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Self-dual projective toric varieties

Mathias Bourel, Alicia Dickenstein and Alvaro Rittatore

Abstract

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective
T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms
of the configuration of weights of V .

1. Introduction

The notion of duality of projective varieties, which appears in various branches of mathematics,
has been a subject of study since the beginning of algebraic geometry [12, 16]. Given an
embedded projective variety X ⊂ P(V ), its dual variety X∗ is the closure in the dual projective
space P(V ∨) of the hyperplanes intersecting the regular points of X non-transversally.

A projective variety X is self-dual if it is isomorphic to its dual X∗ as embedded projective
varieties. The expected codimension of the dual variety is 1. If this is not the case, then X
is said to be defective. Self-dual varieties other than hypersurfaces are defective varieties with
‘maximal’ defect.

Let k be an algebraically closed field of characteristic 0. Let T be an algebraic torus over k

and V a finite-dimensional T -module. In this paper, we characterize self-dual projective toric
varieties X ⊂ P(V ) equivariantly embedded, in terms of the combinatorics of the associated
configuration of weights A (cf. Theorems 4.4 and 4.16) and in terms of the interaction of
the space of relations of these weights with the torus orbits (cf. Theorems 3.2 and 3.8). In
particular, we show that X is self-dual if and only if dimX = dimX∗ and the smallest linear
subspaces containing X = XA and X∗ have the same dimension; see Theorems 3.3 and 3.7.

Given a basis of eigenvectors of V and the configuration of weights of the torus action on
V , it is not difficult to check the equality of the dimensions of X and its dual (for instance,
by means of the combinatorial characterization of the tropicalization given in [6]). But the
complete classification of defective projective toric varieties in an equivariant embedding is
open in full generality and involves a complicated combinatorial problem. For smooth toric
varieties this characterization is obtained in [8]; the case of Q-factorial toric varieties is studied
in [2]. For non-necessarily normal projective toric varieties of codimension 2, a characterization
is given in [7]. This has been extended for codimensions 3 and 4 in [5].

For smooth projective varieties, a full list of self-dual varieties is known [9, 10, 16]. This list
is indeed short and reduces in the case of toric varieties to hypersurfaces or Segre embeddings
of P1 × Pm−1, for any m � 2, under the assumption that dimX � 2 dim P(V )/3 . This was
expected to be the whole classification under the validity of Hartshorne’s conjecture [10].
We prove that this is indeed the whole list of self-dual smooth projective toric varieties in
Theorem 5.8.
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There exist some classical examples of self-dual non-smooth varieties, as the quartic Kummer
surface. Popov and Tevelev gave new families of non-smooth self-dual varieties that come
from actions of isotropy groups of complex symmetric spaces on the projectivized nilpotent
varieties of isotropy modules [13, 14]. As a consequence of Theorem 4.4, it is easy to construct
new families of self-dual projective toric varieties in terms of the Gale dual configuration (see
Definition 4.1).

A big class of self-dual toric varieties are the toric varieties associated to Lawrence
configurations (see Definition 5.1), which contain the configurations associated to the Segre
embeddings. Lawrence constructions are well known in the domain of geometric combinatorics,
where they are one of the prominent tools to visualize the geometry of higher dimensional
polytopes (see [18, Chapter 6]); the commutative algebraic properties of the associated toric
ideals are studied in [1]. We show in Section 5 other non-Lawrence concrete examples for any
dimension bigger than 2 and any codimension bigger than 1.

We also introduce the notion of strongly self-dual toric varieties (see Definition 6.1), which
is not only related to the geometry of the configuration of weights but also to number
theoretic aspects. This concept is useful for the study of the existence of rational multivariate
hypergeometric functions [3, 11].

In Section 2, we gather some preliminary results about embedded projective toric varieties
and duality of projective varieties. In Section 3, we characterize self-dual projective toric
varieties in terms of the geometry of the action of the torus and we give precise assumptions
under which self-dual projective varieties are precisely those with maximal defect. In Section 4,
we give two (equivalent) combinatorial characterizations of self-duality. In Section 5, we collect
several new examples of self-dual (non-smooth) projective toric varieties. Finally, in Section 6
we study strongly self-dual toric varieties.

2. Preliminaries

In this section, we collect some well-known results and useful observations on projective toric
varieties and duality of projective varieties.

2.1. Actions of tori

Let T be an algebraic torus over an algebraically closed field k of characteristic 0. We denote
by X (T ) the lattice of characters of T ; recall that k[T ] =

⊕
λ∈X (T ) kλ. Any finite-dimensional

rational T -module V , dimV = n, decomposes as a direct sum of irreducible representations

V ∼=
n⊕

i=1

kvi, (2.1)

with t · vi = λi(t)vi, λi ∈ X (T ), for all t ∈ T .
The action of T on V canonically induces an action T × P(V ) → P(V ) on the associated

projective space, given by t · [v] = [t · v], where [v] ∈ P(V ) denotes the class of v ∈ V \ {0}.
Recall that an irreducible T -variety X is called toric if there exists x0 ∈ X such that the orbit
O(x0) is open in X.

Let A = {λ1, . . . , λn} (which may contain repeated elements) be the associated set of weights
of a finite-dimensional T -module V ; we call A the configuration of weights associated to the
T -module V . To any basis B = {v1, . . . , vn} ⊂ V of eigenvectors, we can associate a projective
toric variety by

XV,B = O
([∑

vi

])
⊂ P(V ).
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Define by Tn−1 = {∑ pivi ∈ P(V ) :
∏
pi �= 0}. The dense orbit O([

∑
vi]) in XV,B coincides

with the intersection XV,B ∩ Tn−1. Observe that since dimXV,B is equal to dimO([
∑
vi]), it

follows that dimXV,B is maximal among the dimensions of the toric subvarieties of P(V ), that
is, those of the form O([v]) for some [v] ∈ P(V ).

Based on the decomposition (2.1), in [12, Proposition II.5.1.5] it is proved that any projective
toric variety in an equivariant embedding is of type XV,B for some T -module V and a basis of
eigenvectors B = {v1, . . . , vn} of V , in the following sense. Let U be a T -module and Y ⊂ P(U)
be a toric subvariety; then there exist A = {λ1, . . . , λn} ⊂ X (T ) (with possible repetitions)
and a T -equivariant linear injection f : W :=

⊕n
i=1 kwi ↪→ U , t · wi = λi(t)wi, such that the

induced equivariant morphism f̂ : P(W ) ↪→ P(U) gives an isomorphism XW,B ∼= Y . Moreover,
let W ′ be another T -module, B′ = {w′

1, . . . , w
′
n} ⊂W ′ a basis of eigenvectors of W ′ such

that t · w′
i = λi(t)w′

i, and consider f ∈ HomT (W,W ′) given by f(wi) = w′
i. Clearly, f is an

isomorphism of T -modules, and its induced morphism f̂ : P(W ) → P(W ′) is an isomorphism
such that f̂(XW,B) = XW ′,B′ .

In view of the preceding remark, the following notation makes sense.

Definition 2.1. The projective toric variety XA associated to the configuration of weights
A is defined as

XA = XV,B = O
([∑

vi

])
⊂ P(V ),

where V is a T -module with A as associated configuration of weights.

We can make a series of reductions on A and T , as in [6]. First, the following easy lemma
allows to reduce our problem to the case of a faithful representation.

Lemma 2.2. Given a T -module V of finite dimension and A the associated configuration of
weights, consider the torus T ′ = HomZ(〈A〉Z,k

∗), where 〈A〉Z ⊂ X (T ) denotes the Z-submodule
generated by A. The representation of T in GL(V ) induces a faithful representation T ′ →
GL(V ), which has the same set theoretical orbits in V .

We can then replace T by the torus T ′. It is easy to show that this is equivalent to the fact
that 〈A〉Z = X (T ), which we assume from now on without loss of generality.

Next, we enlarge the torus without affecting the action on P(V ); this will allow us to easily
translate affine relations to linear relations on the configuration of weights. If we let the
algebraic torus k∗ × T act on V by (t0, t) · v = t0(t · v), then the actions T × P(V ) → P(V ) and
(k∗ × T ) × P(V ) → P(V ) have the same set theoretical orbits. More in general, let λ ∈ X (T )
and A′ = {λ+ λ1, . . . , λ+ λn}. Consider the T -action on V given by t ·λ vi = (λ+ λi)(t)vi. The
actions · and ·λ coincide on P(V ), and the corresponding variety XA′ coincides with XA. Hence,
we can assume that there is a splitting of T = k∗ × S in such a way that (t0, s) · v = t0(s · v)
for all v ∈ V , t0 ∈ k∗ and s ∈ S.

In fact, the previous reductions comprise the following more general setting.

Lemma 2.3 [12, Proposition II.5.1.2]. Consider T, T ′ two tori and two finite configurations
of n weights A = {λ1, . . . , λn} ⊂ X (T ), A′ = {λ′1, . . . , λ′n} ⊂ X (T ′). Assume that there exists a
Q-affine transformation ψ : X (T ) ⊗ Q → X (T ′) ⊗ Q such that ψ(λi) = λ′i for all i = 1, . . . , n.
Then XA = XA′ .
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Remark 2.4. (1) The dimension of the projective toric variety XA equals the dimension
of the affine span of A.

(2) Note that if A = {λ1, . . . , λn} is contained in a hyperplane off the origin, then XA =
P(V ) precisely when dimT = n and the elements in A are a basis of X (T ).

(3) If we denote by d the dimension of the affine span of A, then XA is a hypersurface if
and only if n = d+ 2. In this situation, either A coincides with the set of vertices of its convex
hull Conv(A) ⊂ X (T ) ⊗ R, or Conv(A) contains only one element λ ∈ A in its relative interior,
and A \ {λ} is the set of vertices.

We end this paragraph by recalling some basic facts about the geometric structure of a toric
variety XA.

Lemma 2.5 [4]. Let A = {λ1, . . . , λn} ⊂ X (T ) be a configuration, where {λ1, . . . , λs} is the
set of vertices of Conv(A). Set Xi = Spec(k[Z+〈(λj − λi) : λj ∈ A〉]), i = 1, . . . , s. Then Xi is
an affine toric T -variety, and there exist T -equivariant open immersions ϕi : Xi ↪→ XA, in such
a way that

XA =
s⋃

i=1

ϕi(Xi) =
s⋃

i=1

Spec(k[Z+〈λj − λi : λj ∈ A〉]).

In particular, XA is a normal variety if and only if Z+〈λj − λi : λj ∈ A〉 = (R+〈λj − λi :
λj ∈ A〉) ∩ X (T ) for all i = 1, . . . , s.

Moreover, XA is a smooth variety if, for all i = 1, . . . , s, there are exactly dimXA edges of
Conv(A) from λi, and the subset {λjh

− λi : h = 1, . . . ,dimXA} is a basis of X (T ), where λjh

is the ‘first’ point on an edge from λi.

Proof. See, for example, [4, Appendix to Chapter 3].

2.2. Configurations in lattices, pyramids and projective joins

Let M ′ be a lattice of rank d− 1. We let M = Z ×M ′ and consider the k-vector space Mk =
M ⊗Z k. Recall that, given a basis {μ1, . . . , μd} of M , we can identify M with Zd and Mk

with kd.

Definition 2.6. A lattice configuration A = {λ1, . . . , λn} ⊂M is a finite sequence of
lattice points. We say that a configuration A is regular if it is contained in a hyperplane
off the origin.

Remark 2.7. Let T be an algebraic torus, and let A = {λ1, . . . , λn} ⊂ X (T ) be a
configuration of weights. Then the following are equivalent.

(1) The configuration A is regular.
(2) Up to affine isomorphism, A has the form λi = (1, λ′i) for all i = 1, . . . , n.
(3) There exists a splitting T = k∗ × S, such that under the identification X (T ) = Z ×

X (S), the weights of A are of the form λi = (1, λ′i), i = 1, . . . , n. See also the reductions made
before Lemma 2.3.

Definition 2.8. We denote by RA ⊂ Zn the lattice of affine relations among the elements
of A, that is, (a1, . . . , an) belongs to RA if and only if

∑
i aiλi = 0 and

∑
i ai = 0.
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If A is regular, then RA coincides with the lattice of linear relations among the elements of
A. Note that these (affine or linear) relations among the elements of A can be identified with
the affine relations among the elements of the configuration {λ′1, . . . , λ′n} ⊂M ′. Thus, given
any configuration {λ′1, . . . , λ′n} ⊂M ′, we can embed it in M = Z ×M ′ via λ′ �→ (1, λ′) so that
affine dependencies are translated to linear dependencies. In fact, the map λ′ �→ (1, λ′) is an
injective affine linear map. More in general, we have the following definition.

Definition 2.9. We say that two configurations Ai ⊂ X (Ti), i = 1, 2, are affinely equiva-
lent if there exists an affine linear map ϕ : X (T1) ⊗ R → X (T2) ⊗ R (defined over Q) such that
ϕ sends A1 bijectively to A2 (in particular, ϕ defines an injective map from the affine span of
A1 to the affine span of A2).

So, if A1 and A2 are affinely equivalent, then they have the same cardinal and, moreover,
RA1 = RA2 . Any property of a configuration A shared by all its affinely equivalent con-
figurations is called an affine invariant of A. In this terminology, Lemma 2.3 asserts that
the projective toric variety XA is an affine invariant of the configuration A.

Definition 2.10. We say that A = {λ1, . . . , λn} ⊂M is a pyramid/(or a pyramidal
configuration) if there exists an affine hyperplane H such that #{i / λi /∈ H} = 1, that is,
if all points in A but one lie in H, or equivalently, if there exist an index i0 ∈ {1, . . . , n} and
an affine linear function � : Mk → k such that �(λi) = 0 for all i �= i0 and �(λi0) = 1.

More precisely, we say that A is a k-pyramidal configuration if, after reordering, there exists
a splitting of the lattice as a direct sum of lattices M = M1 ⊕M2, with A1 = {λ1, . . . , λr} a
basis of M1 and A2 = {λr+1, . . . , λn} ⊂M2, with A2 not a pyramidal configuration of M2 ⊗Z k.
In particular, the 0-pyramidal configurations are the non-pyramidal configurations.

Remark 2.11. Being a pyramid is clearly an affine invariant of a configuration. It is
straightforward to check that A is a non-pyramidal configuration if and only if there exists
a relation (p1, . . . , pn) ∈ RA with

∏
i pi �= 0, that is, if RA is not contained in a coordinate

hyperplane.

Definition 2.12. Let V1, V2 be two k-vector spaces of respective dimensions h1 + 1, h2 + 1
and X ⊂ P(V1), Y ⊂ P(V2) be two projective varieties. Recall that the join of X and Y is the
projective variety

Jh1,h2(X,Y ) = {[x : y] : [x] ∈ X, [y] ∈ Y } ⊂ P(V1 × V2),

that is, the cone over the join Jh1,h2(X,Y ) is the product of the cones over X and Y . We set

Jh1,h2(∅, Y ) = {[0 : . . . : 0︸ ︷︷ ︸
h1+1

: y] ∈ P(V1 × V2), [y] ∈ Y } ⊂ P(V1 × V2).

We define analogously Jh1,h2(X, ∅).
We define Ph = P(kh+1). Observe that, for any Y ⊂ Ph2 , Y ∼= Jh1,h2(∅, Y ) ⊂ Ph1+h2+1 for

any h1 ∈ N. If X and Y are non-empty, then dimJh1,h2(X,Y ) = dimX + dimY + 1.
Remark that given Xi ⊂ P(Vi), dimVi = hi + 1, i = 1, 2, 3, we have

Jh1+h2+1,h3(Jh1,h2(X1,X2),X3) = Jh1,h2+h3+1(X1, Jh2,h3(X2,X3)) ⊂ P(V1 × V2 × V3).

We denote this variety by Jh1,h2,h3(X1,X2,X3).
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Given two projective toric varieties XA1 and XA2 , their join is also a toric variety.

Remark 2.13. (1) Let T = S1 × S2 be a splitting of T as a product of tori, and A1 =
{λ1, . . . , λk} ⊂ X (S1), A2 = {λk+1, . . . , λn} ⊂ X (S2) be two regular configurations.

Let V1 =
⊕k

i=1 kvi, s1 · vi = λi(s1)vi for all s1 ∈ S1, and V2 =
⊕n

i=k+1 kvi, s2 · vi = λi(s2)vi

for all s2 ∈ S2. Then V = V1 × V2 is a T -module for the product action (s1, s2) · (w1, w2) =
(s1 · w1, s2 · w2). Moreover, V decomposes into simple submodules as V =

⊕k
i=1 k(vi, 0) ⊕⊕n

i=k+1 k(0, vi).
Consider the Si-toric varieties XAi

⊂ P(Vi) (i = 1, 2) and let A = A1 × {0} ∪ {0} ×A2 ⊂
X (S1) ×X (S2) = X (T ). The projective toric variety associated to A is then the join XA =
Jk−1,n−k−1(XA1 ,XA2).

(2) In the particular case when A ⊂M = M1 ⊕M2 is a k-pyramidal configuration with
A1 ⊂M1, A2 ⊂M2 as in Definition 2.10, let S1 = HomZ(M1,k

∗), S2 = HomZ(M2,k
∗), T =

S1 × S2 and V as above. We then have that XA = Jk−1,n−k−1(P(V1),XA2); that is, XA is the
cone over XA2 with vertex P(V1).

Next, we describe the toric varieties associated to configurations with repeated weights.
Recall that a projective variety is called non-degenerate if it is not contained in a proper linear
subspace.

Lemma 2.14. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration of n weights,
with λi appearing ki + 1 times and λi �= λj if i �= j. If we set k =

∑
i ki = n− h, then the

smallest linear subspace that contains XA has codimension k.
In particular, XA is a non-degenerate variety if and only if the configuration A has no

repeated elements.

Proof. Let B = {v1,1, . . . , v1,k1+1, . . . , vh,1, . . . , vh,kh+1} be a basis of associated eigenvectors
of V , with t · vi,ji

= λi(t)vi,ji
for all i = 1, . . . , h, ji = 1, . . . , ki + 1. Consider a hyperplane

Π ⊂ P(
⊕h

i=1(
⊕ki+1

ji=1 kvi,ji
)) of equation∑

i,j1,...,jh

ci,ji
xi,ji

= 0,

where xi,ji
are the coordinates in the basis B. Then XA ⊂ Π if and only if [t ·∑ vi,ji

] ⊂ Π for
all t ∈ T . As [t ·∑ vi,ji

] = [
∑
λi(t)vi,ji

] ∈ Π, this is equivalent to the equalities

h∑
i=1

ki+1∑
ji=1

ci,ji
λi(t) = 0, t ∈ T.

Since {λ1, . . . , λh} are different weights, we deduce that
∑ki+1

ji=1 ci,ji
= 0 for all i = 1, . . . , h.

It follows that the maximum codimension of a subspace that contains XA is
∑h

i=1 ki = k.
On the other hand, clearly

XA ⊂ H =,

⎧⎨⎩
h∑

i=1

xi

ki+1∑
ji=1

vi,ji
: xi ∈ k

⎫⎬⎭ ,

where the subspace H ⊂ P(V ) has codimension k.
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Lemma 2.15. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration of n weights,
with λi appearing ki + 1 times and λi �= λj if i �= j. Set k =

∑
i ki = n− h and let

V =
h⊕

i=1

⎛⎝ki+1⊕
ji=1

kvi,ji

⎞⎠ =

⎛⎝ h⊕
i=1

⎛⎝ ki⊕
ji=1

kvi,ji

⎞⎠⎞⎠⊕
(

h⊕
i=1

kvi,jki+1

)
,

with t · vi,ji
= λi(t)vi,ji

for all t ∈ T, i = 1, . . . , h, ji = 1, . . . , ki + 1.

Let C = {λ1, . . . , λh} and consider XC ⊂ P(
⊕h

i=1 kvi,jki+1). Then XA is isomorphic to the
cone Jk−1,h−1(∅,XC) over the non-degenerate projective toric variety XC .

Proof. Let f : V → V be the linear isomorphism defined by

f((xi,ji
)i=1,...,h,ji=1,...,ki

, (xi,jki+1)i=1,...,h) = ((xi,ji
− xi,jki+1)i=1,...,h,ji=1,...,ki

, (xi,jki+1)i=1,...,h).

The associated projective map clearly sends XA to the join Jk−1,h−1(∅,XC).

In Proposition 2.17, we combine Remark 2.13 and Lemmas 2.14 and 2.15, in order to describe
a projective toric variety as a cone over a non-degenerate projective toric variety that is not a
cone (that is, the associated configuration is non-pyramidal).

Remark 2.16. Let X ⊂ Pn−1 be a non-linear irreducible projective variety. Let H ⊂ Pn−1

be the minimal linear subspace containing X, and let k be the codimension of H. Then H ∼=
Pn−k−1 and ifX ′ denotes the varietyX as a subvariety ofH, thenX = Jk−1,n−k−1(∅,X ′). Since
X ′ is non-degenerate, it follows that there exists Y ⊂ Pm−1 such that X ′ = Jh−1,m−1(Ph−1, Y ),
where n− k − 1 = h+m− 1. Hence, we have an identification

X = Jk−1,h−1,m−1(∅,Ph−1, Y ).

In particular, dimX = h+ dimY .
Observe that Y ⊂ Pm−1 is a non-degenerate subvariety. Moreover, we can assume that Y is

not a cone. In this case, we define Xnd = Y . Moreover, if X is an equivariantly embedded toric
variety, then we can choose Xnd as XC2 in the following proposition.

When X is linear, X = H, m = 1 and Y is empty.

Proposition 2.17. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration of n
weights, with λi appearing ki + 1 times and λi �= λj if i �= j. Set k =

∑
i ki = n− h and assume

that C = {λ1, . . . , λh} is r-pyramidal. Then there exists a splitting T = S1 × S2 such that,
after reordering of the elements in C, it holds that C = C1 ∪ C2, where C1 = {λ1, . . . , λr} is
a basis of X (S1) and C2 = {λr+1, . . . , λh} ⊂ X (S2) is a non-pyramidal configuration, as in
Definition 2.10. Moreover, we have that

XA = Jk−1,r−1,h−r−1(∅,Pr−1,XC2).

In the special case when XA is linear, C2 is empty.

Proof. We set V =
⊕h

i=1(
⊕ki+1

ji=1 kvi,ji
), with t · vi,ji

= λi(t)vi,ji
for all t ∈ T , i = 1, . . . , h,

ji = 1, . . . , ki + 1, and wi = vi,ki+1.
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Assume that C is an r-pyramidal configuration, and let XC ⊂ P(
⊕h

i=1 kwi). Then there
exists a splitting T = S1 × S2 such that, after the reordering of C, C1 = {λ1, . . . , λr} is a basis
of X (S1) and C2 = {λr+1, . . . , λh} ⊂ X (S2) is a non-pyramidal configuration. Hence,

XC = Jr−1,h−r−1(Xidr ,XC2) = Jr−1,h−r−1

(
P

(
r⊕

i=1

kvi,ki+1

)
,XC2

)
.

By Lemma 2.15, we can assume that XA = Jk−1,h−1(∅,XC), and so

XA = Jk−1,h−1(∅, Jr−1,h−r−1(Xidr
,XC2))

= Jk−1,h−1

(
∅, Jr−1,h−r−1

(
P

(
r⊕

i=1

kvi,ki+1

)
,XC2

))

= Jk−1,r−1,h−r−1

(
∅,P

(
r⊕

i=1

kvi,ki+1

)
,XC2

)
,

as claimed.

2.3. Dual of a projective toric variety

We recall the classical notion of the dual variety of a projective variety.

Definition 2.18. Let V be a k-vector space of finite dimension and denote by V ∨ its
dual k-vector space. Let X ⊂ P(V ) be an irreducible projective variety. The dual variety of
X is defined as the closure of the hyperplanes intersecting the regular part Xreg of X non-
transversally:

X∗ = {[f ] ∈ P(V ∨) : ∃x ∈ Xreg, f |TxX ≡ 0} ⊂ P(V ∨).

As usual, TxX denotes the embedded tangent space of X at x ∈ Xreg.
Note that P(V )∗ = ∅. We set by convention ∅∗ = P(V ∨).

Self-duality is not an intrinsic property, it depends on the projective embedding. It can be
proved that X∗ is an irreducible projective variety and that (X∗)∗ = X (see, for example, [12]).

For a generic variety X ⊂ P(V ), codimX∗ = 1. If codimX∗ �= 1, then it is said that X has
defect codimX∗ − 1.

Definition 2.19. An irreducible projective variety X ⊂ P(V ) is called self-dual if X is
isomorphic to X∗ as embedded projective varieties, that is, if there exists a (necessarily linear)
isomorphism ϕ : P(V ) → P(V ∨) such that ϕ(X) = X∗.

A self-dual projective variety X ⊂ Pn−1 of dimension d− 1 < n− 1 (that is, which is not a
hypersurface) has positive defect n− d− 1. The defect of the whole projective space Pn−1 is
n− 1.

Remark 2.20. Recall that given a basis B = {v1, . . . , vn} of V , we can identify P(V ) with
P(V ∨) by means of vi � v∨i , where {v∨1 , . . . , v∨n} is the dual basis of B. Then, via the choice
of a basis of V , we can look at the dual variety inside the same projective space. Self-duality
can be reformulated as follows: X ⊂ P(V ) is self-dual if there exists ϕ ∈ Aut(P(V )) such that
ϕ(X) = X∗.
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Let V be a T -module of finite dimension n over a d-dimensional torus T and let A be the
associated configuration of weights. In view of the considerations of the preceding subsections,
we assume from now on and without loss of generality that A = {λ1, . . . , λn} ⊂ X (T ) is a
regular configuration, possibly with repeated elements, such that 〈A〉Z = X (T ).

The regularity of A implies in particular the existence of a splitting T = k∗ × S as in
Remark 2.7. Then XA is a (d− 1)-dimensional subvariety of the (n− 1)-dimensional projective
space P(V ) and the lattice RA has rank n− d.

The dual variety X∗
A has the following interpretation. For [ξ] ∈ P(V ∨), let fξ ∈ k[T ], fξ(t) =

ξ(t ·∑ vi) ∈ k[T ]. Then X∗
A is obtained as the closure of the set of those [ξ] ∈ P(V ∨) such that

there exists t ∈ T with fξ(t) = (∂fξ/∂ti(t)) = 0 for all i = 1, . . . , n.

X∗
A =

{
ξ ∈ P(V ∨) : ∃t ∈ T, fA(t) =

∂fξ

∂t1
(t) =

∂fξ

∂t2
(t) = . . . =

∂fξ

∂td
(t) = 0

}
.

In [6], a rational parametrization of the dual variety X∗
A was obtained. We adapt this result

to our notation. As before, B = {v1, . . . , vn} is a basis of eigenvectors, t · vi = λi(t)vi, and
BA = {u1, . . . , un−d} is a basis of RA. We denote by RA,k the (n− d)-dimensional k-vector
space RA ⊗Z k and we identify P(V ) with P(V ∨) by means of the chosen basis B of eigenvectors
(and its dual basis) as in Remark 2.20.

Proposition 2.21 [6, Proposition 4.1]. Let T = k∗ × S, V,A,B,BA as before. Then the
mapping P(RA,k) × S → P(V ) defined by

([a1 : . . . : an], s) �→ s ·
[∑

aivi

]
has image dense in X∗

A; that is, the morphism

(k∗)n−d × T → P(V ), (c, t) �→ t ·
[∑

ciui

]
is a rational parametrization of X∗

A, and

X∗
A =

⋃
p∈P(RA,k)

O(p) = T · P(RA,k).

This last equality, which expresses the dual variety as the closure of the union of the torus
orbits of all the classes in the vector space of relations of the configuration A, is the starting
point of our classification of self-dual projective toric varieties, which we describe in what
follows.

3. Characterization of self-duality in terms of orbits

Let T be a torus of dimension d and V be a rational T -module of dimension n with associated
configuration of weights A = {λ1, . . . , λn}. We assume that 〈A〉Z = X (T ) and keep the notation
of the preceding section. Given p = [

∑
pivi] ∈ Tn−1, we denote by mp([

∑
xivi]) = [

∑
pixivi]

the diagonal linear isomorphism defined by p.

3.1. Non-pyramidal configurations

In this subsection, we characterize self-dual projective toric varieties associated to a configu-
ration of weights A which define a non-pyramidal configuration, in terms of the orbits of the
torus action.
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Note that the whole projective space P(V ) can be seen as a toric projective variety associated
to a dimV -pyramidal configuration and its dual variety is empty. But we now show that,
for non-pyramidal configurations, the dimension of the dual variety X∗

A cannot be smaller
than the dimension of the toric variety XA. This result has been proved by Zak [17] for any
non-degenerate smooth projective variety.

Lemma 3.1. If A is a non-pyramidal configuration, then dimX∗
A � dimXA.

Proof. Indeed, if A is not a pyramidal configuration, then, by Remark 2.11, we know that
there exists p =

∑
pivi ∈ RA,k such that pi �= 0 for all i = 1, . . . , n. Hence, if we identify P(V )

with P(V ∨) by means of the dual basis, then

X∗
A = T · P(RA,k) ⊃ O([p]) = mp

⎛⎝O
([∑

i

vi

])⎞⎠ = mp(XA).

Since p ∈ Tn−1, we have that dimmp(XA) = dimXA and the result follows.

We identify P(V ) with P(V ∨) by means of the chosen basis B of eigenvectors (and its dual
basis) as in Remark 2.20. The following is the main result of this subsection.

Theorem 3.2. Let A ⊂ X (T ) be a non-pyramidal configuration.
The following assertions are equivalent.

(1) The variety XA is a self-dual projective variety.
(2) There exists p0 ∈ P(RA,k) ∩ Tn−1 such that P(RA,k) ⊂ O(p0).
(3) There exists p0 ∈ P(RA,k) ∩ Tn−1 such that X∗

A = mp0(XA).
(4) For all q ∈ P(RA,k) ∩ Tn−1, P(RA,k) ⊂ O(q).
(5) For all q ∈ P(RA,k) ∩ Tn−1, X∗

A = mq(XA).

Proof. We prove (1) ⇒ (5) and (2) ⇒ (4), the rest of the implications being trivial.
(1) ⇒ (5): By Proposition 2.21,

X∗
A =

⋃
p∈P(RA,k)

O(p) ⊃
⋃

p∈P(RA,k)∩Tn−1

O(p) ⊃ O(q) = mq(XA),

for all q ∈ P(RA,k) ∩ Tn−1. Since dimXA = dimX∗
A, equality holds in the last equation.

(2) ⇒ (4): Let p0 ∈ P(RA,k) ∩ Tn−1 be such that P(RA,k) ⊂ O(p0). If q ∈ P(RA,k) ∩ Tn−1,
then q ∈ O(p0) ∩ Tn−1 = O(p0). Then O(q) = O(p0) and the result follows.

The equivalence between (1) and (5) in Theorem 3.2 implies that as soon as the dual of an
equivariantly embedded projective toric variety of the form XA has the same dimension of the
variety, there exists a linear isomorphism between them.

Theorem 3.3. Let A ⊂ X (T ) be a configuration of weights that is non-pyramidal. Then
XA is self-dual if and only if dimXA = dimX∗

A.
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This result is not true in general for projective toric varieties not equivariantly embedded,
even for rational planar curves (for which the dual is again a curve, but not necessarily
isomorphic).

3.2. The general case

We now address the complete characterization of self-dual projective toric varieties associated
to an arbitrary configuration of weights A ⊂ X (T ). We keep the notation of the preceding
section.

We begin by recalling a well-known result about duality of projective varieties.

Lemma 3.4 [16, Theorem 1.23]. Let X ⊂ Pn be a non-linear irreducible subvariety.

(1) Assume that X is contained in a hyperplane H = Pn−1. If X ′∗ is the dual variety of
X, when we consider X as a subvariety of Pn−1, then X∗ is the cone over X ′∗ with vertex p
corresponding to H.

(2) Conversely, if X∗ is a cone with vertex p, then X is contained in the corresponding
hyperplane H.

When X is linear, (X ′)∗ is empty.

As an immediate application of Lemma 3.4, we have the following characterization of self-dual
equivariantly embedded projective toric hypersurfaces. Note that the only linear varieties that
are self-dual are the subspaces of dimension k − 1 in P2k−1. In particular, the only hyperplanes
that are self-dual are points in P1.

Corollary 3.5. Let T be an algebraic torus and A ⊂ X (T ) be a configuration such that
XA is a non-linear hypersurface. Then XA is self-dual if and only if XA is not a cone.

Proof. Assume that XA is a cone. Then, by Lemma 3.4, it follows that X∗
A is contained in

a hyperplane, hence XA is not self-dual.
If XA is not a cone, then A is non-pyramidal (see Remark 2.13), and it follows from

Lemma 3.1 that dimX∗
A � dimXA. If dimX∗

A > dimXA, then X∗
A = P(V ) and hence XA =

(X∗
A)∗ = ∅, which is a contradiction. It follows that dimX∗

A = dimXA and hence Theorem 3.3
implies that XA is self-dual.

Applying Lemma 3.4, we can reduce the study of duality of projective varieties to the study
of non-degenerate projective varieties that are not a cone.

Proposition 3.6. Let X ⊂ Pn−1 be an irreducible projective variety. Let k − 1 be the
codimension of the minimal subspace of Pn−1 containing X. Then, with the notation of
Remark 2.16, the following assertions hold:

(1) If X = Jk−1,k−1,m−1(∅,Pk−1,Xnd), with Xnd ⊂ Pm−1 self-dual, then X is self-dual.
(2) If X is self-dual, then dimXnd = dim(Xnd)∗, and h = k, that is

X = Jk−1,k−1,m−1(∅,Pk−1,Xnd), (3.1)
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Proof. Let X = Jk−1,h−1,m−1(∅,Ph−1,Xnd). Applying recursively Lemma 3.4 (see Remark
2.16), we obtain that

X∗ = Jk−1,h−1,m−1(∅,Ph−1,Xnd)∗ = Jk−1,h+m−1(∅, Jh−1,m−1(Ph−1,Xnd))∗

= Jk−1,h+m−1(Pk−1, Jh−1,m−1(Ph−1,Xnd)∗)

= Jk−1,h+m−1(Pk−1, Jh−1,m−1(∅,X∗
nd))

= Jk−1,h−1,m−1(Pk−1, ∅,X∗
nd) = Jh−1,k−1,m−1(∅,Pk−1,X∗

nd)

= Jh−1,k+m−1(∅, Jk−1,m−1(Pk−1,X∗
nd)).

In particular, dimX∗ = k + dimX∗
nd, and the maximal subspace that contains X∗ has

codimension h.
To prove (1), assume that h = k andXnd is self-dual. ThenX∗ = Jk−1,k−1,m−1(∅,Pk−1,X∗

nd).
Since Xnd is self-dual, there exists an isomorphism ϕ : Pm−1 → Pm−1 such that ϕ(Xnd) = X∗

nd.
It is clear that ϕ extends to an isomorphism ϕ̃ : Pn−1 → Pn−1 such that ϕ̃(X) = X∗.

In order to prove (2), assuming X is self-dual and writing X as in Remark 2.16, it follows
that h = k, and hence h+ dimXnd = dimX = dimX∗ = k + dimXnd.

In our toric setting, Proposition 3.6 can be improved, so that we obtain a geometric
characterization of self-dual projective toric varieties.

Theorem 3.7. Let A be an arbitrary lattice configuration. Then XA is self-dual if and
only if dimXA = dimX∗

A and the smallest linear subspaces containing XA and X∗
A have the

same (co)dimension.

Proof. By Proposition 2.17,

XA = Jk−1,h−1,m−1(∅,Ph−1,XC2),

where C2 ⊂ A is a non-pyramidal configuration without repeated weights. By Theorem 3.3,
XC2 ⊂ Pm−1 is self-dual if and only if dimXC2 = dimX∗

C2
. The result follows now from

Proposition 3.6.

Combining Proposition 2.17 and Theorem 3.7, we obtain the following explicit combinatorial
description of self-dual toric varieties.

Theorem 3.8. Let A = {λ1, . . . , λ1, λ2, . . . , λ2, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration
of n weights with each λi appearing ki + 1 times, λi �= λj if i �= j. Let C = {λ1, . . . , λh} be
the associated configuration without repeated weights. Then XA is self-dual if and only if the
following assertions hold.

(1) The configuration C is k-pyramidal, where k = n− h =
∑
ki.

(2) There exists a splitting T = S1 × S2 such that, after reordering of the elements
in C, it holds that C = C1 ∪ C2, where C1 = {λ1, . . . , λk} is a basis of X (S1) and C2 =
{λk+1, . . . , λh} ⊂ X (S2) is a non-pyramidal configuration, as in Definition 2.10. Moreover, the
S2-toric projective variety XC2 ⊂ P(

⊕h
i=k+1 kwi), t · wi = λi(t)wi, is self-dual.

It follows from Theorem 3.8 that if XA is a self-dual toric variety with A pyramidal, then
there are repeated weights in A. The converse of this statement does not hold. In the next
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example, we show a family of non-pyramidal configurations A with repetitions such that XA

is self-dual.

Example 3.9. Let C = {c1, . . . , cs} ⊂ Zn−1 be any non-pyramidal configuration, such
that XC is self-dual. Then the configuration A = {e1, e1, (0, c1), . . . , (0, cs)} ⊂ Zn has repeated
weights, and XA is self-dual by Theorem 3.8. It is straightfoward to check that A is
non-pyramidal. Note that these configurations become pyramidal when we avoid repetitions.

4. Characterizations of self-duality in combinatorial terms

In this section, we characterize self-duality of projective toric varieties of type XA in
combinatorial terms. We make explicit calculations for the algebraic torus (k∗)d acting on kn,
in order to give an interpretation of the conditions of Theorem 3.2 in terms of the configuration
A and in terms if its Gale dual configuration, whose definition we recall below.

We refer the reader to [18, Chapter 6] for an account of the basic combinatorial notions we
use in what follows.

4.1. Explicit calculations for (k∗)d
acting on kn

Let T = (k∗)d. We identify the lattice of characters X (T ) with Zd. Thus, any character λ ∈
X (T ) is of the form λ(t) = tm, where m ∈ Zd and tm = tm1

1 . . . tmd

d . We take the canonical basis
of kn as the basis of eigenvectors of the action of T ; that is, if A = {λ1, . . . , λn} ⊂ Zd, T acts
on kn by t · (z1, . . . , zn) = (tλ1z1, . . . , t

λnzn) for all t = (t1, . . . , td) ∈ T ; then

XA = O([1 : . . . : 1]) = {[tλ1 : . . . : tλn ] : t ∈ (k∗)d} ⊂ Pn−1.

By abuse of notation, we also set A ∈ Md×n(Z) the matrix with columns the weights λi. In
view of the reductions made in Section 2, we assume without loss of generality that the first
row of A is (1, . . . , 1) and that the columns of A span Zd.

The homogeneous ideal IA in k[x1, . . . , xn] of the associated projective toric variety XA is
the binomial ideal [15]

IA =

〈
xa − xb : a, b ∈ Nn,

n∑
i=1

aiλi =
n∑

i=1

biλi

〉
.

Thus, XA = {[x] ∈ Pn−1 : xa = xb, ∀ a, b ∈ Nn such that Aa = Ab}, and it is easy to see that

XA = {[x] ∈ Pn−1 : xv+ − xv−
= 0, ∀ v ∈ RA},

where v+
i = max{vi, 0}, v−i = −min{vi, 0} (and so v = v+ − v−).

For p ∈ Tn−1 we then have

mp(XA) = O(p) = {[x] ∈ Pn−1 : pv−
xv+ − pv+

xv−
= 0, ∀ v ∈ RA}.

4.2. Characterization of self-duality in terms of the Gale dual configuration

If A is a non-pyramidal configuration, then Theorem 3.2 can be rephrased in terms of a
geometric condition on the Gale dual of A.

Definition 4.1. Let A ∈ Md×n(Z) with rank d. Let BA = {u1, . . . , un−d} ⊂ Zn be a basis
of RA.
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We say that the matrix BA ∈ Mn×(n−d)(Z) with columns the vectors ui is a Gale dual
matrix of A. Let GA = {b1, . . . , bn} ⊂ Zn−d be the configuration of rows of BA, that is, BA =(

b1
...

bn

)
(observe that we allow repeated elements). The configuration GA is called a Gale dual

configuration of A. Remark that
∑n

i=1 bi = 0.

Remark 4.2. (1) Since RA is an affine invariant of the configuration A, it follows that two
affinely equivalent configurations share their Gale dual configurations.

(2) The configuration A is non-pyramidal if and only if bi �= 0 for all i = 1, . . . , n.
(3) When A is regular, RA is the integer kernel KerZ(A) of the matrix A.
(4) For any Gale dual matrix of A, the morphism γ : kn−d → kn, γ(s) = (〈s, b1〉, . . . , 〈s, bn〉)

gives a parametrization of RA,k, where we denote 〈s, bi〉 =
∑n−d

j=1 sjbij .

Remark 4.3. By Theorem 3.2, XA is self-dual if and only if there exists p0 ∈ P(RA,k) ∩
Tn−1 such that P(RA,k) ⊂ O(p0). By the remarks in Section 4.1, it follows that XA is self-dual
if and only if, for some such p0, we have that pv−

0 wv+ − pv+

0 wv−
= 0 for all w ∈ RA,k and

v ∈ RA.
Assume that XA is self-dual. Then, given any choice of Gale dual configuration, we deduce

that, for all s ∈ kn−d \ {0} and j = 1, . . . , n− d, we have that

p
u−

j

0 (〈s, b1〉, 〈s, b2〉, . . . , 〈s, bn〉)u+
j = p

u+
j

0 (〈s, b1〉, 〈s, b2〉, . . . , 〈s, bn〉)u−
j ,

for (some, or in fact all) p0 ∈ P(RA,k) ∩ Tn−1.
Since this gives an equality in the polynomial ring k[s1, . . . , sn−d], both sides must have the

same irreducible factors. But 〈s, bi〉 and 〈s, bk〉 are associated irreducible factors if and only if
bi and bk are collinear vectors. We deduce that, for any line L in B-space Zn−d and for all j,∑

bi∈L,bij>0

bij = −
∑

bi∈L,bij<0

bij .

Hence,
∑

bi∈L bij = 0 for all j = 1, . . . , n− d or, equivalently,
∑

bi∈L bi = 0.

In fact, this last condition is not only necessary but also sufficient. We give a proof of both
implications using results about the tropicalization of the dual variety XA as described in [6].

First, we recall that given a dual Gale configuration GA = {b1, . . . , bn}, and a subset J ⊂
{1, . . . , n}, the flat SJ of GA associated to J is the subset of all the indices i ∈ {1, . . . , n} such
that bi belongs to the subspace generated by {bj : j ∈ J}.

Theorem 4.4. Let A ∈ Md×n(Z) be a non-pyramidal configuration, and BA be a Gale
dual for A as in (4.1). Then XA is self-dual if and only if, for any line L through the origin in
Zn−d, we have that

∑
bi∈L bi = 0.

Proof. Since we are dealing with affine invariants, we can assume that A is a regular
configuration. By Theorem 3.3, we know that XA is self-dual if and only if dimXA equals
dimX∗

A. Given a vector v ∈ Zn, we define a new vector σ(v) ∈ {0, 1}n by σ(v)i = 0 if vi �= 0
and σ(v)i = 1 if vi = 0.

If follows from [6, Corollary 4.5] that dimXA = dimX∗
A if and only if, for any vector v ∈ RA,

the vector (1, . . . , 1) − σ(v) lies in the row span F of the matrix A. But since we are assuming
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that (1, . . . , 1) ∈ F , this is equivalent to the condition that σ(v) ∈ F . By duality, this is in turn
equivalent to the fact that, for any j = 1, . . . , n− d, the inner product

〈σ(v), uj〉 =
∑
vi=0

bij = 0;

that is to say, XA is self-dual if and only if, for any v ∈ RA, the sum
∑

vi=0 bi = 0. But the sets
S of non-zero coordinates of the vectors in the space of linear relations RA coincide with the
flats of the Gale configuration GA. So, XA is self-dual if and only if, for any flat S ⊂ {1, . . . , n},
the sum

∑
i∈S bi = 0. It is clear that this happens if and only if the same condition holds for all

the one-dimensional flats, that is, if, for any line L through the origin, the sum
∑

bi∈L bi = 0.

The assumption that A is a non-pyramidal configuration in Theorem 4.4 is crucial, as the
following example shows.

Example 4.5. Let A be a configuration such that RA has rank 1. Then RA is spanned by
a single vector, whose coordinates add up to 0. So, the condition in Theorem 4.4 that the sum
of the bi in this line equals 0 is satisfied. But by Corollary 3.5 if A is a pyramid, then XA is
not self-dual.

4.3. Geometric characterization of self-dual configurations

In this paragraph, we characterize the non-pyramidal configurations A ⊂ Zd whose Gale dual
configurations are as in Theorem 4.4. We keep the assumptions that 〈A〉Z = Zd and that A is
non-pyramidal. We begin with some basic definitions about configurations.

Definition 4.6. Given a = (a1, . . . , an) ∈ RA,k, we call {i : ai �= 0} the support of the
relation and define supp(a) = {i : ai �= 0}. We say that λi belongs to the relation if i ∈ supp(a).

Recall that any affine relation a ∈ RA,k satisfies
∑

i ai = 0. It is said that a is a circuit if
there is no non-trivial affine dependency relation with support strictly contained in supp(a).
In other words, a circuit is a minimal affine dependency relation.

Remark 4.7. Let C be a circuit of a configuration A and let F be the minimal face of
Conv(A) containing C. If d′ denotes the dimension of the affine span of F , then C has at most
d′ + 2 elements.

Definition 4.8. Two elements b, b′ of a configuration B are parallel if they generate the
same straight line through the origin. In particular, b �= 0 and b′ �= 0. The elements b, b′ are
antiparallel if they are parallel and point into opposite directions.

Two elements λ, λ′ of a configuration A are coparallel if they belong exactly to the same
circuits.

Remark 4.9. (1) Coparallelism is an equivalence relation. We denote by cc(λ) the
coparallelism class of the element λ ∈ A.

(2) It is easy to see that λ and λ′ are coparallel if and only if they belong to the same affine
dependency relations.

(3) The definition of coparallelism can be extended to pyramidal configurations as follows. If
λ ∈ A is such that it does not belong to any dependency relation, then cc(λ) = {λ}. Otherwise,
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cc(λ) consists, as above, of all elements of A belonging to the same circuits as λ. The condition
that A is not a pyramid is then equivalent to the condition that | cc(λ)| � 2 for all λ ∈ A.

Lemma 4.10. Let GA = {b1, . . . , bn} be a Gale dual of A. Then λi is coparallel to λj if and
only if bi and bj are parallel elements of GA.

Proof. Let BA be the (n× (n− d))-matrix with rows given by GA as in Definition 4.1. As
A is not a pyramid, no row bi of BA is zero. Any element a ∈ RA,k is of the form BA ·m for
some m ∈ kn−d. Then λi is coparallel to λj if and only if, for any non-zero m ∈ kn−d, it holds
that 〈bi,m〉 �= 0 precisely when 〈bj ,m〉 �= 0. It is clear that this happens if and only if bi = αbj
for a non-zero constant α ∈ k, that is, if and only if bi, bj are parallel.

Definition 4.11. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A subconfiguration C ′ ⊂
A is called facial if there exists a face F of the convex hull Conv(A) ⊂ Rd of A such that
C ′ = A ∩ F .

A subconfiguration C ⊂ A is a face complement if A \ C is a facial subconfiguration of A.

Remark 4.12. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A subconfiguration C =
{λi1 , . . . , λih

} ⊂ A is a face complement if and only if there exists a dependency relation such
that

h∑
j=1

rij
bij

= 0, rij
> 0.

Indeed, a dependency relation
∑h

j=1 rij
bij

= 0 with all rij
> 0 can be extended with zero

coordinates to a relation r = (r1, . . . , rn) among b1, . . . , bn. Thus, r lies in the row space of
A and so there exists � = (�1, . . . , �d) such that ri = 〈�, λi〉. It follows that the linear form
associated to � vanishes on the complement of C, and all the points of C lie in the same open
half-space delimited by the kernel of �.

Lemma 4.13. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A coparallelism class
C = {λi1 , . . . , λih

} ⊂ A is a face complement if and only if there exist j, k ∈ {1, . . . , h} such
that bij

and bik
are antiparallel.

Proof. If C is a coparallelism class, then we know by Lemma 4.10 that all bi1 , . . . , bih
are

parallel. It is then clear that a dependency relation r as in Remark 4.12 exists if and only if
two of the vectors bij

, bik
are antiparallel.

Definition 4.14. Let A ⊂ Zd be a configuration and C ⊂ A be a face complement. We
say that C is a parallel face complement if C and A \ C lie in parallel hyperplanes.

Note that in this case both C and A \ C are facial.

Example 4.15. In Figure 1, there are three configurations of six lattice points in three-
dimensional space (the six vertices in each polytope). The two vertices marked with big dots
in each of the configurations define a coparallelism class C. In the first polytope (1), C is not
a face complement; in the second polytope (2), C is a face complement but not a parallel face
complement; in the third polytope (3), C is a parallel face complement. The characterization
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(1) (2) (3)

Figure 1. Only configuration (3) is self-dual.

in our next theorem proves that only the toric variety corresponding to this last configuration
is self-dual.

It is straightforward to check that if A1, A2 are affinely equivalent configurations and ϕ
is an affine linear map sending bijectively A1 to A2, then ϕ preserves coparallelism classes,
faces and parallelism relations. Indeed, all these notions can be read in a common Gale dual
configuration. Moreover, we can translate Theorem 4.4 as follows.

Theorem 4.16. Let A ⊂ Zd be a non-pyramidal configuration. The projective toric variety
XA is self-dual if and only if any coparallelism class of A is a parallel face complement.

Proof. Let GA be a Gale dual of A as in Definition 4.1. By Lemma 4.10, coparallelism
classes C = {λi1 , . . . , λih

} in A are in correspondence with parallel vectors bi1 , . . . , bih
in the

dual space (that is, lines containing vectors of GA). But now, C is a parallel face complement
if and only if there exists � = (�1, . . . , �d) such that 〈�, λi〉 = 0 for all λi /∈ C and 〈�, λij

〉 = 1
for all j = 1, . . . , h. Reciprocally, the sum of the vectors

∑h
j=1 bij

= 0 implies the existence of
such an � as in Remark 4.12. The result now follows from Theorem 4.4.

We have the following easy lemma.

Lemma 4.17. Assume that A is a non-pyramidal self-dual lattice configuration. Then,
for any μ ∈ A, the coparallelism class cc(μ) has at least two elements and it is a facial
subconfiguration of A.

Proof. It follows from Definition 4.14 that there exists a linear function f taking value 0
on A \ cc(μ) and value 1 on cc(μ). Then cc(μ) is the facial subconfiguration of A supported by
the hyperplane (f − 1) = 0. If cc (μ) = {μ}, then, by Theorem 4.16, {μ} is a vertex, and hence
A would be a pyramid. It follows that so | cc(μ)| � 2, for any μ ∈ A.

We give in Lemma 5.4(2) an example of a self-dual lattice configuration A that contains an
interior point of Conv(A). However, this cannot happen if XA is not a hypersurface, as the
following proposition shows.

Proposition 4.18. Let A ⊂ X (T ) be a configuration without repetitions such that XA is
self-dual, with codimXA > 1. Then, the interior of the convex hull Conv(A) does not contain
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elements of A and, for any facial subconfiguration C ′ of A, at most one point of C ′ lies in the
relative interior of Conv(C ′).

Proof. Since A = {λ1, . . . , λn} ⊂ X (T ) has no repeated elements, it follows from Theo-
rem 3.8 that A is non-pyramidal. Then, as XA is not a hypersurface, if follows from Remark 2.4
that n � d+ 3, where d is the dimension of the affine span of A.

Assume that there exists μ ∈ A belonging to the relative interior of an s-dimensional face F of
Conv(A). Therefore, μ is a convex combination of the vertices of F , and thus cc(μ) ⊂ F . But, by
Lemma 4.17, cc(μ) is a facial subconfiguration of A, and thus a facial subconfiguration of F ∩A,
which intersects the relative interior of F . Then cc(μ) = F ∩A. Let cc(μ) = {μ, λ1, . . . , λr}. We
claim that {λ1, . . . , λr} are affinely independent and thus cc(μ) is a circuit. Indeed, for any
i = 1, . . . , r, cc(λi) = cc(μ) = F ∩A, and so there cannot be any non-trivial affine dependence
relation involving only {λ1, . . . , λr}. In particular, r = s+ 1, {λ1, . . . , λs+1} are the vertices of
F and μ is the only point in F ∩A belonging to the relative interior of Conv(F ).

Therefore, if the relative interior of Conv(A) contains one element μ ∈ A, it follows that A
is a circuit, and hence n = d+ 2 (see Remark 4.7). That is, XA is a hypersurface.

Example 4.19. Consider the self-dual configuration A given by the columns of the matrix

A =

⎛⎜⎜⎝
1 1 1 0 0 0
0 0 0 1 1 1
0 1 2 0 0 0
0 0 0 0 1 2

⎞⎟⎟⎠ .

The associated toric variety has dimension 3 in P5, so it is not a hypersurface. No point of
A = Conv(A) ∩ Z4 lies in the interior, but there are two facial subconfigurations of A (namely,
the segments with vertices {(1, 0, 0, 0), (1, 0, 2, 0)} and {(0, 1, 0, 0), (0, 1, 0, 2)}, respectively)
which do have a point of A in their relative interior. Note that XA = {(x1, . . . , x6) ∈ P5/x2

2 −
x1x3 = x2

4 − x5x6} is not smooth. It is a complete intersection, but the four fixed points
(0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1) are not regular, as can be checked
by the drop in rank of the Jacobian matrix. This could be seen directly in the geometry of the
configuration. The convex hull of A is a simple polytope (in fact, it is a simplex) of dimension
3 lying in the hyperplane H = {(y1, . . . , y4) ∈ R4/y1 + y2 = 1}, but fixing the origin at any of
the four vertices, the first lattice points in the three rays from that vertex do not form a basis
of the lattice H ∩ Z4. Note that there is a splitting of the 4-torus T as a product of tori of
dimension 2 corresponding to the first three and last three weights in A.

We end this paragraph by showing another interesting combinatorial property of configura-
tions associated to self-dual toric varieties.

Proposition 4.20. Let A = {λ1, . . . , λn} ⊂ X (T ) be a non-pyramidal configuration such
that XA is self-dual and let D be an arbitrary non-empty subset of A. Then, either D is a
pyramidal configuration or XD is self-dual and, moreover, D is a facial subconfiguration of A.

Proof. Assume that D = {λ1, . . . , λs} ⊂ A is non-pyramidal, and consider RD ⊂ Zs. It is
clear that RD × {0} ⊂ RA. Hence, if BD is a basis of RD, then there exists a Q-basis of RA ⊗ Q

of the form GD × {0} ∪ C. Let BA be a Z-basis of RA, and GA = {b1, . . . , bn} be its associated
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Gale dual configuration. Then there exists an invertible Q-matrix M such that

B′ =

⎛⎜⎜⎜⎜⎜⎜⎝
BD C1

0 C2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
...
bs
bs−1

...
bn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
M.

Since A is self-dual, it follows from Theorem 4.4 that the rows bi are such that the sum of
vectors bi in the same line through the origin is zero. Hence, the matrix B′ satisfies the same
property. As D is non-pyramidal, no row of BD is zero. Therefore, (BD, C1), and hence BD,
also satisfy the property that the sum of all its row vectors in a line through the origin is equal
to zero. Hence, XD is self-dual. Moreover, the sum of the row vectors of C2 is zero, and it
follows from Remark 4.12 that D is facial.

5. Families of self-dual projective varieties

In this section, we use our previous results in order to obtain new families of projective toric
varieties that are self-dual. In particular, we obtain many new examples of non-smooth self-
dual projective varieties. We also identify all the smooth self-dual projective varieties of the
form XA. We retrieve in this (toric) case Ein’s result, without needing to rely on Hartshorne’s
conjecture.

5.1. Projective toric varieties associated to Lawrence configurations

Definition 5.1. We say that a configuration A of 2n lattice points is Lawrence if it is
affinely equivalent to a configuration whose associated matrix has the form(

Idn Idn

0 M

)
, (5.1)

where Idn denotes the n× n identity matrix. Equivalently, A is a Lawrence configuration if it
is affinely equivalent to a Cayley sum of n subsets, each one containing the vector 0 and one
of the column vectors of M .

Lawrence configurations are a special case of Cayley configurations (see [3]). The Lawrence
configuration associated to the matrix (5.1) is the Cayley configuration of the two-point
configurations consisting of the origin and one column vector of M . In the smooth case, Cayley
configuration of strictly equivalent polytopes correspond to toric fibrations (see [8]).

It is straightforward to verify that if A is Lawrence, then the following conditions hold:
(i) RA = {(−v

v ) : v ∈ KerZ(M)}; and
(ii) A is pyramidal if and only if M is pyramidal.

We immediately deduce from Theorem 4.4 the following result.

Corollary 5.2. If A is a non-pyramidal Lawrence matrix, then XA is self-dual.

Example 5.3. The well-known fact that the Segre embedding of P1 × Pm−1 in P2m−1 is
self-dual follows directly from Corollary 5.2, the image of the Segre morphism

ϕ(x, y) = [y0x0 : y1x0 : . . . : ymx0 : y0x1 : y1x1 : . . . : ymx1],
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where x = [x0, x1], y = [y0 : y1 : . . . : ym], is a projective toric variety with associated matrix

A =

⎛⎜⎜⎜⎜⎝
1 1 0 0

0 0 1 1

1 0 0 1 0 0

0 0

0 0

0 0 1 0 0 1

⎞⎟⎟⎟⎟⎠ .

The sum of the first two rows equals the sum of the last m rows. It is easy to see that A is
affinely equivalent to the configuration A′ with associated matrix

A′ =
(

Idn Idn

0 · · · 0 1 · · · 1
)
. (5.2)

The matrix A′ is a non-pyramidal Lawrence matrix, hence XA′ = XA is self-dual.

We finish this paragraph by proving that Segre embeddings of P1 × Pm−1, m � 2 are the
unique smooth self-dual projective toric varieties that are not a hypersurface. We begin with
an easy lemma that classifies all smooth hypersurfaces of the form XA.

Lemma 5.4. Let A be a lattice configuration such that XA is a smooth hypersurface. Then,
A is of one of the following forms:

(1) A consists of two equal points, and so XA = {(1 : 1)} = {(x0 : x1) ∈ P1/x0 − x1 = 0};
(2) A consists of three collinear points with one of them the mid point of the others, and

so XA = {(x0 : x1 : x2) ∈ P2/x2
1 − x0x2 = 0}; and

(3) A consists of four points a, b, c, d with a+ c = b+ d, and so XA = {(x0, x1, x2, x3) ∈
P3/x0x3 − x1x2 = 0} is the Segre embedding of P1 × P1 in P3.

Proof. When XA is a hypersurface, an equation for XA is given by bA(x) =
∏

bi>0 x
bi
i −∏

bi<0 x
−bi
i , where the transpose of the row vector (b1, . . . , bn) is a choice of Gale dual of A. The

cases (1)–(3) in the statement correspond to the row vectors (1, 1), (1,−2, 1) and (1,−1,−1, 1)
(or any permutation of the coordinates), and it is straightforward to check that XA is smooth.
It is easy to verify that in any other case, there exists a point x ∈ XA where bA and all its
partial derivatives vanish at x.

We saw in Example 4.19 that a non-pyramidal self-dual lattice configuration A with
codim(XA) > 1 can have a point in the interior of a proper face. Moreover, more complicated
situations can happen.

Example 5.5. Consider the following dimension 3 configuration A ⊂ Z4, A =
{(1, 0, 0, 2), (1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 2), (0, 0, 1, 0), (0, 0, 1, 1)}. Then, ZA = Z4 and XA is
self-dual because the following is a choice of Gale dual B ∈ Z6×2:

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

−1 0
0 1
0 −1
2 −2

−2 2

⎞⎟⎟⎟⎟⎟⎟⎠.

All the points in A are vertices of the polytope P := Conv(A), but A �= P ∩ Z4. Indeed, there is
a lattice point in the middle of each of the segments [(1, 0, 0, 2), (1, 0, 0, 0)], [0, 1, 0, 0), (0, 1, 0, 2)],
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which are faces of P . It is clear that XA is not smooth (for instance, looking at the first lattice
points in all the edges emanating from (1, 0, 0, 0)), nor embedded by a complete linear system.

However, the following result shows that when XA is smooth and self-dual, the situation is
nicer.

Lemma 5.6. Let A be a lattice configuration without repeated points such that XA is self-
dual and smooth. Then, unless XA is the quadratic rational normal curve in (2) of Lemma 5.4,
no facial subconfiguration C ⊆ A contains a point of A in the relative interior of Conv(C).

Proof. Assume A = {λ1, . . . , λn} has no repeated points and there exists μ ∈ A and a
proper face F of Conv(A) containing μ in its relative interior. Then F ∩A is not a pyramid,
and it follows from Proposition 4.20 that XF∩A is self-dual. Since XF∩A is also smooth,
Proposition 4.18 implies that XF∩A is a hypersurface. We deduce from Lemma 5.4 that F ∩A
has dimension 1 and consists (up to reordering) of three points {λ1, λ2, λ3} with λ1 + λ3 = 2λ2.
We can choose a Gale dual B of A of the form

B =

⎛⎜⎜⎜⎜⎝
B1 C1

0 C2

⎞⎟⎟⎟⎟⎠,
with B1 the 3 × 1 column vector with transpose (1,−2, 1). We see that the coparallelism class
of each λi is contained in F ∩A and no class can consist of a single element because A is not
a pyramid. Therefore, cc(λi) = F ∩A, i = 1, 2, 3; that is, any two of the first three rows of B
are linearly dependent. We can thus find another choice of Gale dual B′ of A of the form

B =

⎛⎜⎜⎜⎜⎝
B1 0

0 C2

⎞⎟⎟⎟⎟⎠ .

Then there is a splitting of the torus and XA cannot be smooth, with arguments similar to
those in Example 4.19, because A has no repeated points and so there is no linear equation in
the ideal IA.

We now characterize the Segre embeddings P1 × Pm−1 in P2m−1 from Example 5.3 in terms
of the Gale dual configuration.

Lemma 5.7. A toric variety XA ⊂ P2m−1 is the Segre embedding of P1 × Pm−1 if and only
if any Gale dual B ∈ Z2m×r of A has the following form: r = m− 1 and, up to reordering, the
rows of b1, . . . , b2m of B satisfy det(b1, . . . , bm−1) = 1, b1 + . . .+ bm = 0 and bm+j + bj = 0, for
all j = 1, . . . ,m.

Proof. It is clear that any Gale dual to the matrix A′ in (5.2) is of this form. And it is also
straightforward to check that any matrix B as in the statement is a Gale dual of this A′.

We can now prove the complete characterization of smooth self-dual varieties XA.
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Theorem 5.8. The only self-dual smooth non-linear projective toric varieties equivariantly
embedded are the toric hypersurfaces described in (2) and (3) of Lemma 5.4 and the Segre
embeddings P1 × Pm−1 in P2m−1 for m � 3.

Proof. We proceed by induction in the codimension of A. By Lemma 5.4, the result is
true when XA is a hypersurface. Assume then that codim(XA) > 1. Now, by Lemma 5.6, we
know that all the points in A are vertices of Conv(A). Let C be a coparallelism class and let
D := A \ C. Then XD is smooth and it is non-pyramidal. Indeed, we can choose a Gale dual
B of A of the form

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11
...

br1

0

br+1,1

...

bn1

D2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where (b11, 0), . . . , (br1, 0) correspond to the elements of C. If D is a pyramid, then it is easy
to show that at least one row of D2 must be zero, and it follows that the corresponding point
of the configuration belongs also to C, and thus is a contradiction.

Hence, it follows from Proposition 4.20 that XD is self-dual with codim(XD) = codim(XA) −
1 < codim(XA) and no point of D belongs to the relative interior of Conv(D). Therefore, by
induction, XD is the Segre embedding of P1 × Pm′−1 in P2m′−1 for m′ � 2 (including the
hypersurface case P1 × P1). In particular, |D| = 2m′ is even.

Assume C = {μ1, . . . , μr}. Let BD ∈ Z2m′×(m′−1) be a choice of Gale dual of D as in
Lemma 5.7, with rows e′1, . . . , e

′
m′ ,−e′1, . . . ,−e′m′ with {e′1, . . . , e′m′−1} a basis of Zm′−1 and

e′1 + . . .+ e′m = 0. Add another integer affine relation with coprime entries as the first column,
to form a matrix B′ whose columns are a Q-basis of relations of A of the form

B′ =

⎛⎜⎜⎜⎜⎝
B1 0

B2 BD

⎞⎟⎟⎟⎟⎠ .

Now, each coparallelism class of any μ ∈ D (with respect to D) has two elements when
m′ > 2, and so it cannot be ‘broken’ when considering coparallelism classes in A, since it
is not a pyramid. Then, via column operations, we can assume that B2 is of the form
Bt

2 = (0, . . . , 0, a, 0, . . . , 0,−a), (a ∈ Z�0). In case m′ = 2, then Bt
D = (1,−1,−1, 1) and the

unique coparallelism class could be broken, but at most in two pieces with two elements each,
and again we have the same formulation for B2. In both cases, if a = 0, then we have a splitting,
which implies that either there is a repeated point (if Bt

1 = (1,−1)) or XA is not smooth.
Then a � 1. Consider the subconfiguration E of A obtained by forgetting the two columns
corresponding to the rows m′ and 2m′ of BD. Since the vectors bi with complementary indices
add up to zero, it follows that E is facial and again, XE is smooth. We deduce that a = 1 and
Bt

1 = ±(1,−1), which implies that XA is the Segre embedding of P1 × Pm′+1 in P2m′+1.

5.2. Non-Lawrence families of examples

We have the following obvious corollaries of Theorem 5.8.
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Corollary 5.9. Let A ∈ Md×n(Z) with maximal rank d associated to a regular configu-
ration of weights and let XA ⊂ Pn−1 be the projective toric variety associated to A. Assume
that XA is not a hypersurface, non-linear, smooth and self-dual. Then, n is even.

As the defect of the Segre embedding Xm = P1 × Pm−1 in P2m−1 for any m � 2 equals
2m− 2 −m = m− 2 = dimXm − 2, we recover for smooth varieties XA the following result
(see for instance [10]) for any projective smooth variety.

Corollary 5.10. If XA ⊂ Pn−1 is a non-linear smooth projective variety such that
dimX < n− 2 with defect k > 0, then dimX ≡ k(2).

We use the previous corollaries together with Theorem 4.4 to construct families of non-regular
self-dual varieties.

Example 5.11. Consider the families of matrices {Aα}, {Bα} for α ∈ Z, α �= 0, defined by

Aα =

⎛⎜⎜⎜⎜⎝
1 1 1 1 1 1 1
1 1 1 1 1 0 0
0 0 0 1 1 0 0
0 1 0 α 0 −α 0
0 0 1 0 −α 0 α

⎞⎟⎟⎟⎟⎠, Bα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2α 0
−α 0
−α 0

1 1
−1 −1

0 1
0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, Bα is a choice of a Gale dual matrix of Aα.
Observe that as α �= 0, the configuration Aα is not a pyramid and dim(XAα

) = 4. Moreover,
it is easy to show that if α �= α′, then XAα

and XAα′ are not isomorphic as embedded varieties
because they have different degrees. The degree of XAα

is the normalized volume of the convex
hull of the points in the configuration Aα (see [15]) and it can be computed easily in terms of
the Gale dual configuration.

Since the conditions of Theorem 4.4 hold, it follows that XAα
is self-dual for all α ∈ Z, α �= 0.

Moreover, n = 7 is odd and so we deduce from Corollary 5.9 that XAα
is a singular variety.

The difference between its dimension and its defect is 4 − 1 = 3 �≡ 0 (2).

We can generalize Example 5.11 in order to construct families of non-degenerate projective
toric self-dual varieties of arbitrary dimension greater than or equal to 3 and of arbitrary
codimension greater than or equal to 2.

Example 5.12. Families of self-dual varieties of any dimension at least 3 . Let any r � 2
and α1, . . . , αr be non-zero integer numbers satisfying

∑r
i=1 αi = 0. Consider the planar lattice

configuration

Gα = {(α1, 0), . . . , (αr, 0), (0, 1), (0,−1), (1, 1), (−1,−1)}.
Let A be any lattice configuration with Gale dual Gα. Then A is not a pyramid and the

associated projective toric variety XA ⊂ Pr+3 is self-dual by Theorem 4.4, with dimension
dimXA = (r + 4) − 2 − 1 = r + 1.

When r = 2, the dimension of XAα
is 3. The case α1, α2 = ±1 corresponds to the Segre

embedding of P1 × P2 in P5. Already, for α1, α2 = ±2, the configuration Aα does not contain
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all the lattice points in its convex hull. If we add those ‘remaining’ points to the configuration,
then the associated toric variety is no longer self-dual.

Example 5.13. Families of self-dual varieties of any codimension at least 2 . Using the
same ideas of the previous example, we can construct pairs (A,B) with A a non-pyramidal
configuration, and B its Gale dual satisfying the hypothesis of Theorem 4.4, so that XA is
self-dual, with arbitrary codimension m � 2.

For any r � 2 set n = 2m+ r. As usual, e1, . . . , em denotes the canonical basis in Zm. For
any choice of non-zero integers α1, . . . , αr with

∑r
i=1 αi = 0, consider the following lattice

configuration in Zm:

Gα := {α1e1, . . . , αre1, e2,−e2, . . . , em,−em, e1 + . . .+ em,−(e1 + . . .+ em)}.
For any lattice configuration Aα ⊂ Zn with this Gale dual, Aα is not a pyramid and its

associated self-dual toric variety XAα
⊂ Pn has dimension m+ r − 1 and codimension m.

6. Strongly self-dual varieties

We are interested now in characterizing a particular interesting case of self-dual projective toric
varieties.

Definition 6.1. Let A be a regular lattice configuration without repetitions. We say that
the projective variety XA ⊂ Pn−1 is strongly self-dual if XA coincides with X∗

A under the
canonical identification between Pn−1 and its dual projective space as in Remark 2.20.

We deduce from Theorem 3.2 the following characterization of strongly self-dual projective
toric varieties of the form XA.

Proposition 6.2. Let A be a regular lattice configuration without repetitions. Then XA

is strongly self-dual if and only if P(RA,k) ⊂ XA.

Proof. If XA is strongly self-dual, then the containment P(RA,k) ⊂ X∗
A implies that the

condition P(RA,k) ⊂ XA is necessary.
Assume that this condition holds and A has no repetitions. As we already observed,

Theorem 3.8 implies that A is not pyramidal. Then it follows from Theorem 3.2 that, for
any q ∈ P(RA,k) ∩ Tn−1 ⊂ XA ∩ Tn−1, mq(XA) = X∗

A. But since q ∈ O([1 : . . . : 1]), we deduce

that mq(XA) = O(q) = O([1 : . . . : 1]) = XA, that is, X∗
A = XA.

Using the same notation of Theorem 4.4, we have the following theorem.

Theorem 6.3. Let A be a non-pyramidal regular lattice configuration A of n weights
spanning Zd and let BA be a Gale dual of A. Then :

XA is strongly self-dual ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a) For any line L through the origin we have

∑
bi∈L

bi = 0.

(b)
n∏

j=1
bji>0

b
bji

ji =
n∏

j=1
bji<0

b
−bji

ji , i = 1, . . . , n− d.
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In the above statement, we use the convention that 00 = 1.

Proof. Assume that XA is strongly self-dual. Then (a) holds by Theorem 4.4. By
Proposition 6.2, we know that P(RA,k) ∩ Tn−1 ⊂ XA ∩ Tn−1, and this last variety is cut out
by the (n− d) binomials

n∏
j=1

bji>0

x
bji

j =
n∏

j=1
bji<0

x
−bji

j , ∀ i = 1, . . . , n− d.

Then we have the following equalities, for all s ∈ kn−d:
n∏

j=1
bji>0

〈s, bj〉bji =
n∏

j=1
bji<0

〈s, bj〉−bji , ∀ i = 1, . . . , n− d. (6.1)

We get the condition (b) by evaluating, respectively, at s = e1, . . . , en−d.
Conversely, condition (a) implies the equalities (6.1) of the polynomials in s on both sides up

to constant, as in Remark 4.3. Then condition (b) ensures that this constant is 1. Therefore,
P(RA,k) ∩ Tn−1 ⊂ XA ∩ Tn−1, and so XA is strongly self-dual by Proposition 6.2.

Example 6.4. Consider the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 2 0
0 0 0 1 0 0 0 0 2
0 0 0 0 1 0 0 −2 −2
0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe that A is non-pyramidal. A Gale dual matrix BA for A is given by the transpose of
the matrix

(−2 −2 −2 −2 4 1 1 1 1
1 1 2 0 −2 −1 0 −1 0

)
.

Clearly, BA satisfies the conditions of Theorem 6.3 and hence XA is strongly self-dual. But
note that A is not a Lawrence configuration.

We conclude this section with the complete characterization of strongly self-dual varieties of
type XA, with A a non-pyramidal Lawrence matrix.

Theorem 6.5. Let A be a non-pyramidal Lawrence configuration consisting of 2n points
in Zn+d, as in (5.1). Then XA is strongly self-dual if and only if there exists a subset I of rows
of the lower matrix M = (mjk) such that

∑
j∈I mjk is an odd number for all k = 1, . . . , n.

Proof. By Corollary 5.2, XA is self-dual for any non-pyramidal Lawrence configuration
A. Thus, XA is strongly self-dual if and only if condition (b) in Theorem 6.3 is satisfied. If
GM = {c1, . . . , cn} ⊂ Zn−d is a Gale dual configuration for M , then {−c1, . . . ,−cn, c1, . . . , cn}
defines a Gale dual configuration for A. Condition (b) is then equivalent in this case to the
equalities

(−1)
∑n

j=1 cji = 0, i = 1, . . . , n− d.
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This is in turn equivalent to the condition that, for all v ∈ RM , the sum
∑n

j=1 vj ≡ 0 (2).
But this is equivalent to the fact that the vector (1, . . . , 1) lies in the row span of M when we
reduce all its entries modulo 2. Denoting classes in Z2 with an overline, this condition means
that there exist α1, . . . , αd ∈ Z2 = {0, 1} such that

(1, . . . , 1) =
d∑

i=1

αi(mi1, . . . ,min) =
∑
αi=1

(mi1, . . . ,min).

It suffices to call I = {i ∈ {1, . . . , d} : αi = 1}.

Example 6.6. The Segre embeddings in Example 5.3 have associated Lawrence matrices
as in (5.2), where M is a matrix with a single row with all entries equal to 1. They clearly
satisfy the hypotheses of Theorem 6.5. Then, for any m > 1, the Segre embedding of P1 × Pm−1

is a strongly-self-dual projective toric variety.
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