed lines, supposes permanent immu-
nisation for both vaccinated and cured people. The other cases consider a period of
180 days immunity length for recovered people (in cyan dashed lines), and the previ-
ous condition plus a year of immunity length for vaccinated people (in brown dashed
lines).

As it can be observed both last cases (in cyan and brown dashed lines) present
a similar evolution in most of the plots because reaching a permanent immunisa-
tion through one dose or through periodic vaccination is totally equivalent. The main
difference lies in the final number of vaccines necessary to reach the immunity for
population over 20 years old. The second wave observed in these two cases is pro-
duced by the activities reopening in combination with the low age bands periodic
reinfection (not vaccinated). This second wave is also present in the case of perma-
nent immunisation for cured and vaccinated people (violet dashed lines), but it is
considerably lower because in this last case there is no possibility of reinfection. This
is the cause of the epidemic extinction that can be observed for this case but not in the
previous ones. Any of the vaccination scenarios considered in this subsection present
a higher number of active patients than the case with no vaccination nor activities
reopening (black solid lines), and a similar number of final fatal cases. However,
despite this apparent disadvantage, the former alternatives allow to partially recover
the economic activity and the general health status of the population.
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5 Conclusions

An age-band compartmentalised model for predicting COVID-19 spread was pre-
sented. The model was fitted to the epidemic situation reported in Argentina and
different scenarios involving early detection campaigns, vaccination of age bands,
reopening of activities and potential loss of acquired immunity were evaluated.

The first scenario emphasised that detection campaigns should be combined with
NPIs like mobility reduction and social distancing. A second scenario involving vac-
cination of different age bands, school activities openings and the ending of mobility
restriction for +60 years old people showed that second waves of infections may
appear depending on the selected group to be vaccinated. Therefore, determining
the sensitive population is important when the number of available vaccines is lim-
ited. For instance, when +60 age bands are vaccinated the fatality can be reduced
with respect to other combinations that do not consider these age bands. Also, the
results show that including the previous band (i.e. the 55–59 age band) in the vaccina-
tion campaign is important to reduce even more the mortality, suggesting a decedent
age order for vaccination. Possible reinfection after a finite immunity period was
considered in a third scenario. Although new infection waves appear after activ-
ities reopening, the vaccination avoids surpassing the healthcare system capacity
and reducing the mortality rate even with respect to alternatives that do not include
vaccination nor restoring of forbidden activities.

In future works, the model can be considered in a closed-loop control framework
in order to determine sanitary actions that can be adapted according to the availability
of new treatments, medical resources and the evolution of the disease.

Appendix

This section is devoted to extending the tuning process explanation. The model vari-
able rc represents a transmission rate modulation variable that concentrates different
factors like mobility restrictions, the effect of wearing masks, social distance policies,
etc. (see Table 2). Given that it is hard to accurately determine this time-dependent
factor, it was adjusted dynamically by matching the predicted active cases to the reg-
istered ones. With this purpose, a control algorithm that regulates the rc value to
match the detected infectious population in the model with the same kind of reg-
istered patients was implemented. This controller is designed using the theoretical
sliding mode framework [25]. It is important to note that the controller is only used to
adjust the model and not as an NPI. Figure 10 depicts a schematic diagram showing
the control structure used for the tuning process. Some of the model inputs corre-
spond to parameters obtained through the real data processing like σs , μ, ρ while
others depend on considerations like the immunity period length, the intensity of
test campaigns, percentage of vaccinated people per age band and distribution of
imported cases. As it is sketched in Fig. 10, the tuning loop modifies rc based on the
comparison between the model active cases and the real active cases, denoted here as
ACM = AI + MSI + SSI + Ha + ICU + MSLI and ACR respectively.
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Fig. 10 Schema for the model tuning process: a controller adjusts the rc value to match model active cases
with the registered ones

In this way, the controller tries to drive the system model to fulfil the condition
σ(t) = ACR − ACM = 0 following the time evolution of real active cases. To
this end, the control action is defined as u(t) = (sign(σ (t)) + 1)/2, being equal
to 1 (total mobility freedom) when ACM ≤ ACR and 0 (total mobility restriction)
when ACM > ACR . Under the theoretical sliding mode control framework, this fast
switched action will drive the system to operate with an average rc value matching
the NPI policies applied by the government. To ensure the controller effectiveness
in reaching the control objective, the design has to satisfy some theoretical issues:
to comply the transversality condition and to present enough control action. These
conditions were evaluated and are fulfilled by the proposed controller. For a matter
of space and scope, the analysis of these conditions is not included in the paper. The
interested reader is referred to [25].

In Fig. 4, the red line in the first subplot represents the time interval when this
controller is active, i.e. the tuning phase. Then, the controller is disconnected, fixing
rc to the proper averaged value of u(t) for the rest of the simulation. In this way, a
proper rc value can be estimated and used for different scenarios simulation.
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