DISCRETE AND CONTINUOUS d0i:10.3934/dcds.2011.31.XX
DYNAMICAL SYSTEMS
Volume 31, Number 2, October 2011 pp. X—XX

PERIODIC SOLUTIONS OF RESONANT SYSTEMS WITH
RAPIDLY ROTATING NONLINEARITIES

PABLO AMSTER

Departamento de Matematica, Universidad de Buenos Aires and CONICET
Ciudad Universitaria, Pabellén I, (1428) Buenos Aires, Argentina

MONIcA CLAPP

Instituto de Matematicas, Universidad Nacional Auténoma de México
Circuito Exterior, C.U., 04510 México D.F., Mexico

ABSTRACT. We obtain existence of T-periodic solutions to a second order sys-
tem of ordinary differential equations of the form

u” +eu' +g(u)=p
where ¢ € R, p € C(R,RY) is T-periodic and has mean value zero, and g €
C(RN RYN) is e.g. sublinear. In contrast with a well known result by Nirenberg
[6], where it is assumed that the nonlinearity g has non-zero uniform radial
limits at infinity, our main result allows rapid rotations in g.

1. Introduction. In [4] Lazer considered the periodic problem for the scalar dif-
ferential equation

2" +ca’ + g(z) = p(t), (1)
where ¢ is any constant and p(¢) is a continuous T-periodic function with zero
average. As a particular case of his main result, existence of a T-periodic solution
of equation (1) follows when g : R — R is bounded, continuous, and satisfies

g(z) > 0> g(—x) (2)

for > 0 sufficiently large.

When one interprets the equation as an oscillator, condition (2) means that
outside a compact set the force —g(z) points everywhere toward the origin. The
boundedness condition is assumed in order to avoid the linear resonance occurring
at c =0 and g(z) = A\pz, n =1,2,..., where \,, = (Q’TT”)2 is the n-th eigenvalue of
the T-periodic problem for the linear operator Lz = —x”.

The preceding result admits an immediate generalization to systems. Indeed, if
we consider (1) as a system in RV, where the continuous T-periodic function p(t) is
vector valued with zero average and g = (g1,...,9n) is a bounded continuous map
of R, then condition (2) may be replaced by

gk(xla"'axka""wN) >O>gk($1,-~-,*$k,u.,l’N) (3)
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for xy > O sufficiently large and k = 1,..., N. The existence of a T-periodic solution
follows from the main theorem in [5], which extends Lazer’s result to N > 1 and
applies, in particular, to the case of weakly coupled systems. Many other extensions
of (2) were discussed in the literature around the seventies.

From a topological point of view condition (2) says two different things: firstly,
that g does not vanish outside a compact set; secondly, that its Brouwer degree over
the interval (—R, R) is different from zero when R is large. Thus, one might believe
that a natural extension of (2) to RY could be to require that

g(z) #0  for [z[ = R (4)

and

deg(gv BR(0)7 0) 7é 07 (5)
where deg refers to the Brouwer degree and Br(0) is the open ball of radius R
centered at the origin.

This possible extension was analyzed by Ortega and Sdnchez in [8], where they
constructed an example showing that (4) and (5) are not sufficient to guarantee the
existence of a periodic solution. The pathological g rotates very fast as x moves in
some specific directions.

Motivated by this observation, the following result, which follows from the main
theorem in the work of Ruiz and Ward [10], can be regarded as an extension of the
preceding results.

We write B,.(v) :== {z € RN : |z —v| < r} and B,(v) for its closure, and co(A)
for the convex hull of a subset A of RY. We denote by Cr(R,RY) the space of
T-periodic functions u : R — RY with the uniform norm |[|-|| _, and the mean value

of u by
1T
= T/O u(t) dt.

Theorem 1.1. Let ¢ € R and assume that g € C(RYN,RY) is bounded and satisfies
the following condition:
For each r > 0 there exists R > r such that

0 ¢ co(g(B,(v))) if veRY and |v|=R (6)
and

deg(g, Br(0),0) # 0.

Then, for each p € Or(R,RY) with p = 0, there exists a T-periodic solution of
problem (1).

The role of condition (6) is easily understood when one attempts to solve problem
(1) using Leray-Schauder degree methods. Indeed, the key step for proving Theorem
1.1 consists in showing that, for 0 < A < 1, equation

u’ +cu' + Ag(u) = Ap(t) (7)
has no T-periodic solution on 92, where
Q:={uecCr(R,RY) : ||u—Tl|e <7 [@ <R}

for some accurate r and the corresponding R given by condition (6).
An appropriate value of r is obtained after observing that, if u is T-periodic and
satisfies (7), then

14/ llco < & (lIpllz2 0,7y + Tglloc)
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for some constant k, independent of the data. Thus, the choice of any value r >
ET(||pll 10,7y +T|g|loc) Provides an a priori bound for ||u—1l|. Then, if we assume
that || = R, a contradiction is obtained in the following way: since the convex hull
of g(B,.(u)) is compact, the geometric version of the Hahn-Banach theorem asserts
that there exists a hyperplane H passing through the origin such that g(B, (7)) C
RM\H. As ||[u — Tl|oo < 7, we conclude that g(u(t)) remains on the same side of H
for every value of ¢, which contradicts the fact that fOT g(u(t)) dt = fOT p(t) dt = 0.
Note that, if one fixes p and chooses r as before, the role of Br(0) may be
assumed by a more general domain D C R¥ if conditions (6) and (5) are replaced
respectively by (8) and (9), as follows:
There exists a bounded open subset D of RN with the following properties: for each
v € 0D there exists a hyperplane H, passing through the origin such that

9(B,(v)) C RV\H,, (8)
and
deg(g, D,0) # 0. (9)
/g\
0
Hy

Moreover, as in Lazer’s original result in [4], Theorem 1.1 still holds if g is
unbounded but sublinear, that is,

g|(li) —0 as |u| — oo. (10)
u
Indeed, sublinearity implies that for any given £ > 0 there exists a constant M,
such that
lg(u)| < e|u| + M. for every u € RY.

Thus, if u is a T-periodic solution of (7) for some A € (0, 1], then
[4'lloo < k(IpllL1(0,7) + llullLro,r) + M:T)
<k[lplliomr + MT +eT(|lu— 1l + [])] -

Assume that [a| = R < aKT for some constants e > 1, K > 0. Then, if ||v/]|c > K,
the previous inequality yields

K(1—keT?(1+a)) < k(llpllzro,7y + MT).
Consequently, taking o > 1,

k(llpll 10,7y + M:T)

— KT 1
KT2(1+ )’ Tl kel (Tva) TNCY

O<e<
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we conclude that any T-periodic solution of (7) for A € (0, 1] such that [u| = R < ar
must satisfy

[ ]| o < K and lu —Uloo < 7.

The aim of this paper is to prove the existence of T-periodic solutions to equation
(1) in some situations where condition (8) is not satisfied. More specifically, we shall
allow g(B(v)) to intersect H,, provided that g maps an appropriate subset of B,.(v)
sufficiently far away from H,.

A subset of B,.(v) of the form

S(0) = {u€ Bo(v) : |(u—v,&)] < 5},

for some &, € SN71:= {z € RN : |z| = 1} and § > 0, will be called a strip of width
26.

Our main theorem reads as follows.

Theorem 1.2. Let ¢ € R and assume that g € C(RYN,RYN) satisfies (10) and
p € Op(R,RYN) satisfies p = 0. Further, assume that for some o > 1, and ¢, K and
r satisfying (11), there exists a domain D C By, (0) with the following properties:
(D,) For every v € 0D there exist a hyperplane H,, passing through the origin and
a strip S(v) of width 26 such that g(S(v)) C RN\ H, and

dist(9(S(v)), Hy) > (55 — 1) dist(g(u), H,)
for every u € B,.(v) with g(u) € H,, where H, denotes the closure of the connected
component of RN\ H, not containing g(S(v)).
(D2) deg(ga Da O) 74‘ 0
Then there exists a T-periodic solution u of equation (1) such that w € D and
lu — oo < r.

]
y

In particular, if (6) holds then g(B,(v))NH; = (), and condition (D) is trivially
satisfied. Observe also that, if (6) does not hold and § > %, then condition (D,)
simply says that dist(g(S(v), Hy,) > 0.

Condition (D,) is motivated by some results in the scalar case involving rapidly
oscillating nonlinearities. In the following section we discuss the effect of rapidly
rotating nonlinearities and give some examples where condition (D) allows to ob-
tain existence results in situations where condition (6) fails. The proof of Theorem
1.2 is given in section 3. Finally, in section 4 we give further sufficient conditions
on g which provide a priori bounds on the solutions for a given p, and we present
an example for which the assumptions of our main theorem are satisfied.
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2. The effect of rotation. We begin with a simple remark concerning the scalar
case. From the discussion following Theorem 1.1 it is immediately seen that, for a
given p, the condition

g<0 in I~ and g>0 in T,

where I* are large enough bounded intervals, is sufficient for the existence of a
solution. Indeed, when N = 1 condition (8) for a general domain D = (a,b) simply
reads

g#0 in (a—rya+r)Ud-—r,b+r),
and if the signs of g over (a — r,a + ) and (b — r,b + r) are different the degree
condition is also satisfied.

This means that, in contrast with (2), oscillations of g around 0 at oo are,
in fact, allowed, but the length of the intervals I* where g does not change sign
is determined by g and p, and cannot be arbitrarily small. For instance, when
g(u) = sinwu, there are well known examples of forcing terms p with zero average
and ¢ # 0 such that the problem has no solutions (see [1], [7], [9]).

There are, however, some particular situations in which ¢ is oscillatory, but
solvability for arbitrary p can still be ensured. This is the case of the so-called
expansive nonlinearities, like

g(u) = sin(u!/?).

Indeed, here the gap between consecutive zeros of g becomes arbitrarily large as |u]
tends to infinity. Thus, for any choice of p, the existence of appropriate intervals
I# is verified. Furthermore, since g changes sign infinitely many times, we deduce
the existence of infinitely many solutions.

The preceding argument obviously fails in the case of non-expansive nonlinear-
ities. Despite this fact, some existence results are known when g presents rapid
oscillations (see e.g. [2], [3] and the references therein). For example, assume that g
is bounded from below and that g < 0 over some large interval I~ but no interval
of positivity of g is long enough to satisfy (8). Then it is possible to compensate
this ‘smallness’ by assuming that ¢ is larger than an appropriate constant C' over
some subset of one of these positivity intervals. Again, the value of the constant
depends on p, and also on the length of the interval: faster oscillations require larger
values of g. If we expect to prove solvability for arbitrary p using this approach,
then g must necessarily be unbounded. For example, we may consider a function g
bounded from below with expansive nonlinearities for v < 0, and that behaves as

u?[sin u? 4 1] 4 sin u?
for u > 0. It can be proved that, even if the length of the positivity intervals of g
tends to 0 as u — 400, the large factor u? guarantees solvability for any p.

Our main theorem may be considered as an extension of this idea for rapid
oscillations to the case N > 1. Although an extension of some of the results in [2]
and [3] is rather straightforward for weakly coupled systems, there seem to be no
results which extend the results in [10] for rapidly rotating nonlinearities.

We first observe that Theorem 1.1 provides a better understanding of the non-
existence result given in [8]. Indeed, conditions (4) and (6) are equivalent for N = 1,
but when N = 2 the function

jRe() z

Z)=e€ P — Y,
9p(2) T1 2P

p>0,
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(in complex notation) considered in [8], satisfies (4) but not (6).

It is worth taking a closer look at this function g, in order to understand why
condition (6) is violated for some choices of r. If r > pm and R > 0, then for
29 € OBR(0) it suffices to consider the curve z(t) = zg — t with t € [—pm, p7]. Since
R > 0, the variation of |g,(2(t))| is small, but g,(z(t)) rotates around the origin
and contains points belonging to antipodal rays in each direction.

g (4+1), te[—mm]

Note that |g,(2)| does not depend on p, so the choice of the appropriate r depends
only on p. For fixed p, condition (6) is satisfied for large values of p. An approximate
lower bound for p would be 2-. But (6) fails to hold for values of p which are smaller
than some p(p), i.e. for those nonlinearities g, which rotate too fast.

Note, however, that the effect of rotation appears only when we consider the
image of the whole ball B, (z) under the function g, whereas the image of a vertical
strip

S(2) :={u € B.(z) : |[Re(u) — Re(z)| < 6}

under g remains in the same half-plane for § small enough.

g (d+1it), te€[—m, 7]

According to our main theorem, when (6) fails, existence of solutions can still be
proved if the distance between g,(S(z)) and some line through the origin is large
enough. In this sense, our result can be regarded as a generalization of the above
mentioned results for rapid oscillations in the scalar case. In particular, for a given
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p, existence of solutions can be proved for nonlinearities g, in a range of values of
p which is larger than the one given by condition (6).

3. Proof of the main theorem. Proof of Theorem 1.2. Set
Q={ucOrR,RY): ||u—1|o <r, € D}.
By standard continuation methods, it suffices to prove that the equation
u’ +cu' + Ag(u) = \p (12)

has no solutions in 02 for A € (0, 1].

If u € Q is a solution of (12) for some A € (0,1] then, since we are assuming that
D C By, (0), our choice of K and r := KT yields

|/ ]|oo < K and It —Tl|oo < 7. (13)

Thus, it only remains to prove that w ¢ 9D.
Note that, if we take w, to be the unit normal vector of H, satisfying (g(v), w,) >
0, then condition (D,) is equivalent to the following one:

(Dll) For every v € dD there exist a vector w, € S¥~! and a strip S(v) of width
20 such that

JnE{g(un) we) + (55— 1) (9w, we) > 0 (a4

for every u € B,.(v) with (g(u), w,) <O0.

Arguing by contradiction, assume that 7 € 9D and take wy € SV 1 and a strip
S(@) = {u € B.(0) : [{u—u,&)| < &} with & € SV¥~1 which satisfy (14). Since u
solves (12), we have that

0=/O (g(u(t)), wz) dt:/o (g(u(t)) — Awg, wyg) dt + AT,

where

A ;= inf t ) -
it (g(u(t) we)
This implies that A < 0.

Set ¢(u) := (u,&). From the mean value theorem for vector-valued integrals we
deduce that @ € co(im(u)), where im(u) stands for the image of the periodic function
u. Hence ¢(u) € ¢(im(u)). Thus, setting ¢ € [0,7] such that ¢(u(t)) = ¢(u) and
using (13) we obtain

lo(u(t)) — (@) < [u(t) —u(®)| < K |t —1|.
It follows that u(t) € S(u) if |t — | < &. Using the periodicity of u we conclude
that meas(A4) > 22, where A = {t € [0,T)] : u(t) € S(u)}. Moreover, since [0, 7] is
compact, there exists to € [0, 7] such that (g(u(to)), wz) = A < 0. Therefore,

0> / (g(u(t)) — Awg, wg) dt + TA
A

> 2—}? Ueigl(fﬂ)(g(@),ﬁuﬂ + (T — 2}?) A
=2 it ) + (55 -1) bt v .

veS(w)
contradicting (14). O
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Note that the result is still valid if one considers a more general strip defined by

S(v) ={u € B.(v) : [¢(u) — ¢(v)| < 6},
where ¢ > 0 and ¢ : B,.(v) — R is Lipschitz continuous with constant 1 and satisfies
that p(v) € p(U) for every connected U C B,.(v) such that v € co(U).
This last condition is quite restrictive. It is an open question whether a similar
result holds, for example, for a lower dimensional strip, i.e. for a §-neighborhood of
a subspace of codimension > 1 in B, (v).

4. Conditions on the nonlinearity. In this section we obtain other versions of
our main theorem assuming other conditions on g instead of sublinearity.

In first place, it is easy to prove that in the scalar case no restrictions on the
growth of g have to be imposed if the inequalities in (2) are reversed, that is to say,
if g(u)u < 0 for |u| large enough. This fact suggests to consider the assumption

(g(u),u) < K for all u € RV, (15)

It is readily seen that the case x < 0 is contained in Theorem 1.1.
For k > 0, we consider in fact a weaker assumption, namely, we require that

(g(u),u) < K+ plul® for all v € RY, (16)

where 6 < 2 and p > 0.
Then, if u is a T-periodic solution of the equation

u” +cu' = Np — g(u)), (17)

—/OT<u~,u—u>= (/OT<g<u>,u>—/oT<p7u—u>>

holds, and therefore

equality

' 122 < lIpllzzllu —allzz + w7 + plull 7.

Now we may proceed as in the introduction in order to get bounds K, depending
on some fixed @ > 1, and r := KT such that any T-periodic solution of (17) for
A € (0,1] with |u| < ar satisfies

||u’||OO <K and |u—7|, <7 (18)

For example, if g(z) = e'l*l = z € C, then

z),2) = 7|Z‘2

So condition (15) is not satisfied. However, (16) holds.

Finally, let us point out that there is still another way of obtaining a priori
bounds (18). Again, we recall the case N = 1, and note that condition (10) in
Lazer’s result can also be dropped if we assume instead that g is bounded from one
side, i.e. that either

glu) <M foralueR, or g(u)>M alueR.

cos(|z]).

This condition can be generalized to IV > 1 by assuming that

GRY) ¢+ (RN\,@IHJ , (19)
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where ¢ € RV, and H; C RY are linearly independent hyperplanes through the
origin. In other words, (19) says that the range of ¢ is contained in an ‘angular
sector’ of RYV.

If (19) holds, a priori bounds (18) can be obtained as follows. Let wu satisfy
u” + cu’ + Ag(u) = Ap for some 0 < A < 1, and set

dj = inf {g(u),ws), ;= djuwj,
where {wy,...,wy} is a basis of unit vectors of RY chosen in such a way that

(g(u) — & w;) > 0 for every u € RY. Then
(9(u) —vj,w;) = dj — (vj,w;) = 0.
Thus,
[(u" (1), w))| < (g(u) —vj,w;) + [{v; — p,w;))]|
and, in consequence,

T T
| @ de< [ i = pal ae =T ) = K.
Hence, for each ¢ € [0, 7] we have
(' (), w;)| < K
and
[(u(t) =, w;)| < K;T.
Although sharper results could be obtained by taking r; > K;T and modifying the

definition of Q accordingly, for simplicity we shall consider a value K such that
|4/]|coc < K. Then ||u — U|lcoc < KT :=r. In this case R can be arbitrarily chosen.

Corollary 1. Theorem 1.2 remains true if (10) is replaced by (16) or (19), and
K,r and R are defined as previously shown in this section.

We end this paper with a simple example of a radial nonlinearity g(u) = y(Ju|)u
to which our theorem applies for arbitrary p.
Let v : [0, 400) — R satisfy
V(s) < ps™
for some p, 0 > 0. Thus, condition (16) holds, although ~ is allowed to take arbi-
trarily large negative values.
Let R = ar with a > 1. Regarding condition (D), it proves convenient to choose

D = Bgr(0) and, for [v| = R, to take w, = —% and

Sw) ={u € B, (v) : [{u—v,v)| <IR}.

Then, {g(u),w,) = — 2L (u, ).

Let us assume that v(R) < 0 and that v £ 0 in [R — 7, R + 7], since otherwise
Theorem 1.1 applies. Then (g(v),w,) > 0 and condition (14) reads

— sup Y(|lul){u,v) > (L - 1) v(Jul){u,v) for all u € B,(v),
u€S(v) 20
or equivalently
— sup Julv(Jul) cos(Buy) > (i - 1) ty(t) forallte (R—rR+7),
u€eS(v) 26
where 3, , denotes the angle between v and v. As R = ar, a simple computation
shows that cos(By,,) > 7%2*1 for every u € B, (v).
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Assume that ¢ > 0 is chosen so that () < 0 for every ¢t € (R—J, vV R% 4+ 20R + r2).
Then (|u|) < 0 for every u € S(v) and a sufficient condition for the above inequal-
ity to hold is

2-1
B = sup ty(t) > (L - 1) sup  ty(t). (20)
@ R—6<t<VRZ+26R+12 26 R—r<t<R+r
For example, we may consider
: f
t) = t(sin(t?) — 1 .
1(0) = tsint) ~ ) + H

Set R, :=4/(2n— §) m and 6, := 1/2y/n. Since for n large enough

ty(t) < —t* if |t —R,| < dn
and

sup  ty(t) = O(t' ),
R—r<t<R+r

then for any fixed p we may choose n large enough and § € (0, ,) so that

VR2+20R, + 12 < Rp+,

and (20) holds.
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