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Abstract

A new variation of the coloring problem, µ-coloring, is defined
in this paper. A coloring of a graph G = (V, E) is a function
f : V → N such that f(v) 6= f(w) if v is adjacent to w. Given a
graph G = (V, E) and a function µ : V → N, G is µ-colorable if it
admits a coloring f with f(v) ≤ µ(v) for each v ∈ V . It is proved
that µ-coloring lies between coloring and list-coloring, in the sense
of generalization of problems and computational complexity. Fur-
thermore, the notion of perfection is extended to µ-coloring, giving
rise to a new characterization of cographs. Finally, a polynomial
time algorithm to solve µ-coloring for cographs is shown.

Keywords: cographs, coloring, list-coloring, µ-coloring,
M-perfect graphs, perfect graphs.

1 Introduction

Let G = (V,E) be a graph, with vertex set V (G) and edge set E(G).
Denote by n and m the cardinalities of V (G) and E(G), respectively.
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Denote by NG(v) the set of neighbors of v ∈ V (G), and by d(v) the
cardinality of NG(v), that is, the degree of v. Denote by G the complement
of G.

Denote by Kn the complete graph of n vertices. A clique of a graph
is a subset of its vertices inducing a complete subgraph maximal under
inclusion. Let X and Y be two sets of vertices of G. We say that X is
complete to Y if every vertex in X is adjacent to every vertex in Y , and
that X is anticomplete to Y if no vertex of X is adjacent to a vertex of
Y .

A coloring of a graph G = (V,E) is a function f : V → N such that
f(v) 6= f(w) if v is adjacent to w. A k-coloring is a coloring f for which
f(v) ≤ k for every v ∈ V . A graph G is k-colorable if there exists a
k-coloring of G.

Several variations of the coloring problem have been studied in the liter-
ature (see reviews in [10, 14], and recent works in [11, 16]). One of them
is list-coloring [15]. Given a graph G = (V,E) and a finite list L(v) ⊆ N

of colors for each vertex v ∈ V , G is list-colorable if there is a coloring f

such that f(v) ∈ L(v) for each v ∈ V .

We define here µ-coloring as follows. Given a graph G = (V,E) and
a function µ : V → N, G is µ-colorable if it admits a coloring f with
f(v) ≤ µ(v) for each v ∈ V . In terms of problems, list-coloring generalizes
µ-coloring, which in turn generalizes k-coloring. Moreover, the same chain
arises when considering the relation between these problems in the sense
of computational complexity.

Given a graph G and an integer k, a polynomial time reduction from
k-coloring to µ-coloring can be achieved maintaining the graph G and
defining µ(v) = k for every vertex v of G. Similarly, given a graph G and
a function µ : V (G) → N, a polynomial time reduction from µ-coloring
to list-coloring can be achieved maintaining the graph G and defining
L(v) = {1, . . . ,min{µ(v), |V (G)|}} for each vertex v of G.

It is important to remark that these reductions do not involve changes
in the graph. Therefore, for every graph class C list-coloring is harder
than µ-coloring, which is in turn harder than k-coloring, in terms of com-
putational complexity. That is, if k-coloring is NP-complete over C, so
is µ-coloring and if µ-coloring is NP-complete over C, so is list-coloring.
In this sense, it can be said that µ-coloring lies between k-coloring and
list-coloring. We show in this work that the betweenness is strict, that
is, there is a class of graphs (bipartite graphs) for which µ-coloring is



NP-complete while k-coloring is in P, and there is another class of graphs
(cographs) for which list-coloring is NP-complete while µ-coloring is in P.

The µ-coloring problem arises in a natural way from resources assignment
with some incompatibilities between users. This problem could be mod-
elled as a coloring problem, but sometimes not every resource can be used
by every user. In some special cases, modelling it as a list-coloring prob-
lem seems to be too general. For example, if the resources can be ordered
by quality or size and each user has a minimum size/quality requirement
(each user can receive a resource being “good enough” for him/her), it is
natural to see it as a µ-coloring problem.

We say that a coloring f is minimal when for every vertex v, and every
i < f(v), v has a neighbor wi with f(wi) = i. Note that every k-coloring
or µ-coloring can be transformed into a minimal one.

The three coloring problems considered here are decision problems. The
k-coloring problem has an optimization problem naturally associated to
it: to find the chromatic number of a graph. The chromatic number of a
graph G is the minimum k such that G is k-colorable, and it is denoted by
χ(G). An obvious lower bound is the maximum cardinality of the cliques
of G, the clique number of G, denoted by ω(G). A graph G is perfect [1]
when χ(H) = ω(H) for every induced subgraph H of G. Perfect graphs
have very interesting properties: they are a self-complementary class of
graphs [13], the k-coloring problem is solvable in polynomial time for
perfect graphs [8], they have been characterized by minimal forbidden
subgraphs [4] and they may be recognized in polynomial time [3].

The concept of perfection was studied for some variations of the coloring
problem, see for example [11, 16]. In this work we project the notion of
perfection to define the M-perfect graphs, and show that they are exactly
the cographs. A cograph is a P4-free graph, i.e., a graph with no induced
path of four vertices. It follows from this equivalence that M-perfect
graphs are a self-complementary class of graphs and can be recognized in
linear time [6]. Moreover, we show that the µ-coloring problem is solvable
in polynomial time for this class of graphs.

Preliminary results of this work appear published in [2].



2 Cographs and M-perfect graphs

A graph G is perfect when χ(H) = ω(H) for every induced subgraph
H of G. If we restrict our attention to the k-coloring problem, we can
reformulate the definition of perfect graphs in the following way: “G is
perfect when for every induced subgraph H of G and for every k, H is
k-colorable if and only if every clique of H is k-colorable”.

We define M-perfect graphs by analogy with this second definition of
perfect graphs. A graph G is M-perfect when for every induced subgraph
H of G and for every function µ : V → N, H is µ-colorable if and only if
every clique of H is µ-colorable.

Proposition 1 If G is a graph, the following statements are equivalent:

(i) G is M-perfect

(ii) for every function µ : V → N, G is µ-colorable if and only if every

clique of G is µ-colorable.

Proof. (i) ⇒ (ii)) It follows from the definition.

(ii) ⇒ (i)) Let G be a graph verifying (ii), H an induced subgraph of
G, and µ : V (H) → N a function for which all the cliques of H are µ-
colorable. Let us extend that function µ to a function µ′ defined for the
vertex set of G, µ′ : V (G) → N, such that: µ′(v) = µ(v) for every v in H

and µ′(w) = |V (G)| for every w in V (G) \ V (H).
Let K be a clique of G and KH = K ∩ V (H). The set KH induces
a complete subgraph of H, and therefore it is included in a clique of
H, and since it can be µ-colored, it can be µ′-colored, as well. We can
extend this µ′-coloring to K, since the vertices of K \ KH have µ′ equal
to |V (G)| ≥ |K|. Then all the cliques of G can be µ′-colored, and since
G verifies (ii), G can be µ′-colored. But this µ′-coloring restricted to H

is also a µ-coloring, because µ′|H = µ. 2

A complete graph is k-colorable if and only if it has size at most k. It
is easy to know when a complete graph is µ-colorable, as well. Let µ :
V (Kn) → N, and a vertex ordering v1, . . . , vn such that µ(vi) ≤ µ(vj) if
i ≤ j, then Kn is µ-colorable if and only if i ≤ µ(vi) for 1 ≤ i ≤ n.

M-perfect graphs are also perfect because perfection is equivalent to M-
perfection with µ restricted to constant functions. The converse is not
true. We will show that the graph P4 is not M-perfect, although it is



perfect. In fact, M-perfect graphs are exactly the cographs. In order
to prove it we need the next general result about minimal colorings on
cographs.

Lemma 1 Let G be a cograph and x ∈ V (G). Let f be a minimal coloring

of G − x, and T ∈ N. If f cannot be extended to G in such a way that

f(x) ≤ T , then there is a subset of vertices H ⊆ NG(x) of size T , inducing

a complete subgraph in G, and such that f(H) = {1, . . . , T}.

Proof. Let G be a cograph and x ∈ V (G). Let f be a minimal coloring
of G − x, and T ∈ N. Let us prove the result by induction on T . First,
suppose that T = 1. If f cannot be extended to G coloring x with color
1, then there exists v ∈ NG(x) such that f(v) = 1. In this case, H = {v}.
Now, suppose that the result holds for T = s − 1 and let us see that it
holds for T = s, s ≥ 2. If f cannot be extended to G coloring x with
a color less or equal to s, in particular the same holds for s − 1, and so,
by induction hypothesis, there is a subset of vertices H ⊆ NG(x) of size
s − 1, inducing a complete subgraph in G and using all the colors from
1 to s − 1. On the other hand, since x cannot use color s, it must be a
vertex v ∈ NG(x) such that f(v) = s. Let us consider the subgraph G̃

of G − x induced by {w ∈ G − x : f(w) ≤ s − 1} ∪ {v} and let f̃ be the

coloring f restricted to G̃− v. By the minimality of f it follows that f̃ is
minimal and it cannot be extended to G̃ coloring v with a color smaller
or equal to s− 1, so, by induction hypothesis, there is a subset of vertices
F ⊆ N �

G
(v) of size s − 1, inducing a complete subgraph in G̃ and using

all the colors from 1 to s − 1.
If H = F then H∪{v} is a subset of vertices of size s in the neighborhood
of x, inducing a complete subgraph in G and using all the colors from 1
to s. Suppose that they are not equal. Then F \ H and H \ F have the
same cardinality and use the same colors. Let vH in H \ F , and let vF

in F \ H such that f(vF ) = f(vH). Since f is a coloring of G − x, vF

and vH are not adjacent. Since G is P4-free, vH , x, v, vF do not induce
a P4, so x is adjacent to vF or v is adjacent to vH . If all the vertices of
H \ F are adjacent to v, then H ∪ {v} is a subset of vertices of size s in
the neighborhood of x, inducing a complete subgraph in G and using all
the colors from 1 to s.
Thus, we may assume that the set Hv = {w ∈ H : (w, v) 6∈ E(G)} is non
empty, and define Fv = {z ∈ F : ∃zH ∈ Hv with f(z) = f(zH)}. Please
note that Hv ⊆ H \ F thus Fv ⊆ F \ H. Moreover, Fv and Hv have the
same cardinality and use the same colors. Since Hv is anticomplete to
v, it follows that Fv must be complete to x. If H \ Hv is empty, then
F = Fv is complete to x and F ∪ {v} is a subset of vertices of size s in



the neighborhood of x, inducing a complete subgraph in G and using all
the colors from 1 to s.
Suppose now that H \Hv is non-empty, and let us see that Fv is complete
to H \ Hv. Let zF ∈ Fv and w ∈ H \ Hv. Let zH ∈ Hv such that
f(zH) = f(zF ). Then zH is neither adjacent to zF nor to v and since
H induces a complete subgraph, zH and w are adjacent. Besides, w is
adjacent to v because w lies in H \Hv. Since the vertices zH , w, v, zF do
not induce a P4, the vertex w must be adjacent to zF (a scheme of this
situation is depicted in Figure 1). Therefore Fv is complete to H \ Hv.

Hence H̃ = (H \Hv)∪ Fv ∪ {v} is a subset of vertices in NG(x) of size s,

inducing a complete subgraph in G and such that f(H̃) = {1, . . . , s}. 2
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Figure 1: Scheme for the notation used in the proof of Lemma 1.

Theorem 1 If G is a graph, the following statements are equivalent:

(i) G is M-perfect

(ii) G is a cograph.

Proof. (i) ⇒ (ii)) Suppose that v1v2v3v4 induce a P4, and let µ be
defined as follows: µ(v1) = µ(v4) = 1, µ(v2) = µ(v3) = 2. Clearly, every
clique is µ-colorable, but the whole graph is not.

(ii) ⇒ (i)) Suppose that there is a P4-free graph that is not M-perfect.
Let G be a minimal one, that is, G is P4-free and it is not M-perfect, but
for every vertex x of G, G − x is M-perfect.
Let µ : V (G) → N be a function such that the cliques of G are µ-colorable
but G is not. Let x be a vertex of G with µ(x) maximum. The graph



G − x is M-perfect, and since the cliques of G are µ-colorable, also those
of G − x are, so G − x is µ-colorable. Let f be a minimal µ-coloring of
G − x.
Since G is not µ-colorable, f cannot be extended to a µ-coloring of G.
Hence by Lemma 1, NG(x) contains a complete subgraph of size µ(x).
But then G contains a complete subgraph of size µ(x) + 1 for which the
upper bounds of all of its vertices are at most µ(x) (we have chosen x with
maximum value of µ). This is a contradiction, because all the cliques of
G are µ-colorable.
Therefore there is not a minimal M-imperfect P4-free graph, and that
concludes the proof. 2

3 Algorithm for µ-coloring cographs

The greedy coloring algorithm consists on coloring iteratively the vertices
of the graph in a given order with the minimum possible color.

This sequential algorithm does not solve the general problem of µ-coloring,
even with µ restricted to be a constant function. Nevertheless, for any
given graph, there is an ordering of the vertices in which the sequential
greedy algorithm µ-colors the graph, when it is µ-colorable. Then a strat-
egy to find polynomial time algorithms to solve µ-coloring for some classes
of graphs consists on finding such an order in polynomial time.

Using Lemma 1 we can prove the following result.

Theorem 2 Given G a cograph, the greedy coloring algorithm applied to

its vertices in non-decreasing order of µ gives a µ-coloring of G if and

only if G is µ-colorable. Moreover, this coloring is minimal and uses only

the first χ(G) colors.

Proof. By induction on the number of vertices of G. The theorem is valid
for |V (G)| = 1. Suppose it is also valid for any G such that |V (G)| < n.
Let G be a cograph with n vertices, µ be a function such that G is µ-
colorable, and S = {v1, . . . , vn} a sequence of non-decreasingly ordered
vertices (µ(vi) ≤ µ(vj) for i ≤ j).
The graph G − vn is µ-colorable because G is µ-colorable. By induction
hypothesis we can obtain f , a minimal µ-coloring for G − vn, using the
sequential greedy algorithm.
Suppose that we cannot extend the coloring f to vn using a color smaller



or equal to µ(vn). Then, by Lemma 1, there exists a complete subgraph
K of size µ(vn) in the neighborhood of vn. But since we order the vertices
so that µ(vi) ≤ µ(vj) for i ≤ j, V (K)∪{vn} induces a complete subgraph
of size µ(vn) + 1 such that no vertex of it can use a color greater than
µ(vn). This subgraph is clearly not µ-colorable, a contradiction.
Because of the way of choosing the color for each vertex, the obtained
coloring is minimal. Let us see that it uses only the colors from 1 to χ(G)
inclusive. As we just saw, if the algorithm uses the color k to color a
vertex, then the graph contains a complete subgraph of size k, so it is not
(k − 1)-colorable. 2

A nice corollary of this theorem is the following result, proved previously
by Chvátal [5].

Corollary 1 The greedy coloring algorithm gives an optimal coloring for

cographs, independently of the order of the vertices.

Theorem 3 The µ-coloring algorithm described in Theorem 2 has time

complexity O(n log n + m).

Proof. Sorting the vertices by µ has time complexity O(n log n). Then
we color each vertex v with the smallest color available. It can be found
in O(d(v)) if the graph is given by adjacency lists. For instance, we
can remark in an array the colors used by the neighbors of v, and then
search for the smallest free (always smaller or equal to d(v) + 1). Since∑

v∈V (G) d(v) = 2m the overall time complexity of the algorithm is

O(n log n + m). 2

A little improvement in the greedy algorithm allows us to find a non
µ-colorable clique when the graph is not µ-colorable, that is, make it a
robust algorithm. The second part of the algorithm, once a vertex vj that
cannot be µ-colored is found, it will be:

K := {vj};
L := {vi ∈ N(vj) : i < j};
for c from µ(vj) down to 1 do

find vk in L so that f(vk) = c;
K := K ∪ {vk};
L := L ∩ N(vk);

end for

return K;



Theorem 4 The robust algorithm is correct, and it has time complexity

O(n log n + m).

Proof. By Lemma 1, we know that there is a complete subgraph of
size µ(vj) in the neighborhood of vj , which has been already colored by
f with colors 1 to µ(vj). Therefore, the candidates to form part of this
complete subgraph are the vertices of the set {v1, . . . , vj−1} that are in
the neighborhood of vj , and these vertices will be the initial elements of
the set L. Then, for each color c from µ(vj) down to 1, the algorithm
will look for a vertex wc (equal to vk for some k, 1 ≤ k < j) such that
f(wc) = c and wc is adjacent to wc+1, . . . , wµ(vj), vj . It is clear that if in
each step such a vertex exists, the algorithm will finish with the complete
subgraph we were looking for.
We shall prove by induction on the number of steps i, 0 ≤ i ≤ µ(vj) − 1,
that if wµ(vj), wµ(vj)−1, . . . , wµ(vj)−i+1 induce a complete subgraph, then
for every r, 1 ≤ r ≤ µ(vj)−i, there exists a vertex vk with k < j, adjacent
to all of them and to vj and such that f(vk) = r. For i = 0, since vj

cannot be colored with a color smaller or equal to µ(vj), then clearly for
every r, 1 ≤ r ≤ µ(vj), there is a neighbor vk of vj , with k < j, such that
f(vk) = r. Now, suppose that the hypothesis is valid for i = s, and let us
see that it also holds for i = s + 1, with s + 1 ≤ µ(vj) − 1. Suppose that
wµ(vj), wµ(vj)−1, . . . , wµ(vj)−s induce a complete subgraph and let r be a
natural number, 1 ≤ r ≤ µ(vj)−s−1. By induction hypothesis there is a
vertex vk with k < j, adjacent to vj , wµ(vj), wµ(vj)−1, . . . , wµ(vj)−s+1, and
such that f(vk) = r. If vk is adjacent to wµ(vj)−s, we have finished. Oth-
erwise, and because wµ(vj)−s was colored with the smallest possible color
µ(vj)−s, it turns out that there must be a vertex vk′ with k′ < j, adjacent
to wµ(vj)−s, such that f(vk′) = r. Since G is a cograph, vk′wµ(vj)−swvk

cannot induce a P4 for w ∈ {vj , wµ(vj), wµ(vj)−1, . . . , wµ(vj)−s+1}. And
since vk and vk′ cannot be adjacent because they are colored with the
same color, and vk is not adjacent to wµ(vj)−s, vk′ must be adjacent to
w. Thus vk′ is the vertex we were searching for, concluding the proof of
correctness of the algorithm.
If the graph is given by ordered adjacency lists, the representation of
the set L can be implemented with an ordered list, and then each step
of the search will have time complexity O(|L|), the intersection with
the neighborhood of v will have time complexity O(|L| + |N(v)|), and
the list L for the next step will have size O(|N(v)|). If the vertices of
the obtained complete subgraph are w1, . . . , ws, then the time complex-
ity of this part of the robust algorithm is O(

∑s
i=1 d(wi)), that is O(m).

Therefore, the overall time complexity of the complete robust algorithm is
O(n log n + m). 2



Jansen and Scheffler [10] proved that list-coloring is NP-complete for
cographs, hence µ-coloring is strictly easier than list-coloring in terms
of computational complexity, unless P=NP.

Note: The fact that k-coloring is polynomial for perfect graphs and µ-
coloring is polynomial for M-perfect graphs makes us wonder of a possible
intrinsic relation between polynomial time coloring and perfectness. As
a third example, let us consider the definition of perfectness applied to
list-coloring: let a graph G be L-perfect if for any family of lists L, G is
L-colorable if and only if all of its cliques are L-colorable. It is easy to see
that if we have a P3 = v1v2v3 and we assign to v1 the list {1}, to v2 the
list {1, 2}, and to v3 the list {2}, then both cliques are L-colorable but
the whole graph is not. Therefore, the only L-perfect graphs are P3-free
graphs, that is, the graphs whose connected components are complete,
also known as cluster graphs. For these graphs L-coloring is polynomial,
since it can be easily reduced to maximal matching in a bipartite graph.

4 Bipartite graphs

It follows from Theorem 2 that a cograph G that is µ-colorable can be
µ-colored using the first χ(G) colors. This does not happen for bipartite
graphs, not even for trees.

Define the family {Tn}n∈N of rooted trees and the corresponding family
{µn}n∈N of functions as follows: T1 = {v} is a trivial tree, and µ1(v) = 1.
The tree Tn+1 is obtained from T1, . . . , Tn by adding a new root w adjacent
to the roots of T1, . . . , Tn. Function µn+1 extends µ1, . . . , µn and is defined
at w as µn+1(w) = n+1. Some trees in this family can be seen in Figure 2.
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Figure 2: Family of binomial trees {Tn}n∈N and their corresponding func-
tions {µn}n∈N.



These trees are known as binomial trees, and the following two results can
be also obtained from some results on greedy colorings [7].

Proposition 2 The tree Tn has 2n−1 vertices and requires n colors to be

µn-colored. Moreover, every vertex v must be colored with µn(v).

Proof. By induction on n. The tree T1 has 20 = 1 vertex and needs one
color to be µ1-colored. Its only vertex v has µ1(v) = 1, and therefore the
property holds.
Suppose it holds for n ≤ k, and let us see what happens with Tk+1.
Since we obtain Tk+1 by joining the roots of the trees T1, . . . , Tk to a
new root w, and µk+1 extends µ1, . . . , µk, by induction hypothesis each
vertex v in T1 ∪ · · · ∪ Tk must use the color µk+1(v). In particular, the
root of Ti uses the color i, for each 1 ≤ i ≤ k, and therefore w must
use the color k + 1 = µk+1(w). It remains to see that |V (Tk+1)| = 2k.
By induction hypothesis, |V (Ti)| = 2i−1, for 1 ≤ i ≤ k. Thus, we can
compute |V (Tk+1)| =

∑
1≤i≤k 2i−1 + 1 = 2k − 1 + 1 = 2k. 2

This family is optimal on the number of vertices, in fact the following
property holds.

Theorem 5 Let T be a tree, and let µ be a function such that T is µ-

colorable. Then T can be µ-colored using at most the first log2(|V (T )|)+1
colors.

Proof. Given a tree T , and a function µ, we will see that if a minimal
µ-coloring f of T uses r colors, then T has at least 2r−1 vertices.
By induction on r. It is trivially true for r = 1. Suppose it holds for
r ≤ k, and let f be a minimal µ-coloring of T . If there is a vertex v with
f(v) = k + 1, then among its neighbors there are k vertices using the
colors 1, . . . , k. Therefore, in T − v there are k disjoint trees T1, . . . , Tk

such that each Ti is minimally µ-colored by f , and has a vertex that
uses the color i. By induction hypothesis, |V (Ti)| ≥ 2i−1 and therefore
|V (T )| ≥

∑
1≤i≤k |V (Ti)| + 1 ≥

∑
1≤i≤k 2i−1 + 1 = 2k. Now, let us take

a µ-coloring of T that minimizes maxv∈V (T ) f(v). It is clear that we can
take a minimal one. Thus, if it uses r colors, |V (T )| ≥ 2r−1 and then
r ≤ log2(|V (T )|) + 1. 2

A similar result can be obtained for bipartite graphs. Define the family
{Bn}n∈N of bipartite graphs and the corresponding family {µn}n∈N of



functions as follows: B1 = {v} is a trivial graph, and µ1(v) = 1. The bi-
partite graph Bn+1 = (V,W,E) has V = {v1, . . . , vn}, W = {w1, . . . , wn};
vi is adjacent to wj for i 6= j; vn is adjacent to wn, and vi is not adjacent
to wi for i < n; µn+1(vi) = µn+1(wi) = i for i < n; µn+1(vn) = n and
µn+1(wn) = n + 1. Some graphs in this family can be seen in Figure 3.

1 1 1 12

2 3

4

1 1

2

3

2

4

1 1

2

3

2

3

5

Figure 3: Family of bipartite graphs {Bn}n∈N and their corresponding
functions {µn}n∈N.

Proposition 3 The bipartite graph Bn has 2n − 2 vertices (if n ≥ 2)
and requires n colors to be µn-colored. Moreover, every vertex v must be

colored with µn(v).

Proof. It is clear that the proposition holds for n = 1. So we shall show
that, for n ≥ 1, there is only one µn+1-color f for Bn+1, and that f uses
n + 1 colors, since f(v) = µn+1(v) for every vertex v in Bn+1. First, let
us see that f(vi) = f(wi) = i for i < n, by induction on i. It is valid for
i = 1, and suppose that it holds for any i ≤ k. The vertex vk+1 is adjacent
to every wj with j ≤ k, which by induction hypothesis use all the colors
from 1 to k. But µ(vk+1) = k + 1, so vk+1 can be colored only with color
k + 1. Likewise, f(wk+1) = k + 1. Finally, vn is adjacent to every wj

with j < n, which as we just proved, use the colors from 1 to n− 1. Since
µ(vn) = n, it must be f(vn+1) = n + 1. Now, wn is adjacent to every vj

with j ≤ n, which use the colors from 1 to n. Since µ(wn) = n + 1, it
must be f(wn) = n + 1. 2

Analogously, the following property holds.

Theorem 6 Let B be a bipartite graph, and let µ be a function such

that B is µ-colorable. Then B can be µ-colored using at most the first
(|V (B)|+2)

2 colors.

Proof. Given B = (V,W,E), let us take a minimal µ-coloring f of B

minimizing maxv∈V (B) f(v). Suppose there is a vertex v in V using the



color k. Since f is minimal, v has at least k − 1 neighbors w1, . . . , wk−1

in W for which f(wi) = i. Therefore, |W | ≥ k − 1. On the other hand,
f(wk−1) = k − 1, and because f is minimal, wk−1 has at least k − 2
neighbors in V using the colors 1 to k − 2. But as f(v) = k, all of them
are different from v, thus |W | ≥ k−2+1 = k−1, then |V (B)| ≥ 2(k−1)

and finally k ≤ (|V (B)|+2)
2 . 2

Hujter and Tuza [9] proved that list-coloring is NP-complete for bipartite
graphs, and the same holds for µ-coloring.

Theorem 7 The µ-coloring problem is NP-complete for bipartite graphs.

Proof. We will show a reduction from list-coloring of bipartite graphs,
which is NP-complete [9], to µ-coloring of bipartite graphs. Consider
an instance of bipartite graphs list-coloring, i.e., suppose that a bipartite
graph G = (X,Y,E) and a finite list L(v) ⊆ N of colors for each v ∈ V (G)
are given. Let k = |

⋃
v∈V (G) L(v)|. Without loss of generality, we can

assume that L(v) ⊆ {1, . . . , k}. In order to build an instance (G′, µ) of
bipartite µ-coloring, add two k-element sets of vertices X ′ = {x′

1, . . . , x
′
k}

and Y ′ = {y′
1, . . . , y

′
k} to G such that X,Y,X ′, Y ′ are pairwise disjoint.

Furthermore, take a bipartition (X ∪ X ′, Y ∪ Y ′) of the new graph G′,
and for any x ∈ X, y ∈ Y , and i, j ∈ {1, . . . , k}, define the following
new adjacency relations: x′

i is adjacent to y′
j if and only if i 6= j; x′

i is
adjacent to y if and only if i 6∈ L(y); y′

i is adjacent to x if and only if
i 6∈ L(x). Finally, define µ(x′

i) = µ(y′
i) = i and µ(x) = µ(y) = k. Then G

is list-colorable if and only if G′ is µ-colorable. The transformation can
be made in polynomial time, and this completes the proof. 2

Coloring is trivially in P for bipartite graphs, hence µ-coloring is strictly
harder than k-coloring in terms of computational complexity, unless P=NP.

5 Further characterizations of M-perfect graphs

The way of defining M-perfect graphs by analogy with one of the possible
definitions of perfect graphs may seem somehow arbitrary. However, we
propose in this section some alternative definitions and show that they
lead to the same class of graphs.

Given a graph G and a function µ : V (G) → N such that G is µ-colorable,
define χµ(G) as the minimum number of colors needed in a µ-coloring



of G. Clearly, χ(G) ≤ χµ(G) ≤ |V (G)|. Let χM (G) = max{χµ(G) :
µ : V (G) → N and G is µ-colorable}. We may define that a graph G is
perfect with respect to µ-coloring when χM (H) = χ(H) for every induced
subgraph H of G. But, in fact, the following equivalence holds.

Proposition 4 If G is a graph, the following are equivalent:

(i) χM (H) = χ(H) for every induced subgraph H of G

(ii) G is a cograph.

Proof. It follows from Theorem 2 that (ii) ⇒ (i). On the other hand,
the graph T3 and its corresponding function µ3 in Section 4 show that
χM (P4) > χ(P4), hence (i) ⇒ (ii). 2

A different, more algorithmic, approach to the definition of perfection
relative to µ-coloring could be the following. Let G be a graph and
µ : V (G) → N. Let µmin = min{|V (G)|,minv∈V (G) µ(v)} and µmax =
min{|V (G)|,maxv∈V (G) µ(v)}. Let M(G,µ) be the graph obtained from
G by adding a complete graph with vertices wµmin+1, . . . , wµmax

, and by
joining each vertex v ∈ V (G) to wj , for every j > µ(v) [12]. The transfor-
mation G → M(G,µ) allows us to reduce the µ-coloring problem to the
k-coloring problem, namely G admits a µ-coloring if and only if M(G,µ)
admits a µmax-coloring. So, if M(G,µ) is perfect the µ-colorability of G

can be decided in polynomial time, and we say that G is µ-perfect. We
may define that a graph G is perfect with respect to µ-coloring when it
is µ-perfect independently of the choice of µ. But, again, the following
equivalence holds.

Theorem 8 If G is a graph, the following are equivalent:

(i) G is µ-perfect for every function µ : V (G) → N

(ii) G is a cograph.

Proof. (ii) ⇒ (i)) Let G be a cograph and µ : V (G) → N a function,
and let us suppose that G is not µ-perfect. By the Strong Perfect Graph
Theorem [4], a graph H is perfect if and only if neither H nor H contains
a chordless cycle of odd length at least five. Then either M(G,µ) or
M(G,µ) contains such a cycle C. Since NM(G,µ)(wi) ⊆ NM(G,µ)(wj) and
N

M(G,µ)
(wj) ⊆ N

M(G,µ)
(wi) when i < j, C contains at most one vertex

of the set {wµmin+1, . . . , wµmax
}. Therefore G contains a chordless path of

length four, a contradiction.



(i) ⇒ (ii)) Let us suppose that v1v2v3v4 induce a chordless path of length
four in G, and let µ : V (G) → N such that µ(v1) = µ(v4) = 1, µ(v2) = 2
and µ(v3) = 3. Then v1v2v3v4w2 induce a chordless cycle of length five
in M(G,µ), hence G is not µ-perfect. 2
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