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Abstract. In this article we study invariance properties of shift-invariant spaces
in higher dimensions. We state and prove several necessary and sufficient con-
ditions for a shift-invariant space to be invariant under a given closed sub-
group of Rd, and prove the existence of shift-invariant spaces that are exactly
invariant for each given subgroup. As an application we relate the extra in-
variance to the size of support of the Fourier transform of the generators of
the shift-invariant space.

This work extends recent results obtained for the case of one variable
to several variables.
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1. Introduction

A shift-invariant space (SIS) of L2(R) is a closed subspace that is invariant un-
der translations by integers. These spaces are important in approximation theory,
wavelets, sampling and frames. They also serve as models in many applications in
signal and image processing.

An important and interesting question regarding these spaces is whether they
have the property to be invariant under translations other than integers. A limit
case is when the space is invariant under translations by all real numbers. In this
case the space is called translation invariant. However there exist shift-invariant
spaces with some extra invariance that are not necessarily translation invariant.
That is, there are some intermediate cases between shift-invariance and translation
invariance. The question is then, how can we identify them?
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Recently, Hogan and Lakey defined the discrepancy of a shift-invariant space
as a way to quantify the non-translation invariance of the subspace, (see [9]). The
discrepancy measures how far a unitary norm function of the subspace, can move
away from it, when translated by non integers. A translation invariant space has
discrepancy zero.

In another direction, Aldroubi et al, see [1] studied shift-invariant spaces of
L2(R) that have some extra invariance. They show that if S is a shift-invariant
space, then its invariance set, is a closed additive subgroup of R containing Z. The
invariance set associated to a shift-invariant space is the set M of real numbers
satisfying that for each p ∈ M the translations by p of every function in S, belongs
to S. As a consequence, since every additive subgroup of R is either discrete or
dense, there are only two possibilities left for the extra invariance. That is, either
S is invariant under translations by the group (1/n)Z, for some positive integer n
(and not invariant under any bigger subgroup) or it is translation invariant. They
found different characterizations, in terms of the Fourier transform, of when a shift
invariant space is (1/n)Z-invariant.

A natural question arises in this context. Are the characterizations of extra
invariance that hold on the line, still valid in several variables?

A shift-invariant space in L2(Rd) is a closed subspace that is invariant under
translations by the group Zd. The invariance set M ⊆ Rd associated to a shift-
invariant space S, that is, the set of vectors that leave S invariant when translated
by its elements, is again, as in the 1-dimensional case, a closed subgroup of Rd (see
Proposition 2.1). The problem of the extra invariance can then be reformulated as
finding necessary and sufficient conditions for a shift-invariant space to be invariant
under a closed additive subgroup M ⊆ L2(Rd) containing Zd.

The main difference here with the one dimensional case, is that the structure
of the subgroups of Rd when d is bigger than one, is not as simple.

The results obtained for the 1-dimensional case translate very well in the
case in which the invariance set M is a lattice, (i.e. a discrete group) or when M
is dense, that is M = Rd. However, there are subgroups of Rd that are neither
discrete nor dense. So, can there exist shift-invariant spaces which are M -invariant
for such a subgroup M and are not translation invariant?

In this paper we studied the extra invariance of shift-invariant spaces in
higher dimensions. We were able to obtain several characterizations paralleling the
1-dimensional results. In addition our results show the existence of shift-invariant
spaces that are exactly M -invariant for every closed subgroup M ⊆ L2(Rd) con-
taining Zd. By ‘exactly M -invariant’ we mean that they are not invariant under
any other subgroup containing M. We apply our results to obtain estimates on the
size of the support of the Fourier transform of the generators of the space.

The paper is organized in the following way. Section 2 contains some no-
tations, definitions and preliminary results that will be needed throughout. We
review the structure of closed additive subgroups of Rd in Section 3. In Section
4 we extend some results, known for shift-invariant spaces in Rd, to M -invariant
spaces when M is a closed subgroup of Rd containing Zd. The necessary and
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sufficient conditions for the M -invariance of shift-invariant spaces are stated and
proved in Section 5. Finally, Section 6 contains some applications of our results.

2. Preliminaries

2.1. Notation and Definitions

Given a subspace W of a Hilbert space H , we denote by W its closure and
by W⊥ its orthogonal complement. The inner product in H will be denoted by
〈·, ·〉.

We normalize the Fourier transform of f ∈ L1(Rd) as

f̂(ω) =

∫

Rd

f(x) e−2πi〈ω,x〉dx.

The Fourier transform extends to a unitary operator on L2(Rd). Given Φ ⊆

L2(Rd), we set Φ̂ = {f̂ : f ∈ Φ}.
For y ∈ Rd, we write e−2πi〈ω,y〉 as ey(ω) and the translation operator ty is

tyf(x) = f(x − y). Note that (̂tyf)(ω) = ey(ω)f̂(ω).
Let G be a subset of Rd, we will say that a function f defined in Rd is G-

periodic if txf = f for all x ∈ G. A subset A ⊆ Rd is G-periodic if its indicator
function (denoted by χA) is G-periodic.

A shift-invariant space (SIS) is a closed subspace S of L2(Rd) such that
tkf ∈ S for every k ∈ Zd and f ∈ S.

Given Φ ⊆ L2(Rd), we define

E(Φ) = {tkϕ : ϕ ∈ Φ, k ∈ Zd}.

The SIS generated by Φ is

S(Φ) = spanE(Φ) = span{tkϕ : ϕ ∈ Φ, k ∈ Zd}.

We call Φ a set of generators for S(Φ). When Φ = {ϕ}, we simply write S(ϕ).
The length of a shift-invariant space S is the minimum cardinality of the sets

Φ such that S = S(Φ). A SIS of length one is called a principal SIS. A SIS of finite
length is a finitely generated SIS (FSIS).

We will write W = U ⊕̇V to denote the orthogonal direct sum of closed
subspaces of L2(Rd), i.e., the subspaces U , V must be closed and orthogonal,
and W is their direct sum.

The Lebesgue measure of a set E ⊆ Rd is denoted by |E|.
The cardinality of a finite set F is denoted by #F .

2.2. The invariance set

Let S ⊆ L2(Rd) be a SIS. We define the set

M := {x ∈ Rd : txf ∈ S, ∀ f ∈ S}. (1)

If Φ is a set of generators for S, it is easy to check that, x ∈ M if and only if for
all ϕ ∈ Φ, txϕ ∈ S.
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In case that M = Rd, Wiener’s theorem (see [8], [13]) states that there exists
a measurable set E ⊆ Rd satisfying

S = {f ∈ L2(Rd) : supp(f̂ ) ⊆ E}.

We want to characterize S when M is not all Rd. We will first study the
structure of the set M .

Proposition 2.1. Let S be a SIS of L2(Rd) and let M be defined as in (1). Then
M is an additive closed subgroup of Rd containing Zd.

For the proof of this proposition we will need the following lemma. Recall that
an additive semigroup is a non-empty set with an associative additive operation.

Lemma 2.2. Let H be a closed semigroup of Rd containing Zd, then H is a group.

Proof. Let π be the quotient map from Rd onto Td = Rd/Zd. Since H is a semi-
group containing Zd, we have that H + Zd = H , thus

π−1(π(H)) =
⋃

h∈H

h + Zd = H + Zd = H.

This shows that π(H) is closed in Td and therefore compact.
By [10, Theorem 9.16], we have that a compact semigroup of Td is necessarily

a group, thus π(H) is a group and consequently H is a group.
�

Proof of Proposition 2.1. Since S is a SIS, Zd ⊆ M .
We now show that M is closed. Let x0 ∈ Rd and {xn}n∈N ⊆ M , such that

limn→∞ xn = x0.
Then

lim
n→∞

‖txn
f − tx0

f‖ = 0.

Therefore, tx0
f ∈ S. But S is closed, so tx0

f ∈ S.
It is easy to check that M is a semigroup of Rd, hence we conclude from

Lemma 2.2 that M is a group.
�

In what follows, we will give some characterizations concerning closed sub-
groups of Rd.

3. Closed subgroups of Rd

Throughout this section we describe the additive closed subgroups of Rd containing
Zd. We first study closed subgroups of Rd in general.

When two groups G1 and G2 are isomorphic we will write G1 ≈ G2. Here
and subsequently all the vector subspaces will be real.
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3.1. General case

We will state in this section, some basic definitions and properties of closed
subgroups of Rd, for a detailed treatment and proofs we refer the reader to [5].

Definition 3.1. Given M a subgroup of Rd, the range of M, denoted by r(M), is
the dimension of the subspace generated by M as a real vector space.

It is known that every closed subgroup of Rd is either discrete or contains a
subspace of at least dimension one (see [5, Proposition 3]).

Definition 3.2. Given M a closed subgroup of Rd, there exists a subspace V whose
dimension is the largest of the dimensions of all the subspaces contained in M . We
will denote by d(M) the dimension of V . Note that d(M) can be zero.

Note that 0 ≤ d(M) ≤ r(M) ≤ d.
The next theorem establishes that every closed subgroup of Rd is the direct

sum of a subspace and a discrete group.

Theorem 3.3. Let M be a closed subgroup of Rd such that r(M) = r and d(M) = p.
Let V be the subspace contained in M as in Definition 3.2. There exists a basis
{u1, . . . , ud} for Rd such that {u1, . . . , ur} ⊆ M and {u1, . . . , up} is a basis for V .
Furthermore,

M =
{ p∑

i=1

tiui +

r∑

j=p+1

njuj : ti ∈ R, nj ∈ Z
}

.

Corollary 3.4. If M is a closed subgroup of Rd such that r(M) = r and d(M) = p,
then

M ≈ Rp × Zr−p.

3.2. Closed subgroups of Rd containing Zd

We are interested in closed subgroups of Rd containing Zd. For their under-
standing, the notion of dual group is important.

Definition 3.5. Let M be a subgroup of Rd. Consider the set

M∗ := {x ∈ Rd : 〈x, m〉 ∈ Z ∀m ∈ M}.

Then M∗ is a subgroup of Rd called the dual group of M . In particular, (Zd)∗ = Zd.

Now we will list some properties of the dual group.

Proposition 3.6. Let M, N be subgroups of Rd.

i) M∗ is a closed subgroup of Rd.
ii) If N ⊆ M , then M∗ ⊆ N∗.
iii) If M is closed, then r(M∗) = d − d(M) and d(M∗) = d − r(M).
iv) (M∗)∗ = M .
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Let H be a subgroup of Zd with r(H) = q, we will say that a set {v1, . . . , vq} ⊆
H is a basis for H if for every x ∈ H there exist unique k1, . . . , kq ∈ Z such that

x =

q∑

i=1

kivi.

Note that {v1, . . . , vd} ⊆ Zd is a basis for Zd if and only if the determinant
of the matrix A which has {v1, . . . , vd} as columns is 1 or −1.

Given B = {v1, . . . , vd} a basis for Zd, we will call B̃ = {w1, . . . , wd} a dual
basis for B if 〈vi, wj〉 = δi,j for all 1 ≤ i, j ≤ d.

If we denote by Ã the matrix with columns {w1, . . . , wd}, the relation between

B and B̃ can be expressed in terms of matrices as Ã = (A∗)−1.
The closed subgroups M of Rd containing Zd, can be described with the help

of the dual relations. Since Zd ⊆ M , we have that M∗ ⊆ Zd. So, we need first the
characterization of the subgroups of Zd. This is stated in the following theorem.

Theorem 3.7. Let H be a subgroup of Zd with r(H) = q, then there exist a basis
{w1, . . . , wd} for Zd and unique integers a1, . . . , aq satisfying ai+1 ≡ 0 (mod. ai)
for all 1 ≤ i ≤ q − 1, such that {a1w1, . . . , aqwq} is a basis for H. The integers
a1, . . . , aq are called invariant factors.

The proof of the previous result can be found in [6].

Remark 3.8. Under the assumptions of the above theorem we obtain

Zd/H ≈ Za1
× . . . × Zaq

× Zd−q.

We are now able to characterize the closed subgroups of Rd containing Zd.
The proof of the following theorem can be found in [5], but we include it here for
the sake of completeness.

Theorem 3.9. Let M ⊆ Rd. The following conditions are equivalent:

i) M is a closed subgroup of Rd containing Zd and d(M) = d − q.
ii) There exist a basis {v1, . . . , vd} for Zd and integers a1, . . . , aq satisfying ai+1 ≡

0 (mod. ai) for all 1 ≤ i ≤ q − 1, such that

M =
{ q∑

i=1

ki

1

ai

vi +

d∑

j=q+1

tjvj : ki ∈ Z, tj ∈ R
}
.

Furthermore, the integers q and a1, . . . , aq are uniquely determined by M .

Proof. Suppose i) is true. Since Zd ⊆ M and d(M) = d − q, we have that M∗ ⊆
Zd and r(M∗) = q. By Theorem 3.7, there exist invariant factors a1, . . . , aq and
{w1, . . . , wd} a basis for Zd such that {a1w1, . . . , aqwq} is a basis for M∗.

Let {v1, . . . , vd} be the dual basis for {w1, . . . , wd}.
Since M is closed, it follows from item iv) of Proposition 3.6 that M = (M∗)∗.

So, m ∈ M if and only if

〈m, ajwj〉 ∈ Z ∀ 1 ≤ j ≤ q. (2)



Invariance of a Shift-Invariant Space in Several Variables 7

As {v1, . . . , vd} is a basis, given u ∈ Rd, there exist ui ∈ R such that u =
∑d

i=1 uivi.
Thus, by (2), u ∈ M if and only if uiai ∈ Z for all 1 ≤ i ≤ q.

We finally obtain that u ∈ M if and only if there exist ki ∈ Z and uj ∈ R
such that

u =

q∑

i=1

ki

1

ai

vi +

d∑

j=q+1

ujvj .

The proof of the other implication is straightforward.

The integers q and a1, . . . , aq are uniquely determined by M since q = d −
d(M) and a1, . . . , aq are the invariant factors of M∗.

�

As a consequence of the proof given above we obtain the following corollary.

Corollary 3.10. Let Zd ⊆ M ⊆ Rd be a closed subgroup with d(M) = d − q. If
{v1, . . . , vd} and a1, . . . , aq are as in Theorem 3.9, then

M∗ =
{ q∑

i=1

niaiwi : ni ∈ Z
}

,

where {w1, . . . , wd} is the dual basis of {v1, . . . , vd}.

Example 3.11. Assume that d = 3. If M = 1
2Z × 1

3Z × R, then v1 = (1, 1, 0),
v2 = (3, 2, 0) and v3 = (0, 0, 1) verify the conditions of Theorem 3.9 with the
invariant factors a1 = 1 and a2 = 6. On the other hand v′1 = (1, 1, 0), v′2 = (3, 2, 1)
and v′3 = (0, 0, 1) verify the same conditions. This shows that the basis in Theorem
3.9 is not unique.

Remark 3.12. If {v1, . . . , vd} and a1, . . . , aq are as in Theorem 3.9, let us define
the linear transformation T as

T : Rd → Rd, T (ei) =

{
1
ai

vi if 1 ≤ i ≤ q

vi if q + 1 ≤ i ≤ d.

Then T is an invertible transformation that satisfies

M = T (Zq × Rd−q).

If {w1, . . . , wd} is the dual basis for {v1, . . . , vd}, the inverse of the adjoint of T is
defined by

(T ∗)−1 : Rd → Rd, (T ∗)−1(ei) =

{
aiwi if 1 ≤ i ≤ q

wi if q + 1 ≤ i ≤ d.

By Corollary 3.10, it is true that

M∗ = (T ∗)−1(Zq × {0}d−q).
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4. The structure of principal M-invariant spaces

Throughout this section M will be a closed subgroup of Rd containing Zd and M∗

its dual group defined as in the previous section.

Definition 4.1. We will say that a closed subspace S of L2(Rd) is M -invariant if
tmf ∈ S for all m ∈ M and f ∈ S.

Given Φ ⊆ L2(Rd), the M -invariant space generated by Φ is

SM (Φ) = span({tmϕ : m ∈ M , ϕ ∈ Φ}).

If Φ = {ϕ} we write SM (ϕ) and we say that SM (ϕ) is a principal M -invariant
space. For simplicity of notation, when M = Zd, we write S(ϕ) instead of SZd(ϕ).

Principal SISs have been completely characterized by [3] as follows.

Theorem 4.2. Let f ∈ L2(Rd) be given. If g ∈ S(f), then there exists a Zd-periodic

function η such that ĝ = ηf̂ .

Conversely, if η is a Zd-periodic function such that ηf̂ ∈ L2(Rd), then the

function g defined by ĝ = ηf̂ belongs to S(f).

The aim of this section is to generalize the previous theorem to the M -
invariant case. In case that M is discrete, Theorem 4.2 follows easily by rescaling.
The difficulty arises when M is not discrete.

Theorem 4.3. Let f ∈ L2(Rd) and M a closed subgroup of Rd containing Zd. If

g ∈ SM (f), then there exists an M∗-periodic function η such that ĝ = ηf̂ .

Conversely, if η is an M∗-periodic function such that ηf̂ ∈ L2(Rd), then the

function g defined by ĝ = ηf̂ belongs to SM (f).

Theorem 4.3 was proved in [3] for the lattice case. We adapt their arguments
to this more general case.

We will first need some definitions and properties.

By Remark 3.12, there exists a linear transformation T : Rd → Rd such that
M = T (Zq × Rd−q) and M∗ = (T ∗)−1(Zq × {0}d−q), where q = d − d(M).

We will denote by D the section of the quotient Rd/M∗ defined as

D = (T ∗)−1([0, 1)q × Rd−q). (3)

Therefore, {D + m∗}m∗∈M∗ forms a partition of Rd.

Given f, g ∈ L2(Rd) we define

[f, g](ω) :=
∑

m∗∈M∗

f(ω + m∗)g(ω + m∗),
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where ω ∈ D. Note that, as f, g ∈ L2(Rd) we have that [f, g] ∈ L1(D), since
∫

Rd

f(ω)g(ω)dω =
∑

m∗∈M∗

∫

D+m∗

f(ω)g(ω) dω

=
∑

m∗∈M∗

∫

D

f(ω + m∗)g(ω + m∗) dω

=

∫

D

[f, g](ω) dω. (4)

From this, it follows that if f ∈ L2(Rd), then {f(ω + m∗)}m∗∈M∗ ∈ `2(M∗) a.e.
ω ∈ D.

The Cauchy-Schwarz inequality in `2(M∗), gives the following a.e. pointwise
estimate

|[f, g]|2 ≤ [f, f ][g, g] (5)

for every f, g ∈ L2(Rd).
Given an M∗-periodic function η and f, g ∈ L2(Rd) such that ηf ∈ L2(Rd),

it is easy to check that

[ηf, g] = η[f, g]. (6)

The following lemma is an extension to general subgroups of Rd of a result
which holds for the discrete case.

Lemma 4.4. Let f ∈ L2(Rd), M a closed subgroup of Rd containing Zd and D
defined as in (3). Then,

SM (f)⊥ = {g ∈ L2(Rd) : [f̂ , ĝ](ω) = 0 a.e. ω ∈ D}.

Proof. Since the span of the set {tmf : m ∈ M} is dense in SM (f), we have that

g ∈ SM (f)⊥ if and only if 〈ĝ, emf̂〉 = 0 for all m ∈ M . As em is M∗-periodic,
using (4) and (6), we obtain that g ∈ SM (f)⊥ if and only if

∫

D

em(ω)[f̂ , ĝ](ω) dω = 0, (7)

for all m ∈ M .
At this point, what is left to show is that if (7) holds then [f̂ , ĝ](ω) = 0 a.e.

ω ∈ D. For this, taking into account that [f̂ , ĝ] ∈ L1(D), it is enough to prove that
if h ∈ L1(D) and

∫
D

hem = 0 for all m ∈ M then h = 0 a.e ω ∈ D.

We will prove the preceding property for the case M = Zq × Rd−q. The
general case will follow from a change of variables using the description of M and
D given in Remark 3.12 and (3).

Suppose now M = Zq × Rd−q, then D = [0, 1)q × Rn−q. Take h ∈ L1(D),
such that∫∫

[0,1)q×Rn−q

h(x, y)e−2πi(kx+ty) dxdy = 0 ∀ k ∈ Zq, t ∈ Rd−q. (8)



10 M. Anastasio, C. Cabrelli and V. Paternostro

Given k ∈ Zq, define αk(y) :=
∫
[0,1)q h(x, y)e−2πikx dx for a.e. y ∈ Rd−q. It follows

from (8) that ∫

Rd−q

αk(y)e−2πity dy = 0 ∀ t ∈ Rd−q. (9)

Since h ∈ L1(D), by Fubini’s Theorem, αk ∈ L1([0, 1)q). Thus, using (9), αk(y) = 0
a.e. y ∈ Rd−q. That is ∫

[0,1)q

h(x, y)e−2πikx dx = 0 (10)

for a.e. y ∈ Rd−q. Define now βy(x) := h(x, y). By (10), for a.e. y ∈ Rd−q we have
that βy(x) = 0 for a.e. x ∈ [0, 1)q. Therefore, h(x, y) = 0 a.e. (x, y) ∈ [0, 1)q×Rd−q

and this completes the proof. �

Now we will give a formula for the orthogonal projection onto SM (f).

Lemma 4.5. Let P be the orthogonal projection onto SM (f). Then, for each g ∈

L2(Rd), we have P̂ g = ηg f̂ , where ηg is the M∗-periodic function defined by

ηg :=

{
[ĝ, f̂ ]/[f̂ , f̂ ] on Ef + M∗

0 otherwise,

and Ef is the set {ω ∈ D : [f̂ , f̂ ](ω) 6= 0}.

Proof. Let P̂ be the orthogonal projection onto ŜM (f). Since P̂ g = P̂ ĝ, it is

enough to show that P̂ ĝ = ηg f̂ .

We first want to prove that ηgf̂ ∈ L2(Rd). Combining (4), (5) and (6)
∫

Rd

|ηgf̂ |
2 =

∫

D

|ηg|
2[f̂ , f̂ ] ≤

∫

D

[ĝ, ĝ] = ‖g‖2
L2,

and so, ηg f̂ ∈ L2(Rd). Define the linear map

Q : L2(Rd) −→ L2(Rd), Qĝ = ηg f̂ ,

which is well defined and has norm not greater than one. We will prove that Q = P̂ .

Take ĝ ∈ ŜM (f)
⊥

= (SM (f)⊥)∧. Then Lemma 4.4 gives that ηg = 0, hence

Qĝ = 0. Therefore, Q = P̂ on ŜM (f)
⊥

.

On the other hand, on Ef + M∗,

η(tmf) = [emf̂ , f̂ ]/[f̂ , f̂ ] = em ∀m ∈ M.

Since f̂ = 0 outside of Ef + M∗, we have that Q(t̂mf) = emf̂ . As Q is linear and

bounded, and the set span{tmf : m ∈ M} is dense in SM (f), Q = P̂ on ŜM (f).

�
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Proof of Theorem 4.3. Suppose that g ∈ SM (f), then Pg = g, where P is the

orthogonal projection onto SM (f). Hence, by Lemma 4.5, ĝ = ηg f̂ .

Conversely, if ηf̂ ∈ L2(Rd) and η is an M∗-periodic function, then g, the in-

verse transform of ηf̂ is also in L2(Rd) and satisfies, by (6), that ηg = [ηf̂ , f̂ ]/[f̂ , f̂ ] =
η on Ef + M∗.

On the other hand, since supp(f̂) ⊆ Ef + M∗, we have that ηg f̂ = ηf̂ .

So, P̂ g = ηg f̂ = ηf̂ = ĝ. Consequently, Pg = g, and hence g ∈ SM (f).
�

5. Characterization of M-invariance

Given M a closed subgroup of Rd containing Zd, our goal is to characterize when
a SIS S is an M -invariant space. For this, we will construct a partition {Bσ}σ∈N

of Rd, where each Bσ will be an M∗-periodic set and the index set N will be
properly chosen later (see(14)). Using this partition, for each σ ∈ N , we define the
subspaces

Uσ = {f ∈ L2(Rd) : f̂ = χBσ
ĝ, with g ∈ S}. (11)

The main theorem of this section characterizes the M -invariance of S in terms
of the subspaces Uσ.

Theorem 5.1. If S ⊆ L2(Rd) is a SIS and M is a closed subgroup of Rd containing
Zd, then the following are equivalent.

i) S is M -invariant.
ii) Uσ ⊆ S for all σ ∈ N .

Moreover, in case any of the above holds, we have that S is the orthogonal direct
sum

S =
⊕̇

σ∈N

Uσ.

Before proving the theorem let us carefully define the partition {Bσ}σ∈N , in
such a way that each Bσ is an M∗-periodic set.

Let Ω be the section of the quotient Rd/Zd given by

Ω = (T ∗)−1([0, 1)d), (12)

where T is as in Remark 3.12. Then Ω tiles Rd by Zd translations, that is

Rd =
⋃

k∈Zd

Ω + k. (13)

Now, for each k ∈ Zd, consider (Ω + k) + M∗. Although these sets are M∗-
periodic, they are not a partition of Rd. So, we need to choose a subset N of Zd

such that if σ, σ′ ∈ N and σ + M∗ = σ′ + M∗, then σ = σ′. Thus N should be a
section of the quotient Zd/M∗. We can choose for example the set N given by

N = (T ∗)−1({0, . . . , a1 − 1} × . . . × {0, . . . , aq − 1} × Zd−q), (14)
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where a1, . . . , aq are the invariant factors of M . Hence, given σ ∈ N we define

Bσ = Ω + σ + M∗ =
⋃

m∗∈M∗

(Ω + σ) + m∗. (15)

We give three basic examples of this construction.

Example 5.2.
(1) Let M = 1

n
Z ⊆ R, then M∗ = nZ, Ω = [0, 1) and N = {0, . . . , n − 1}.

Given σ ∈ {0, . . . , n − 1}, we have

Bσ =
⋃

m∗∈nZ

([0, 1) + σ) + m∗ =
⋃

j∈Z

[σ, σ + 1) + nj.

Figure 1 illustrates the partition for n = 4. In the picture, the black dots represent
the set N . The set B2 is the one which appears in gray.

| | | | ||||||||

0 1 2 3 4 5 6 7 8-1-2-3-4-5-6-7

Ω
b b b b

Figure 1. Partition of the real line for M = 1
4Z.

(2) Let M = 1
2Z × R, then Ω = [0, 1)2, M∗ = 2Z × {0} and N = {0, 1} × Z.

So, the sets B(i,j) are

B(i,j) =
⋃

k∈Z

(
[0, 1)2 + (i, j)

)
+ (2k, 0)

where (i, j) ∈ N . See Figure 2, where the sets B(0,0), B(1,1) and B(−1,−1) are
represented by the squares painted in light gray, gray and dark gray respectively.
As in Figure 1, the set N is represented by the black dots.

(3) Let M = {k 1
3v1 + tv2 : k ∈ Z and t ∈ R}, where v1 = (1,−2) and

v2 = (0, 1). Then, {v1, v2} satisfy conditions in Theorem 3.9. By Corollary 3.10,
M∗ = {k3w1 : k ∈ Z}, where w1 = (1, 0) and w2 = (2, 1).

Note that the sets Ω and N can be expressed in terms of w1 and w2 as

Ω = {tw1 + sw2 : t, s ∈ [0, 1)}

and

N = {aw1 + kw2 : a ∈ {0, 1, 2}, k ∈ Z}.

This is illustrated in Figure 3. In this case the sets B(0,0), B(3,1) and B(0,−1)

correspond to the light gray, gray and dark gray regions respectively. And again,
the black dots represent the set N .

Once the partition {Bσ}σ∈N is defined, we state a lemma which will be
necessary to prove Theorem 5.1.
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-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

3

o

Ω
b

b

b

b

b b

b b

b b

b b

Figure 2. Partition of the plane for M = 1
2Z × R.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-2

-1

0

1

2

3

Ω
w2

w1

b b b

b b b

b b b

b

b b b

b b b

b b

Figure 3. Partition for M = {k 1
3 (1,−2) + t(0, 1) : k ∈ Z and t ∈ R}.

Lemma 5.3. Let S be a SIS and σ ∈ N . Assume that the subspace Uσ defined in
(11) satisfies Uσ ⊆ S. Then, Uσ is an M -invariant space and in particular is a
SIS.

Proof. Let us first prove that Uσ is closed. Suppose that fj ∈ Uσ and fj → f in
L2(Rd). Since Uσ ⊆ S and S is closed, f must be in S. Further,

‖f̂j − f̂‖2
2 = ‖(f̂j − f̂)χBσ

‖2
2 + ‖(f̂j − f̂)χBc

σ
‖2
2 = ‖f̂j − f̂χBσ

‖2
2 + ‖f̂χc

Bσ
‖2
2.

Since the left-hand side converges to zero, we must have that f̂χBc
σ

= 0 a.e.

ω ∈ Rd, and f̂j → f̂χBσ
in L2(Rd). So, as f̂j → f̂ in L2(Rd), we conclude that

f̂ = f̂χBσ
,

which proves that f ∈ Uσ and so Uσ is closed.
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Note that, since Zd ⊆ M , the Zd-invariance of Uσ is a consequence of the
M -invariance.

So, given m ∈ M and f ∈ Uσ, we will prove that emf̂ ∈ Ûσ. Since f ∈ Uσ,

there exists g ∈ S such that f̂ = χBσ
ĝ. Hence,

emf̂ = em(χBσ
ĝ) = χBσ

(emĝ). (16)

If we can find a Zd-periodic function `m verifying

em(ω) = `m(ω) a.e.ω ∈ Bσ, (17)

then, we can rewrite (16) as

emf̂ = χBσ
(`mĝ).

By Theorem 4.2, `mĝ ∈ Ŝ(g) ⊆ Ŝ and so, emf̂ ∈ Ûσ.
Let us now define the function `m. Note that, since em is M∗-periodic,

em(ω + σ) = em(ω + σ + m∗) a.e. ω ∈ Ω, ∀m∗ ∈ M∗. (18)

For each k ∈ Zd, set

`m(ω + k) = em(ω + σ) a.e. ω ∈ Ω. (19)

It is clear that `m is Zd-periodic and combining (18) with (19), we obtain (17).
�

Proof of Theorem 5.1. i)⇒ ii): Fix σ ∈ N and f ∈ Uσ. Then f̂ = χBσ
ĝ for some

g ∈ S. Since χBσ
is an M∗-periodic function, by Theorem 4.3, we have that

f ∈ SM (g) ⊆ S, as we wanted to prove.
ii)⇒ i): Suppose that Uσ ⊆ S for all σ ∈ N . Note that Lemma 5.3 implies

that Uσ is M -invariant, and we also have that the subspaces Uσ are mutually
orthogonal since the sets Bσ are disjoint.

Take f ∈ S. Then, since {Bσ}σ∈N is a partition of Rd, we can decompose f as

f =
∑

σ∈N fσ where fσ is such that f̂σ = f̂χBσ
. This implies that f ∈

⊕̇
σ∈N Uσ

and consequently, S is the orthogonal direct sum

S =
⊕̇

σ∈N

Uσ.

As each Uσ is M -invariant, so is S. �

5.1. Characterization of M -invariance in terms of fibers

A useful tool in the theory of shift-invariant spaces is based on early work
of Helson [8]. An L2(Rd) function is decomposed into “fibers.” This produces a
characterization of SIS in terms of closed subspaces of `2(Zd) (the fiber spaces).

For a detailed description of this approach, see [7] and the references therein.

Given f ∈ L2(Rd) and ω ∈ Ω, the fiber f̂ω of f at ω is the sequence

f̂ω = {f̂(ω + k)}k∈Zd .

If f is in L2(Rd), then the fiber f̂ω belongs to `2(Zd) for almost every ω ∈ Ω.
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Given a subspace V of L2(Rd) and ω ∈ Ω, the fiber space of V at ω is

JV (ω) = {f̂ω : f ∈ V },

where the closure is taken in the norm of `2(Zd).
The map assigning to each ω the fiber space JV (ω) is known in the literature

as the range function of V .
The dimension function is defined by

dimV : Ω → N0 ∪ {∞}, dimV (ω) := dim(JV (ω)).

For a proof that, for almost every ω, JV (ω) is a well-defined closed sub-
space of `2(Zd) and that shift-invariant spaces can be characterized through range
functions, see [7], [8].

Proposition 5.4 ([8]). If S is a SIS, then

S =
{
f ∈ L2(Rd) : f̂ω ∈ JS(ω) for a.e. ω ∈ Ω

}
.

Proposition 5.5. Let S1 and S2 be SISs. Then we have, S = S1 ⊕̇S2, if and only if

JS(ω) = JS1
(ω) ⊕̇JS2

(ω), a.e. ω ∈ Ω.

Let Φ = {ϕ1, . . . , ϕ`} be a finite collection of functions in L2(Rd). Then the
Gramian GΦ of Φ is the ` × ` matrix of Zd-periodic functions

[GΦ(ω)]ij =
〈
(ϕ̂i)ω, (ϕ̂j)ω

〉
=

∑

k∈Zd

ϕ̂i(ω + k) ϕ̂j(ω + k), ω ∈ Ω. (20)

So, we have the following relation whose proof is straightforward.

Proposition 5.6. Let S be an FSIS generated by Φ. Therefore,

dimS(ω) = rank[GΦ(ω)] a.e. ω ∈ Ω.

Now, if f ∈ L2(Rd) and σ ∈ N , let fσ denote the function defined by

f̂σ = f̂χBσ
.

Let Pσ be the orthogonal projection onto Sσ, where

Sσ := {f ∈ L2(Rd) : supp(f̂) ⊆ Bσ}.

Therefore
fσ = Pσf and Uσ = Pσ(S) = {fσ : f ∈ S}.

Moreover, if S = S(Φ) with Φ a countable subset of L2(Rd), then

JUσ
(ω) = span{(ϕ̂σ)ω : ϕ ∈ Φ}. (21)

Remark 5.7. Note that (ϕ̂σ)ω = {χBσ
(ω + k)ϕ̂(ω + k)}k∈Zd . Then, since χBσ

(ω +

k) 6= 0 if and only if k ∈ σ + M∗,

χBσ
(ω + k)ϕ̂(ω + k) =

{
ϕ̂(ω + k) if k ∈ σ + M∗

0 otherwise .

Therefore, if σ 6= σ′, JUσ
(ω) is orthogonal to JUσ′

(ω) for a.e. ω ∈ Ω.
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Combining Theorem 5.1 with Proposition 5.4 and (21) we obtain the following
proposition.

Theorem 5.8. Let S be a SIS generated by Φ. The following statements are equiv-
alent.

(i) S is M -invariant.

(ii) (ϕ̂σ)ω ∈ JS(ω) a.e. ω ∈ Ω for all ϕ ∈ Φ and σ ∈ N .

Now, using Proposition 5.5, Proposition 5.6, Theorem 5.8 and Remark 5.7, we
give a slightly simpler characterization of M -invariance for the finitely generated
case.

Theorem 5.9. If S is an FSIS generated by Φ, then the following statements are
equivalent.

(a) S is M -invariant.

(b) For almost every ω ∈ Ω, dimS(ω) =
∑

σ∈N dimUσ
(ω).

(c) For almost every ω ∈ Ω, rank[GΦ(ω)] =
∑

σ∈N rank[GΦσ (ω)],

where Φσ = {ϕσ : ϕ ∈ Φ}.

6. Applications of M-invariance

In this section we present two applications of the results given before. First, we
will estimate the size of the supports of the Fourier transforms of the generators
of an FSIS which is also M -invariant. Finally, given M a closed subgroup of Rd

containing Zd, we will construct a SIS S which is exactly M -invariant. That is, S
is not invariant under any other closed subgroup containing M .

Theorem 6.1. Let S be an FSIS generated by {ϕ1, . . . , ϕ`}, and define

Ej = {ω ∈ Ω : dimS(ω) = j}, j = 0, . . . , `.

If S is M -invariant and D′ is any measurable section of Rd/M∗, then

|{y ∈ D′ : ϕ̂h(y) 6= 0}| ≤
∑̀

j=0

j|Ej | ≤ `,

for each h = 1, . . . , `.

Proof. The measurability of the sets Ej follows from the results of Helson [8], e.g.,
see [4] for an argument of this type.

Fix any h ∈ {0, . . . , `}. Note that, as a consequence of Remark 5.7, if JUσ
(ω) =

{0}, then ϕ̂h(ω + σ + m∗) = 0 for all m∗ ∈ M∗.
On the other hand, since {Ω + σ + m∗}σ∈N ,m∗∈M∗ is a partition of Rd,

if ω ∈ Ω and σ ∈ N are fixed, there exists a unique m∗
(ω,σ) ∈ M∗ such that

ω + σ + m∗
(ω,σ) ∈ D′.
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So,

{σ ∈ N : ϕ̂h(ω + σ + m∗
(ω,σ)) 6= 0} ⊆ {σ ∈ N : dimUσ

(ω) 6= 0}.

Therefore

#{σ ∈ N : ϕ̂h(ω + σ + m∗
(ω,σ)) 6= 0} ≤ #{σ ∈ N : dimUσ

(ω) 6= 0}

≤
∑

σ∈N

dimUσ
(ω)

= dimS(ω).

Consequently, by Fubini’s Theorem,

|{y ∈ D′ : ϕ̂h(y) 6= 0}| =
∑

σ∈N

|{ω ∈ Ω : ϕ̂h(ω + σ + m∗
(ω,σ)) 6= 0}|

= |{(ω, σ) ∈ Ω ×N : ϕ̂h(ω + σ + m∗
(ω,σ)) 6= 0}|

=

∫

Ω

#{σ ∈ N : ϕ̂h(ω + σ + m∗
(ω,σ)) 6= 0} dw

≤

∫

Ω

dimS(ω)dw =
∑̀

j=0

j|Ej | ≤ `.

�

When M is not discrete, the previous theorem shows that, despite the fact
that D′ has infinite measure, the support of ϕ̂h in D′ has finite measure.

On the other hand, if M is discrete, the measure of D′ is equal to the measure
of the section D given by (3). That is

|D′| = |D| = a1 . . . ad,

where a1, . . . , ad are the invariant factors. Thus, if a1 . . . ad − ` > 0, it follows that

|{y ∈ D′ : ϕ̂h(y) = 0}| ≥ a1 . . . ad − `. (22)

Corollary 6.2. Let ϕ ∈ L2(Rd) be given. If the SIS S(ϕ) is M -invariant for some
closed subgroup M of Rd such that Zd $ M , then ϕ̂ must vanish on a set of infinite
Lebesgue measure.

Proof. Let D be the measurable section of Rd/M∗ defined in (3). Then,

Rd =
⋃

m∗∈M∗

D + m∗,

thus

|{y ∈ Rd : ϕ̂(y) = 0}| =
∑

m∗∈M∗

|{y ∈ D + m∗ : ϕ̂(y) = 0}|.

If M is discrete, by (22), we have

|{y ∈ Rd : ϕ̂(y) = 0}| ≥
∑

m∗∈M∗

(|D| − 1) = +∞. (23)



18 M. Anastasio, C. Cabrelli and V. Paternostro

The last equality is due to the fact that M∗ is infinite and |D| > 1 (since M 6= Zd).
If M is not discrete, by Theorem 6.1, |{y ∈ D + m∗ : ϕ̂(y) = 0}| = +∞,

hence |{y ∈ Rd : ϕ̂(y) = 0}| = +∞. �

It is known that on the real line, the SIS generated by a function ϕ with
compact support can only be invariant under integer translations. That is, txϕ /∈
S(ϕ) for all x ∈ R \ Z. The following proposition extends this result to Rd.

Proposition 6.3. If a nonzero function ϕ ∈ L2(Rd) has compact support, then
S(ϕ) is not M -invariant for any M closed subgroup of Rd such that Zd $ M . In
particular,

txϕ /∈ S(ϕ) ∀x ∈ Rd \ Zd. (24)

Proof. The first part of the proposition is a straightforward consequence of Corol-
lary 6.2. To show (24), take x ∈ Rd \Zd and suppose that txϕ ∈ S(ϕ). If M is the
closed subgroup generated by x and Zd, then S(ϕ) must be M -invariant, which is
a contradiction.

�

As a consequence of Theorem 6.1, in case that M = Rd, we obtain the
following corollary.

Corollary 6.4. If ϕ ∈ L2(Rd) and S(ϕ) is Rd-invariant, then

|supp(ϕ̂)| ≤ 1.

Let M be a closed subgroup of Rd containing Zd. The next theorem, states
that there exists an M-invariant space S that is not invariant under any vector
outside M . We will say in this case that S is exactly M -invariant.

Note that because of Proposition 2.1, an M-invariant space is exactly M -
invariant if and only if it is not invariant under any closed subgroup M ′ containing
M.

Theorem 6.5. For each closed subgroup M of Rd containing Zd, there exist a shift-
invariant space of L2(Rd) which is exactly M -invariant.

Proof. Let M be a subgroup of Rd containing Zd. We will construct a principal
shift-invariant space that is exactly M -invariant.

Suppose that 0 ∈ N and take ϕ ∈ L2(Rd) satisfying supp(ϕ̂) = B0, where
B0 is defined as in (15). Let S = S(ϕ).

Then, U0 = S and Uσ = {0} for σ ∈ N , σ 6= 0. So, as a consequence of
Theorem 5.1, it follows that S is M -invariant.

Now, if M ′ is a closed subgroup such that M $ M ′, we will show that S can
not be M ′-invariant.

Since M ⊆ M ′, (M ′)∗ ⊆ M∗. Consider a section H of the quotient M∗/(M ′)∗

containing the origin. Then, the set given by

N ′ := {σ + h : σ ∈ N , h ∈ H},

is a section of Zd/(M ′)∗ and 0 ∈ N ′.
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If {B′
γ}γ∈N ′ is the partition defined in (15) associated to M ′, for each σ ∈ N

it holds that {B′
σ+h}h∈H is a partition of Bσ, since

Bσ = Ω + σ + M∗ =
⋃

h∈H

Ω + σ + h + (M ′)∗ =
⋃

h∈H

B′
σ+h. (25)

We will show now that U ′
0 * S, where U ′

0 is the subspace defined in (11)

for M ′. Let g ∈ L2(Rd) such that ĝ = ϕ̂χB′

0
. Then g ∈ U ′

0. Moreover, since
supp(ϕ̂) = B0, by (25), ĝ 6= 0.

Suppose that g ∈ S, then ĝ = ηϕ̂ where η is a Zd-periodic function. Since
M $ M ′, there exists h ∈ H such that h 6= 0. By (25), ĝ vanishes in B′

h. Then,
the Zd-periodicity of η implies that η(y) = 0 a.e. y ∈ Rd. So ĝ = 0, which is a
contradiction.

This shows that U ′
0 * S. Therefore, S is not M ′-invariant.

�
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