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Abstract In this paper, we consider a semiparametric partially linear regression
model where missing data occur in the response. We derive the asymptotic behavior
of the robust estimators for the regression parameter and of the weighted simplified
location estimator introduced in Bianco et al. (Comput. Stat. Data Anal. 54:546–564,
2010a). For the latter, consistency results and the asymptotic distribution are derived
when the missing probability is known and also when it is estimated.
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1 Introduction

Consider the partially linear regression model yi = xT
i β0 + g0(ti) + εi , 1 ≤ i ≤

n, where the response yi ∈ R and the covariates (xT
i , ti ) are such that xi ∈ R

d ,
ti ∈ R, while the errors εi are i.i.d., independent of (xT

i , ti ) satisfying E(εi) = 0 and
VAR(εi) < ∞. Partly linear models are more flexible than standard linear models
since they have a parametric and a nonparametric component. They can be a suit-
able choice when one suspects that the response y linearly depends on x but is non-
linearly related to t . This model has gained attention in recent years. An extensive
description of the different results obtained in partly linear regression models can be
found in Härdle et al. (2000). He et al. (2002) considered M-type estimates for re-
peated measurements using B-splines, while Bianco and Boente (2004) considered
a kernel-based three-step procedure to define robust estimates under the partly linear
model.

In practice, some response variables may be missing, by design (as in two-stage
studies) or by happenstance. As is well known, the methods described above are
designed for complete data sets and problems arise when missing observations are
present. Even if there are many situations in which both the response and the explana-
tory variables are missing, we will focus our attention on those cases where missing
data occur only in the responses. Actually, missing responses are very common in
opinion polls, market research surveys, mail enquiries, socioeconomic investigations,
medical studies and other scientific experiments. Wang et al. (2004) considered in-
ference on the mean of y under regression imputation of missing responses based on
the semiparametric regression model yi = xT

i β0 + g0(ti) + εi . The estimator of the
regression parameter β0, introduced by Wang et al. (2004), is a least-squares regres-
sion estimator defined by considering preliminary kernel estimators, of the quantities
E(δ1x1|t1 = t)/E(δ1|t1 = t) and E(δ1y1|t1 = t)/E(δ1|t1 = t), where δi = 1 if yi is
observed and δi = 0 if yi is missing. Based on this estimator, estimators of the mar-
ginal mean of the responses y are defined using an imputation estimator and a number
of propensity-score weighting estimators. On the other hand, Wang and Sun (2007)
considered estimators of the regression coefficients and the nonparametric function
using either imputation, semiparametric regression surrogate or an inverse marginal-
probability weighted approach. These estimators are based on weighted means of the
response variables, and so they are highly sensitive to anomalous data. This fact moti-
vated the need of considering procedures resistant to outliers as those given in Bianco
et al. (2010a), who introduced robust estimators based on bounded score functions
together with algorithms to compute them. Moreover, consistency of the marginal
estimators was derived under certain regularity conditions therein.

In this paper, we go further and we focus our attention on the asymptotic behav-
ior of the robust estimators of the regression parameter and the marginal location y,
say θ , when the response variable has missing observations but the covariates (xT, t)

are totally observed. The paper is organized as follows. Section 2 reviews the defi-
nition of the robust semiparametric estimators. The consistency and the asymptotic
distribution of the regression parameter are derived in Sect. 3, while the asymptotic
distribution of the marginal location estimator is studied in Sect. 4 where weak con-
sistency results are also discussed. For the marginal simplified location estimator, the
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asymptotic distribution is derived in the situation in which the missing probability
is known and also when it is estimated under two different frameworks. In many
situations, a parametric model can be assumed for the missing probability and the
influence of estimating the parameters of the model on the distribution of the mar-
ginal location estimators needs to be quantified. In particular, if a logistic model is
assumed and the parameters are estimated using the maximum likelihood estimator,
a reduction in the variance is obtained with respect to the estimator computed with
the true missing probability, denoted p(x, t). On the other hand, if the parameters
are estimated robustly, we argue that a larger variance may be obtained. Besides, if
a kernel estimator is used to estimate p(x, t), then a reduction of variance is always
achieved and so, as recommended in Bianco et al. (2010a), this estimator should be
used whenever it is possible. Finally, Sect. 5 presents some concluding remarks while
technical proofs are relegated to the Appendix.

2 The robust estimators

Suppose we obtain a random sample of incomplete data (yi,xT
i , ti , δi), 1 ≤ i ≤ n,

where δi = 1 if yi is observed, δi = 0 if yi is missing. Furthermore, assume that the
responses yi satisfy a partially linear model, i.e.,

yi = xT
i β0 + g0(ti) + σ0εi, 1 ≤ i ≤ n, (1)

where the errors εi are independent, independent of (xT
i , ti ) and identically distributed

with symmetric distribution F0(·), that is, we assume that the error scale equals 1 to
identify the parameter σ0.

Let (y,xT, t, δ) be a random vector with the same distribution as (yi,xT
i , ti , δi).

As mentioned in the Introduction, our aim is to study the asymptotic behavior of
the robust estimators of the regression parameter and the marginal location. For that
purpose, an ignorable missing mechanism will be imposed by assuming that y is
missing at random (MAR), that is, δ and y are conditionally independent given (x, t),
i.e., P(δ = 1|(y,x, t)) = P(δ = 1|(x, t)) = p(x, t).

For the sake of completeness, we will briefly remind the definition of the estima-
tors.

2.1 Estimators of the regression parameter and regression function

As mentioned in Bianco et al. (2010a), the estimation of the robust location condi-
tional functional related to each component of xi causes no problem since the data
set is complete, while that of the response yi is problematic since there are miss-
ing responses. As noted therein, if one proceeds as in Bianco and Boente (2004)
with the complete sample, the conditions needed to ensure Fisher-consistency entail
that p(x, t) = p(t), which eliminates many situations arising in practice. Thus, to
guarantee Fisher-consistency, a robust profile-likelihood approach was considered by
combining the M-smoothers defined in Boente et al. (2009) with robust regression
estimators. Let ψ1 be an odd and bounded score function and ρ be a rho-function
as defined in Maronna et al. (2006, Chap. 2), i.e., a function ρ such that ρ(x) is
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a nondecreasing function of |x|, ρ(0) = 0, and ρ(x) is increasing for x > 0 when
ρ(x) < ‖ρ‖∞. If ρ is bounded, it is also assumed that ‖ρ‖∞ = 1. We will consider
kernel smoothers weights for the nonparametric component adapted to the missing
setting, which are given by wi(τ) = K((ti − τ)/hn)δi{∑n

j=1 K((tj − τ)/hn)δj }−1,
with K a kernel function, i.e., a non-negative integrable function on R and hn the
bandwidth parameter.

Let F be the distribution of (y,xT, t, δ). To define a robust estimator for the re-
gression parameter, Bianco et al. (2010a) proceed as follows.

Step 1. For each τ and β , define gβ (τ ) and its related estimate ĝβ (τ ) as the solution

of S(1)(gβ (τ ),β, τ ) = 0 and S
(1)
n (ĝβ (τ ),β, τ ) = 0, respectively, where

S(1)(a,β, τ ) = E

[

δψ1

(
y − xTβ − a

σβ

)

υ(x)|t = τ

]

, (2)

S(1)
n (a,β, τ ) =

n∑

i=1

wi(τ)ψ1

(
yi − xT

i β − a

ŝβ

)

υ(xi ), (3)

with ŝβ a preliminary robust consistent scale estimator of σβ , the scale of y −xTβ −
gβ (τ ), and υ a weight function.

Step 2. Let H(β) = E[δρ((y − xTβ − gβ (t))/σ0)υ(x)] and

Hn(β) = 1

n

n∑

i=1

δiρ

(
yi − xT

i β − ĝβ(ti)

σ̂

)

υ(xi ),

with σ̂ a preliminary estimate of the scale σ0, i.e., a robust M-scale computed using
an initial (possibly inefficient) estimate of β0 with high breakdown point.
The functional β(F ) and its related estimate β̂ = β̂n are defined as β(F ) =
argminβ H(β) and β̂ = argminβ Hn(β).

Step 3. The functional g(τ,F ) is defined as g(τ,F ) = gβ(F )(τ ), while the estimate
of the nonparametric component is ĝn(τ ) = ĝβ̂ (τ ).

As in any regression model, leverage points in the explanatory variables x can
cause breakdown. To overcome this problem, GM-, S- and MM-estimators have been
introduced; see for instance, Maronna et al. (2006). In Step 2, a loss function ρ com-
bined with a weight υ is introduced to include both families of estimators. This pro-
posal is thus resistant against outliers in the residuals and in the carriers x as well.
In most situations, when considering MM-estimators, one chooses υ(x) ≡ 1 since
MM-estimators already control high-leverage points. An algorithm to compute these
estimators is described in Bianco et al. (2010a). Therein, the authors considered ini-
tial LMS-estimators combined with S-estimators adapted to the partly linear setting,
to obtain MM-estimators of the regression parameter.

Finally, let ψ = ρ′ be the derivative of the loss function ρ. Thus, the regression
estimator defined in Step 2 is the solution of

H(1)
n (β̂) =

n∑

i=1

δiψ

(
yi − xT

i β̂ − ĝβ̂ (ti)

σ̂

)

υ(xi )

(

xi + ∂

∂β
ĝβ (ti)

∣
∣
∣
∣
β=β̂

)

= 0. (4)
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2.2 Estimators of the marginal location

Let θ be the marginal location of y. For instance, if we are interested in the M-
location parameter of y related to an increasing and bounded score function ψ2, θ is
the solution of λ(a,ς) = Eψ2((y − a)/ς) = 0 for all ς > 0. When the distribution
of y is symmetric around θ and ψ2 is odd, the M-location parameter coincides with
the point of symmetry of y.

On the other hand, when considering redescending score functions, it is better to
define the functional through a minimization problem to guarantee its uniqueness. In
this case, let ρ2 be a bounded rho-function, as described above, such that ρ′

2 = ψ2.
Denote ζ(a, ς) = Eρ2((y − a)/ς); then, θ is defined as θ = argmina ζ(a, ς0) with
ς0 the marginal scale. Note that, from Theorem 10.2 in Maronna et al. (2006), if y

has a density f which is a decreasing function of |y − θ | and ρ2 is any rho-function,
then ζ(a, ς) has a unique minimum at a = θ for any ς > 0. Besides, as above, ψ2 is
an odd and bounded score function and θ is a solution of λ(a,ς) = 0 for all ς . When
ρ2(u) = |u|, ψ2(u) = sg(u) = I(0,∞)(u) − I(−∞,0)(u) and θ is the median of y.

Denote by ς̂ any robust consistent estimator of the marginal scale ς0 of the re-
sponses y, such as the MAD. To correct the bias caused in the estimation by the
missing mechanism, an estimator of the missing probability needs to be considered.
Denote by pn(x, t) any estimator of p(x, t). The weighted simplified M-estimate was
defined in Bianco et al. (2010a) as the solution, θ̂ , of Un(pn, ς̂ , θ) = 0 with

Un(q,ς, θ) =
n∑

i=1

δi

q(xi , ti )
ψ2

(
yi − θ

ς

)

. (5)

For redescending ψ2 functions, it is better to define θ̂ as the value θ̂ = argminθ Dn

(pn, ς̂ , θ) where

Dn(q,ς, θ) =
n∑

i=1

δi

q(xi , ti )
ρ2

(
yi − θ

ς

)

. (6)

3 Asymptotic behavior of the regression parameter estimators

In this section, we will derive the strong consistency and the asymptotic normality of
the regression parameter.

3.1 Consistency of β̂

We will assume that t ∈ T ⊂ R, and let T0 ⊂ T be a compact set. For any con-
tinuous function v : T → R, we will denote ‖v‖∞ = supt∈T |v(t)| and ‖v‖0,∞ =
supt∈T0

|v(t)|. We will need the following set of assumptions:

C1. The function ρ and ψ1 are continuous and bounded. Moreover, the function ρ is
Lipschitz and υ is bounded.
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C2. The kernel K : R → R is an even, non-negative, continuous and bounded
function, with bounded variation, satisfying

∫
K(u)du = 1,

∫
u2K(u)du < ∞

|u|K(u) → 0 as |u| → ∞.
C3. The bandwidth sequence hn is such that hn → 0, nhn/ log(n) → ∞.
C4. The marginal density fT of t is a bounded function. Moreover, given any com-

pact set T0 ⊂ T there exists a positive constant A1(T0) such that A1(T0) < fT (τ)

for all τ ∈ T0.
C5. The function S(1)(a,β, τ ) satisfies the following equicontinuity condition: for

any ε > 0 there exists δ > 0 such that for any τ1, τ2 ∈ T0 and β1,β2 ∈ K, a
compact set in R

d ,

|τ1 − τ2| < δ and ‖β1 − β2‖ < δ

⇒ sup
a∈R

∣
∣S(1)(a,β1, τ1) − S(1)(a,β2, τ2)

∣
∣ < ε.

C6. The function S(1)(a,β, τ ) is continuous, and gβ (τ ) is a continuous function of
(β, τ ).

Remark 3.1 If the conditional distribution of x|t = τ is continuous with respect to
τ , the continuity and boundedness of ψ1 stated in C1 entail that S(1)(a,β, τ ) is con-
tinuous. Assumption C3 ensures that for each fixed a and β we have convergence
of the kernel estimates to their mean, while C5 guarantees that the bias term con-
verges to 0. Assumption C4 is a standard condition in semiparametric models. On
the other hand, assumption C5 is fulfilled under C1 if the following equicontinuity
condition holds: for any ε > 0 there exist compact sets K1 ⊂ R and Kd ⊂ R

d such
that, for any τ ∈ T0, P((y,x) ∈ K1 × Kd |t = τ) > 1 − ε, which holds, for instance, if
xij = φj (ti) + uij , 1 ≤ i ≤ n, 1 ≤ j ≤ p, where φj are continuous functions and uij

are i.i.d. and independent of ti .
It is worth noticing that C1 to C4 were also required in Bianco and Boente (2004)

who introduced and studied robust estimators of β when there are no missing obser-
vations. On the other hand, as mentioned in Sect. 2, when missing responses arise,
a profile-likelihood approach is needed. Hence, instead of requiring symmetry and
equicontinuity to the conditional distributions of y|t = τ and xj |t = τ , 1 ≤ j ≤ p, as
in Bianco and Boente (2004), C5 and C6 need to be considered.

Theorem 3.1 Let K ⊂ R
d and T0 ⊂ T be compact sets such that Tδ ⊂ T where Tδ

is the closure of a δ neighborhood of T0. Assume that C1 to C6 and the following
conditions hold:

(i) ψ1 is of bounded variation,
(ii) infβ∈K σβ > 0 and supβ∈K |̂sβ − σβ | a.s.−→ 0, where σβ as defined in Step 1.

Then, we have:

(a) supβ∈K,a∈R ‖S(1)
n (a,β, ·) − S(1)(a,β, ·)‖0,∞

a.s.−→ 0.
(b) If, in addition, S(1)(a,β, τ ) = 0 has a unique root gβ (τ ), then supβ∈K ‖ĝβ −

gβ‖0,∞
a.s.−→ 0.
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The proof of Theorem 3.1 follows the same arguments as those in Theorem 3.1
of Boente et al. (2006), using the fact that assumption (ii) implies that the family
of functions F = {f (y,x) = ψ1((y − xTβ + a)/σ )υ(x), β ∈ K, a ∈ R, σ > 0} has
covering number N(ε, F ,L1(Q)) ≤ Aε−W , for any probability Q and 0 < ε < 1.
Besides, the condition that S(1)(a,β, τ ) = 0 has a unique root is fulfilled if ψ1 is a
nondecreasing function and strictly increasing in a neighborhood of 0.

Theorem 3.2 Let β̂ be the minimizer of Hn(β), where Hn(β) is defined in Step 2
with ĝβ satisfying supβ∈K ‖ĝβ − gβ‖0,∞

a.s.−→ 0 for any compact sets K ⊂ R
d and

T0 ⊂ T . If C1 holds and σ̂
a.s.−→ σ0, then

(a) supβ∈K |Hn(β) − H(β)| a.s.−→ 0.
(b) If, in addition, there exists a compact set K1 such that limm→∞ P(

⋂
n≥m β̂ ∈

K1) = 1 and H(β) has a unique minimum at β0, then β̂
a.s.−→ β0.

We also omit the proof of Theorem 3.2, since it follows as Theorem 3.2 of Boente
et al. (2006).

Remark 3.2 Theorems 3.1 and 3.2 entail that ‖ĝβ̂ − g0‖0,∞
a.s.−→ 0, for any compact

set T0 ⊂ T , since gβ (t) is continuous.

3.2 Asymptotic normality of β̂

From now on, T is assumed to be a compact set. Assumptions N1–N6 under which
the resulting estimates are asymptotically normally distributed are detailed in the
Appendix.

Theorem 3.3 Assume that t1 is a random variable with distribution on a compact

set T . Assume that N1–N6 in the Appendix hold and that σ̂
p−→ σ0. Then, for any

consistent solution β̂ of (4), we have that

√
n(β̂ − β0)

D−→ N
(
0, σ 2

0 A−1�A−1),

where the symmetric matrix A is defined in N3 and � is defined in N4.

It is worth noticing that, when υ(x) ≡ 1, the efficiency of the robust estima-
tor β̂ with respect to its linear relative, i.e., the least square estimator, equals
[Eψ ′(ε)]−2Eψ2(ε), which corresponds to the very well known efficiency of any ro-
bust location M-estimator. This situation includes, in particular, MM-estimators and
so, the same asymptotic efficiency as in the regression model is obtained in this case.

4 Asymptotic behavior of ̂θ

In this section, we will derive the asymptotic distribution of the weighted simplified
M-estimate, θ̂ , under different situations, i.e., when the missing probability is as-
sumed to be known or when it is estimated either parametrically or using a kernel
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approach. Different asymptotic variances are obtained in each situation. The goal of
this section is to validate theoretically the results observed in the simulation study
performed in Bianco et al. (2010a), i.e., to prove that estimating nonparametrically
the missing probability reduces the variance of the estimator. The asymptotic results
for the marginal location estimators to be derived will help to the comprehension of
some non-intuitive numerical results observed in Bianco et al. (2010a). In particular,
when a logistic model for the missing probability is assumed, the order among the
asymptotic variances is discussed in detail in Sect. 4.3.

It is worth noticing that our results require weak consistency of the proposed esti-

mators, i.e., that θ̂
p−→ θ . Theorem 4.1 of Bianco et al. (2010a) states that there exists

a solution θ̂ of Un(pn, a, ς̂) = 0, such that θ̂
a.s.−→ θ under strong uniform consistency

of the missing probability, i.e., sup(x,t) |pn(x, t) − p(x, t)| a.s.−→ 0, smoothness condi-
tions to the score function ψ2 and if inf(x,t) p(x, t) = A > 0, which states that some
response variables are observed at each neighborhood of (x, t). It is worth noticing
that the results obtained in Bianco et al. (2010a) do not give a full answer when the
score function ψ2 is not an increasing function. For that reason, we begin by estab-
lishing in Sect. 4.1 weak consistency results for both increasing and redescending
score functions which are the most common choices in robustness. The results will
be derived under the different scenarios for the missing probability to be considered
later, i.e., when p(x, t) is assumed to be known and when it is consistently estimated.

4.1 Weak consistency of θ̂

We begin by deriving consistency of the marginal location estimators when the miss-
ing probability is assumed to be known.

Proposition 4.1 Let Un and Dn be defined in (5) and (6), respectively. Assume that

ς̂
p−→ ς0.

(a) Let θ̂
(1)
ψ2

be the solution of Un(p, ς̂, a) = 0, where the score function ψ2 : R → R

is a bounded and increasing function. Then, if ψ2 is continuously differentiable

with first derivative ψ ′
2 such that uψ ′

2(u) is bounded, we have that θ̂
(1)
ψ2

p−→ θ ,
where θ is such that Eψ2((y − θ)/ς) = 0 for all ς > 0.

(b) Denote θ̂
(1)
ρ2 = argmina Dn(p, ς̂, a), where the loss function ρ2 : R → R is a

bounded rho-function. Then, if ρ2 is continuously differentiable with first deriv-

ative ψ2 such that uψ2(u) is bounded, we have that θ̂
(1)
ρ2

p−→ θ , where θ is the
unique solution of θ = argmina Eρ2((y − a)/ς) for all ς > 0.

It is worth noticing that the differentiability assumption required to the score func-
tion ψ2 or to the loss function ρ2 is needed to deal with the scale parameter estima-
tor. Using standard empirical process techniques, this condition can be replaced by
the weaker condition limς→ς0 E supa∈R |ψ2((y − a)/ς) − ψ2((y − a)/ς0)| = 0 or
limς→ς0 E supa∈R |ρ2((y − a)/ς) − ρ2((y − a)/ς0)| = 0, respectively.

In most real data applications, the missing probability is unknown and so θ̂
(1)
ψ2

or

θ̂
(1)
ρ2 cannot be computed. In this situation, consistent estimators of p(x, t) need to
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be considered. The following result states the consistency of the marginal location
estimators described in Sect. 2.2, under mild consistency assumptions on the missing
probability estimators.

Proposition 4.2 Let Un and Dn be defined in (5) and (6), respectively. Assume that

ς̂
p−→ ς0. Moreover, assume that the following conditions hold:

(i) inf(x,t) p(x, t) = A > 0,

(ii) sup(x,t) |pn(x, t) − p(x, t)| p−→ 0.

Then,

(a) If the score function ψ2 : R → R is a bounded, increasing and continuously dif-
ferentiable function with first derivative ψ ′

2 such that uψ ′
2(u) is bounded, we have

that the solution θ̂ψ2 of Un(pn, ς̂ , a) = 0 satisfies that θ̂ψ2

p−→ θ , where θ is such
that Eψ2((y − θ)/ς) = 0 for all ς > 0.

(b) If the loss function ρ2 : R → R is a bounded rho-function, continuously dif-
ferentiable with first derivative ψ2 such that uψ2(u) is bounded, and θ̂ρ2 =
argmina Dn(pn, ς̂, a), θ̂ρ2

p−→ θ , where θ is the unique minimizer of ζ(a, ς) =
Eρ2((y − a)/ς) for all ς > 0.

Remark 4.1 Two situations arise when estimating the missing probability. The prac-
titioner may choose a kernel estimator or a parametric approach based on previous
information.

When considering a nonparametric estimator, the estimator is defined as pn(x, t) =
pn,bn(x, t) where

pn,bn(x, t) =
n∑

i=1

K1

(
wi − w

bn

)

δi

{
n∑

j=1

K1

(
wj − w

bn

)}−1

, (7)

with K1 : R
d+1 → R a kernel function to be selected by the researcher, w =

(xT, t)T and bn denoting the smoothing parameter. In this case, if bn → 0 and
nbd+1

n / log(n) → +∞ and K1(w) = κ(‖w‖), where κ : R>0 → R≥0 is a bounded
variation function, analogous arguments to those considered in Pollard (1984, p. 35,
Example 38) allow to show that sup(x,t) |pn(x, t) − p(x, t)| a.s.−→ 0. The weaker as-
sumption nbd+1

n / log(bd+1
n ) → +∞ can be required to obtain just convergence in

probability modifying the proof of Theorem 37 in Pollard (1984).

On the other hand, in the parametric setting, assume that p(x, t) = G(x, t,λ0),
where λ0 ∈ R

q is an unknown parameter to be estimated and let λ̂ be any consis-

tent estimator of λ, i.e., such that λ̂
p−→ λ0. Hence, the estimator of the missing

probability is defined as pn(x, t) = pn,̂λ(x, t) = G(x, t, λ̂). Then, assumption (ii) in
Proposition 4.2 is fulfilled if G(x, t,λ) is equicontinuous in λ at λ0, i.e., for any ε > 0
there exists δ > 0 such that |λ−λ0| < δ implies that |G(x, t,λ)−G(x, t,λ0)| < ε for
any (xT, t). For instance, when G(x, t,λ) is a continuous function of all its arguments
and (xT, t) lies in a compact set, this condition is fulfilled.
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4.2 Asymptotic normality of θ̂

Assumptions NM1–NM8 under which the estimators are asymptotically normally
distributed are stated in the Appendix. From now on, we will denote u = (y − θ)/ς0.

Theorem 4.1 Let Un be defined in (5). Assume that NM1–NM3 in the Appendix hold

and that ς̂
p−→ ς0. Denote by θ̂ (1) the solution of Un(p, ς̂, θ) = 0, i.e., the weighted

simplified estimator assuming that the missing probability is known. If θ̂ (1) p−→ θ ,

where Eψ2((y − θ)/ς) = 0 for all ς > 0, we have that
√

n(θ̂ (1) − θ)
D−→ N(0, υ(1)),

where υ(1) = E(ψ2
2 (u)/p(x, t))(Eψ ′

2(u))−2 = γ (1)(Eψ ′
2(u))−2.

Note that in this situation, the efficiency with respect to the classical simplified es-
timator, i.e., when ψ2(u) = u, is not the efficiency of the location estimator when no
missing data are present, since a factor 1/p(x, t) depending on the missing probabil-
ity appears in the numerator’s expectation. Therefore, the efficiency of the estimators
depends on the proportion of missing data appearing in the sample.

Theorem 4.2 Let Un be defined in (5). Assume that NM1–NM5 in the Appendix hold

and that ς̂
p−→ ς0. Moreover, assume that p(xi , ti ) = G(xi , ti ,λ0), where λ0 ∈ R

q ,

and let pn,̂λ(xi , ti ) = G(xi , ti , λ̂), where λ̂ is an estimator of λ such that λ̂
p−→ λ0.

Denote by θ̂ (2) the solution of Un(pn,̂λ, ς̂ , θ) = 0, i.e., assuming a parametric model

for the missing probability. If θ̂ (2) p−→ θ , where Eψ2((y − θ)/ς) = 0 for all ς > 0,

we have that
√

n(θ̂ (2) − θ)
D−→ N(0, υ(2)), where υ(2) = γ (2)(Eψ ′

2(u))−2 with

γ (2) = E

[
δ

G(x, t,λ0)
ψ2(u) − η(δ,x, t)TE

(
G′(x, t,λ0)

G(x, t,λ0)
ψ2(u)

)]2

= E
ψ2

2 (u)

p(x, t)
+ E

(

ψ2(u)
G′(x, t,λ0)

G(x, t,λ0)

)T{

� E

(

ψ2(u)
G′(x, t,λ0)

G(x, t,λ0)

)

− 2E

[
δψ2(u)η(δ,x, t)

G(x, t,λ0)

]}

and η and � given in NM5.

We will now study the asymptotic distribution of the weighted simplified estimator
when the missing probability is estimated using a kernel estimator as in (7) where
K1 : R

d+1 → R is a kernel function, w = (xT, t)T and bn denotes the smoothing
parameter.

Theorem 4.3 Let Un be defined in (5). Assume that NM1–NM3 and NM6–NM8 in

the Appendix hold and that ς̂
p−→ ς0. Let pn,bn(xi , ti ) be the kernel estimator defined

in (7). Denote by θ̂ (3) the solution of Un(pn,bn , ς̂ , θ) = 0, i.e., using the nonpara-

metric estimator of the missing probability, pn,bn(x, t), defined in (7). If θ̂ (3) p−→ θ ,
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where Eψ2((y − θ)/ς) = 0 for all ς > 0, we have that
√

n(θ̂ (3) − θ)
D−→ N(0, υ(3))

where υ(3) = γ (3)(Eψ ′
2(u))−2 and

γ (3) = E

(
δ

p(x, t)
ψ2

(
y − θ

ς0

)

− (δ − p(x, t))

p(x, t)
r(x, t)

)2

,

with r(x, t) = E(ψ2(u)|x, t).

Remark 4.2 Using that

E

(
δ

p(x, t)

(
δ − p(x, t)

)|(y,x, t)

)

= E

(
δ

p(x, t)

(
δ − p(x, t)

)|(x, t)

)

= 1 − p(x, t),

(8)
and after some algebra, we get that

γ (3) = E
ψ2

2 (u)

p(x, t)
− E

(
(1 − p(x, t))

p(x, t)
r2(x, t)

)

.

Hence, for any missing model we have that υ(3) ≤ υ(1) and so, the marginal location
estimator θ̂ (3) computed estimating the missing probability through a kernel estima-
tor is more efficient than θ̂ (1). Note that both estimators have equal variance if and
only if E((1 − p(x, t))r2(x, t)/p(x, t)) = 0, i.e., if and only if there are no miss-
ing observations, since E(ψ2(u)|x, t) = 0 a.e. holds only if xTβ + g(t) is constant,
which is a situation to be discarded in practice. This gain of efficiency was discussed
by several authors when covariates are missing and is related to the sample adjust-
ment obtained through the kernel estimator of the missing probability (see Sect. 5 for
further comments).

4.3 Some comments under a logistic model for the missing probability

Denote by FL(s) = (1 + e−s)−1 the logistic distribution function and let us as-
sume that the missing probability is given by the logistic model, i.e., that p(x, t) =
FL(vTλ0) and G(x, t,λ) = FL(vTλ) where v = (1,xT, t)T. Hence, G′(x, t,λ) =
FL(vTλ)[1 − FL(vTλ)]v and so,

• G′(x, t,λ0) = p(x, t)[1 − p(x, t)]v,
• E(G′(x, t,λ0)ψ2(u)/p(x, t)) = E((1 − p(x, t)ψ2(u)v).

It is worth noticing that in this situation, NM4(b) and NM6 hold. Besides, using
that {vTλ,λ ∈ R

d+2} is a finite-dimensional class of functions and so, it has poly-
nomial discrimination, and the permanence properties stated in van der Vaart and
Wellner (1996), we get that G = {G(x, t,λ),λ ∈ R

d+2} has finite-entropy entailing
that NM4(a) is fulfilled. Moreover, (c) and (d) in NM4 are satisfied if

E
((

1 − FL

(
vTλ

))|vj |
)
< ∞ E

((
1 + evTλ0

)|vjv�|
)
< ∞ for 1 ≤ j, � ≤ q. (9)

Note that, when the missing probability only depends on t , i.e., when v = (1, t)T, (9)
is fulfilled since we are assuming that t belongs to a compact set. In this case, NM3
also holds.
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In order to analyze the relation between the asymptotic variances of θ̂ (1), θ̂ (2)

and θ̂ (3), we shall consider two situations for estimating the parameter λ. In the first
scenario, we will assume that the parameters are estimated using the maximum like-
lihood estimators, while in the second one, we will assume that they are estimated
using a robust procedure. Note that under mild conditions, both estimators admit a
Bahadur expansion as required in NM5.

The calculations to be done include, in particular, the classical estimators, i.e.,
those corresponding to ψ2(t) = t , for which, up to our knowledge, there are no re-
sults regarding the theoretical comparison of the asymptotic variances of the marginal
location estimator when the missing probability is known and when it is estimated
parametrically, using the maximum likelihood estimator, or even, as discussed in Re-
mark 4.2, nonparametrically using a kernel approach. Note also that, when ψ2(t) = t ,
NM1 and NM2 are clearly satisfied.

(i) Let us thus assume that λ̂ is the maximum likelihood estimator. This estima-
tor can be considered instead of a robust one, such as that defined in Croux
and Haesbroeck (2003), if we suspect that no outliers are present in the co-
variates x or if we know that p(x, t) only depends on t where no outliers ap-
pear, i.e., if in the above model, v = (1, t)T. This last situation is also included
in the sequel just by taking into account the new expression for v. As men-
tioned above, the maximum likelihood estimator admits a Bahadur expansion
with η(δ,x, t) = A−1

1 (δ −p(x, t))v, where A1 = Ep(x, t)(1−p(x, t))vv
T

which
implies that the matrix � defined in NM5 equals A−1

1 . We want to show that
γ (3) ≤ γ (2) ≤ γ (1), i.e., even if a logistic model is assumed, the best performance
of the location estimators is attained when estimating the missing probability
nonparametrically.

For the parametric situation, the asymptotic variance is given by γ (2) =
E(ψ2

2 (u)/p(x, t)) + ν(2) with

ν(2) = E
((

1 − p(x, t)
)
ψ2(u)vT

)
A−1

1

{

E
((

1 − p(x, t)
)
ψ2(u)v

)

− 2E

[

ψ2(u)
δ(δ − p(x, t))

p(x, t)
v
]}

= −E
((

1 − p(x, t)
)
ψ2(u)vT

)
A−1

1 E
((

1 − p(x, t)
)
ψ2(u)v

)
, (10)

where we have used (8). Hence, ν(2) ≤ 0 which entails that γ (2) ≤ γ (1) and equal-
ity holds if and only if E((1 − p(x, t))ψ2(u)v) = 0 that happens obviously if
there are no missing observations.

In this case, we can also compare the asymptotic variances of the marginal
location estimator when the missing probability is estimated parametrically or
using a kernel estimator, since from Remark 4.2 we already know that a non-
parametric approach is better than assuming the probability to be known.

We want thus to show that γ (3) ≤ γ (2) and hence υ(3) ≤ υ(2), which means
that the nonparametric estimator of the missing probability gives whenever
it is possible to compute the smallest asymptotic variance. Let us recall that
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γ (3) = E(ψ2
2 (u)/p(x, t)) + ν(3) with ν(3) = −E((1 − p(x, t)) r2(x, t)/p(x, t)).

On the other hand, γ (2) = E(ψ2
2 (u)/p(x, t)) + ν(2) with ν(2) given in (10),

where A1 = Ep(x, t)(1 − p(x, t))vv
T
. Note that E((1 − p(x, t))ψ2(u)vT) =

E((1 − p(x, t))r(x, t)vT). Hence, in order to compare the asymptotic variances
and using the expressions given above, we only need to compare the quantities
a(2) and a(3), where

a(2) = −ν(2) = E
((

1 − p(x, t)
)
r(x, t)vT

)
A−1

1 E
((

1 − p(x, t)
)
r(x, t)v

)
,

a(3) = E

(
(1 − p(x, t))

p(x, t)
r2(x, t)

)

.

Clearly, if a(3) = 0 then a(2) = 0, so we can assume that a(3) > 0. Let A1 =
C1CT

1 and denote z = C−1
1 (δ − p(x, t))v and ξ = (δ − p(x, t))p(x, t)−1r(x, t).

Then, E(z) = 0, E(ξ) = 0, E(zzT) = I, a(2) = ‖E(ξz)‖2, while a(3) = E(ξ2) =
V ar(ξ). If we denote ρ = E(ξz) and �� = E(ssT) with s = (ξ, zT)T, we have

that �� = ( a(3) ρT

ρ I
)

is a non-negative definite matrix. Note that since det(��) =
a(3) det(I − (1/a(3))ρρT) ≥ 0, the eigenvalue 1 − (1/a(3))ρTρ of the matrix
I − (1/a(3))ρρT is non-negative and so, a(2) = ‖ρ‖2 ≤ a(3), as desired.

(ii) In some situations, the parameters of the logistic model need to be estimated
robustly, for instance, if we suspect that high leverage points in the carri-
ers x are present. We can carry on the robust estimation using, for instance,
a weighted maximum likelihood estimator or the estimator defined in Croux and
Haesbroeck (2003), i.e., λ̂ = argminλ

∑n
i=1 w(xi )ϕ(vT

i λ; δi) where ϕ(s;0) =
ϕ(−s;1), ϕ(s;0) = ρ(− ln(1 −FL(s)))+C(FL(s))+C(1 −FL(s))−C(1) with
ρ a score function and C(s) = ∫ s

0 ρ′(− lnu)du the correction term ensuring
Fisher-consistency. The weighted maximum likelihood estimator corresponds to
the choice ρ(s) = s, while the estimators considered in Bianco and Yohai (1996)
use a bounded ρ function. Then, using the results in Bianco and Martínez (2009),
we have that η(δ,x, t) = −A−1

1,R
w(x)Ψ (vTλ0; δ)v, where Ψ (s;0) = ∂ϕ(s;0)/∂s,

Ψ (s;1) = −Ψ (−s;0) and

A1,R = E

{

w(x)
∂2

∂s2
ϕ(s; δ)

∣
∣
∣
∣
s=vTλ0

vvT

}

.

Straightforward calculations lead to

E

(
δη(δ,x, t)

p(x, t)
ψ2(u)

)

= A−1
1,R

E
(
ψ2(u)w(x)

(
1 − p(x, t)

)
D(x, t)v

)
,

� = A−1
1,R

E
(
w2(x)

(
1 − p(x, t)

)
p(x, t)D2(x, t)vvT

)
A−1

1,R
,

where D(x, t) = (1 − p(x, t))C′(p(x, t)) + p(x, t)C′(1 − p(x, t)). Therefore,
γ (2) = E(ψ2

2 (u)/p(x, t)) + ν(2) with

ν(2) = E
((

1 − p(x, t)
)
ψ2(u)vT

){
�E

((
1 − p(x, t)

)
ψ2(u)v

)

− 2A−1
1,R

E
(
ψ2(u)w(x)

(
1 − p(x, t)

)
D(x, t)v

)}
.
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In particular, if w(x) = w2(x), which corresponds to a 0 − 1 weight function
and ρ(s) = s, i.e., when considering the weighted maximum likelihood, we have
that A1,R = E{w(x)p(x, t)(1 − p(x, t))vvT}, D(x, t) ≡ 1 and so, E(w2(x)(1 −
p(x, t))p(x, t)D2(x, t)vvT) = A1,R implying that ν(2) = bTA−1

1,R
b − 2bTA−1

1,R
bw ,

where b = E((1 − p(x, t))ψ2(u)v) and bw = E(ψ2(u)w(x)(1 − p(x, t))v). De-
pending on the choice of the weight function w, i.e., on the tuning constant se-
lected to cut-off outliers, the inner product bTA−1

1,R
bw can be much smaller than

the squared norm bTA−1
1,R

b, leading to a positive value of ν(2). In this situation,

the variance of the robust marginal location estimator θ̂ (2) will be larger than that
of the estimator θ̂ (1) computed with the true missing probability. This fact is con-
sistent with the simulation results obtained in Bianco et al. (2010a) and opposite
to the conclusions obtained when the parameters of the missing probability are
estimated using the classical maximum likelihood estimator, leading to a larger
loss of efficiency when robust estimators are used.

5 Concluding remarks

Under a partially linear model when there are missing observations in the response
variable but the covariates (xT, t) are totally observed, the classical procedures fail to
give reliable estimations when it can be suspected that anomalous observations are
present in the sample. Robust procedures to estimate the regression parameter and
the marginal location y were introduced in Bianco et al. (2010a). In this paper, the
consistency and asymptotic distribution of the regression parameter estimators are
obtained. Moreover, we show that the weighted simplified M-estimators, θ̂ , related
to increasing or redescending score functions ψ2, lead to weakly consistent estima-
tors. Besides, we derive their asymptotic distribution, when the missing probability is
assumed to be known or when it is estimated either parametrically or using a kernel
approach. Different asymptotic variances are obtained in each situation.

The obtained theoretical results validate the numerical outcomes observed in the
simulation study performed in Bianco et al. (2010a), since they allow to show that
estimating nonparametrically the missing probability reduces the variance of the mar-
ginal estimator either when the probability is known or, under a logistic missing
model, when it is estimated parametrically using the maximum likelihood estima-
tor. This counter-intuitive phenomenon was also observed by several authors, such
as Pierce (1982), Rosenbaum (1987), Robins et al. (1994, 1995), Wang et al. (1998)
and the references given therein. When the covariates are missing, Wang et al. (1997)
discussed the gain of efficiency of the estimators of θ via adjustment of the miss-
ing probability. A heuristic argument justifying this behavior for general parameter
estimation with missing covariates was given in Robins et al. (1994). The same argu-
ments can be applied for missing responses. When the missing probability is modeled
parametrically and the unknown quantities are estimated using maximum likelihood
estimators, the gain of efficiency is related to the linear expansion given in the Ap-
pendix together with the joint asymptotic distribution of

∑n
i=1 δip

−1(wi )ψ2(ui)/
√

n

and of
√

n(̂λ − λ0), and so the optimality arguments used in Pierce (1982) can be
considered to explain the effect of replacing estimators for the true parameters.
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On the other hand, when the parameters are estimated robustly using a weighted
maximum likelihood method with weight function w, the robust estimators of the
marginal location θ̂ (2) may have a higher loss of efficiency. To be more precise, de-
pending on the tuning constant selected to cut-off outliers, the variance of the robust
marginal location estimator θ̂ (2) may be larger than that of the estimator θ̂ (1) com-
puted with the true missing probability and so, larger than that of θ̂ (3), the estimator
based on a kernel approach. In this sense, we recommend using a smooth estima-
tor of the missing probabilities instead of a parametric one, if the dimension of the
covariates and the number of observations allow to compute the kernel estimator.
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Appendix

6.1 Proof of the asymptotic normality of the regression estimates

For the sake of simplicity, we denote by ψ ′ and ψ ′′ the first and second deriva-
tives of ψ . Moreover, let z = z(β0) = x + (∂gβ (t)/∂β)|β=β0 , zi = zi (β0) = xi +
(∂gβ (ti)/∂β)|β=β0 and

γ̂ (β, τ ) = ĝβ(τ ) − gβ(τ ), γ̂0(τ ) = γ̂ (β0, τ ), (11)

v̂j (β, τ ) = ∂γ̂ (β, τ )

∂βj

, v̂j,0(τ ) = v̂j (β0, τ ). (12)

We list the conditions needed for the asymptotic normality of the regression para-
meter estimators, followed by general comments on those conditions. The first condi-
tion is on the preliminary estimate of gβ (τ ), while the others ones concern the score
functions and the underlying model distributions.

N1. (a) The functions ĝβ (τ ) and gβ (τ ) are continuously differentiable with re-
spect to (β, τ ) and twice continuously differentiable with respect to β such
that (∂2gβ (τ )/∂βj ∂β�)|β=β0 is bounded. Furthermore, for any 1 ≤ j, � ≤ p,
∂2gβ (τ )/∂βj ∂β� satisfies the following equicontinuity condition:

∀ε > 0,∃δ > 0: |β1 − β0| < δ

⇒
∥
∥
∥
∥

∂2

∂βj ∂β�

gβ

∣
∣
∣
∣
β=β1

− ∂2

∂βj ∂β�

gβ

∣
∣
∣
∣
β=β0

∥
∥
∥
∥∞

< ε.

(b) ‖ĝβ̂ − g0‖∞
p−→ 0, for any consistent estimate β̂ of β0.
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(c) For each τ ∈ T and β , γ̂ (β, τ )
p−→ 0. Moreover, n1/4‖γ̂0‖∞

p−→ 0 and

n1/4‖̂vj,0‖∞
p−→ 0 for all 1 ≤ j ≤ p.

(d) There exists a neighborhood of β0 with closure K such that for any 1 ≤
j, � ≤ p, supβ∈K(‖̂vj (β, ·)‖∞ + ‖∂ v̂j (β, ·)/∂β�‖∞)

p−→ 0.

(e) ‖∂γ̂0/∂τ‖∞ + ‖∂ v̂j,0/∂τ‖∞
p−→ 0 for any 1 ≤ j ≤ p.

N2. The functions υ and Υ (x) = xυ(x) are bounded and continuous. The function
ψ = ρ′ is an odd, bounded and twice continuously differentiable function with
bounded derivatives ψ ′ and ψ ′′, such that ϕ1(s) = sψ ′(s) and ϕ2(s) = sψ ′′(s)
are bounded. Moreover, the function ψ1 is a bounded and continuously differ-
entiable function with bounded derivative ψ ′

1.
N3. The matrix A = Eψ ′(ε) E(υ(x)p(x, t)z(β0)z(β0)

T) is non-singular.
N4. The matrix � = Eψ2(ε) E(υ2(x)p(x, t)z(β0)z(β0)

T) is positive definite.
N5. E(ψ ′

1(ε)) �= 0 and E(ψ ′(ε)) �= 0.
N6. E(p(x, t)υ(x)‖z(β0)‖2) < ∞.

Remark 6.1 The convergence requirements in N1 are analogous to those required in
condition (7) in Severini and Staniswalis (1994, p. 510) and are needed in order to
obtain the desired rate of convergence for the regression estimates. In particular, con-
dition N1 (b) follows from the continuity of gβ (τ ) = g(β, τ ) with respect to (β, τ )

and Theorem 3.1 that leads to supβ∈K ‖ĝβ − gβ‖∞
a.s.−→ 0. Conditions N1 (a) and (d)

entail that for any consistent estimator β̃ of β0, we have

max
1≤j≤p

∥
∥
∥
∥
∂ĝβ

∂βj

∣
∣
∣
∣
β=β̃

− ∂gβ

∂βj

∣
∣
∣
∣
β=β0

∥
∥
∥
∥∞

p−→ 0 and

max
1≤j,�≤p

∥
∥
∥
∥

∂2ĝβ

∂βj ∂β�

∣
∣
∣
∣
β=β̃

− ∂2gβ

∂βj ∂β�

∣
∣
∣
∣
β=β0

∥
∥
∥
∥∞

p−→ 0.

Remark 6.2 When the kernel K is continuously differentiable with bounded deriv-
ative K ′ and with bounded variation, the uniform convergence required in N1 (d)
and (e) can be derived through analogous arguments to those considered in Theo-
rem 3.1 by using that

∂

∂τ
ĝβ(τ ) =

(nhn
2)−1 ∑n

i=1 K ′( τ−ti
hn

)δiψ1(
yi−xT

i β−ĝβ (τ )

ŝβ
)υ(xi )

(nhn)−1
∑n

i=1 K(
τ−ti
hn

)δiψ
′
1(

yi−xT
i β−ĝβ (τ )

ŝβ
)υ(xi )

,

∂

∂βj

ĝβ(τ ) = −
∑n

i=1 K(
τ−ti
hn

)[δiψ
′
1(

yi−xT
i β−ĝβ (τ )

ŝβ
)υ(xi )](xij + yi−xT

i β−ĝβ (τ )

ŝβ

∂
∂βj

ŝβ)

∑n
i=1 K(

τ−ti
hn

)δiψ
′
1(

yi−xT
i β−ĝβ (τ )

ŝβ
)υ(xi )

and requiring that uψ ′
1(u) is a bounded function and



540 A. Bianco et al.

sup
τ∈T

E

(

sup
β∈K,σ∈Kσ

∣
∣
∣
∣ψ

′
1

(
y − xTβ − gβ(τ )

σ

)

‖x‖
∣
∣
∣
∣t = τ

)

< ∞,

sup
τ∈T

E

(

sup
β∈K,σ∈Kσ

∣
∣
∣
∣ψ

′′
1

(
y − xTβ − gβ(τ )

σ

)

‖x‖
∣
∣
∣
∣t = τ

)

< ∞,

inf
β∈K,σ∈Kσ

τ∈T

∣
∣
∣
∣E

(

ψ ′
1

(
y − xTβ − gβ(τ )

σ

)

|t = τ

)∣
∣
∣
∣ > 0.

The uniform convergence rates required in N1 (c) are fulfilled when ĝβ is defined in
Step 1 using kernel weights and a rate-optimal bandwidth is used for the kernel.

Remark 6.3 Note that if P(υ(x) > 0) = 1 and Eψ ′(ε) �= 0, N3 holds, i.e., A will be
non-singular unless P(aTz(β0) = 0) = 1, for some a ∈ R

d , that is, unless there is a
linear combination of x which can be completely determined by t , in which case the
model is fully nonparametric instead of partly linear. The condition Eψ ′(ε) �= 0 is a
standard requirement in robust regression in order to get root-n estimators of β .
Again, if N4 is fulfilled the columns of x + (∂gβ (t)/∂β)|β=β0 will not be collinear.
It is necessary not to allow x to be predicted by t to get root-n regression estimates.
N5 is a standard condition in robustness in order to get root-n estimators. It is worth
noticing that N5 entails that

E

[(

x + ∂

∂β
gβ (τ )

∣
∣
∣
∣
β=β0

)

υ(x)p(x, τ )|t = τ

]

= 0. (13)

Effectively, since gβ (τ ) satisfies (2) for each τ differentiating with respect to β , we
get

E

[

δψ ′
1

(
y − xTβ − gβ(τ )

σβ

)(

x + ∂

∂β
gβ(τ ) + y − xTβ − gβ(τ )

σβ

∂

∂β
σβ

)

υ(x)

∣
∣
∣
∣t = τ

]

= 0 ∀β.

Thus, specializing at β = β0 and using that the errors ε are independent of (x, t), we
obtain

0 = E
(
ψ ′

1(ε)
)
E

[

p(x, t)

(

x + ∂

∂β
gβ(τ )

∣
∣
∣
∣
β=β0

)

υ(x)|t = τ

]

+ E
(
εψ ′

1(ε)
)
E

[
p(x, t)υ(x)|t = τ

] ∂

∂β
σβ

∣
∣
∣
∣
β=β0

= E
(
ψ ′

1(ε)
)
E

[

p(x, t)

(

x + ∂

∂β
gβ(τ )

∣
∣
∣
∣
β=β0

)

υ(x)|t = τ

]

,

where the last equality holds since ψ ′
1 is an even function and ε has a symmetric

distribution. Thus, (13) holds.
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Assumption N6 is used to ensure the consistency of the estimates of A based on
preliminary estimates of the regression parameter β and of the functions gβ . Besides,
note that the continuous differentiability of gβ (τ ) with respect to (β, τ ) required in
N1 implies that (∂gβ (t)/∂β)|β=β0 is bounded and so, E(‖(∂gβ (t)/∂β)|β=β0‖2) < ∞.
Thus, under N1, N6 holds if E(υ(x)‖x‖2) < ∞. When considering υ ≡ 1, this is a
second moment condition on the regression carriers. On the other hand, when choos-
ing a weight function to control leverage points, this condition is fulfilled without
any moment condition, taking for instance a Tukey’s biweight function since it has
compact support.

Remark 6.4 As mentioned in Sect. 2.1, Bianco and Boente (2004) introduced ro-
bust estimation under a partly linear model when there are no missing observa-
tions. Therein, conditions analogous to N2, N3 and N6 were considered to derive
the asymptotic distribution of the estimators of β . Besides, a rate requirement to the
nonparametric estimators analogous to N1 (c) was also needed together with some
smoothness of the estimators as in N1 (a), (d) and (e). The main difference between
our assumption N3 and their assumption N2 is that the missing probability is intro-
duced. On the other hand, N4 ensures that the limiting distribution is non-degenerate
and this was also a requirement in the complete setting. Note that N5 is needed to
obtain (13) which allows to ensure that ĝβ and its first derivative with respect to β

can be replaced by the true functions. This assumption is analogous to condition N4
in Bianco and Boente (2004).

Lemma 6.1 Let (yi,xT
i , ti ) be independent observations satisfying (1). Assume that

ti are random variables with distribution on a compact set T and that N1–N3 and

N6 hold. Let β̃ be such that β̃
p−→ β0 and ẑi (β̃) = xi + (∂ĝβ (ti)/∂β)|β=β̃ . Then,

An
p−→ A where A is given in N3 and

An = 1

n

n∑

i=1

(

ψ ′
(

yi − xT
i β̃ − ĝβ̃(ti)

σ̂

)

ẑi (β̃ )̂zi (β̃)T

+ ψ

(
yi − xT

i β̃ − ĝβ̃(ti)

σ̂

)
∂2

∂β∂βT
ĝβ(ti)

∣
∣
∣

T

β=β̃

)

δiυ(xi ).

Proof Note that An can be written as An = ∑6
j=1 A(j)

n with

A(1)
n = 1

n

n∑

i=1

δiψ
′
(

yi − xT
i β̃ − g0(ti)

σ̂

)

zi zT
i υ(xi ),

A(2)
n = 1

n

n∑

i=1

δiψ

(
yi − xT

i β̃ − g0(ti)

σ̂

)
∂2

∂β∂βT
gβ(ti)

∣
∣
∣
∣

T

β=β0

υ(xi ),

A(3)
n = 1

σ̂

1

n

n∑

i=1

δiψ
′′
(

yi − xT
i β̃ − ξi,1

σ̂

)

ŵ0(ti)zizT
i υ(xi ),



542 A. Bianco et al.

A(4)
n = 1

σ̂

1

n

n∑

i=1

δiψ
′
(

yi − xT
i β̃ − ξi,2

σ̂

)

ŵ0(ti)
∂2

∂β∂βT
gβ(ti)

∣
∣
∣
∣

T

β=β0

υ(xi ),

A(5)
n = 1

n

n∑

i=1

δiψ
′
(

yi − xT
i β̃ − ĝβ̃(ti)

σ̂

)
[
ŵ(ti)zT

i + ziŵ(ti)
T + ŵ(ti) ŵ(ti)

T
]
υ(xi ),

A(6)
n = 1

n

n∑

i=1

δiψ

(
yi − xT

i β̃ − ĝβ̃(ti)

σ̂

)

V̂(ti)
Tυ(xi ),

where ξi,1 and ξi,2 are intermediate points and zi = zi (β0), ŵ0(t) = ĝβ̃ (t) − g0(t)

and

ŵ(t) = ∂

∂β
ĝβ(t)

∣
∣
∣
∣
β=β̃

− ∂

∂β
gβ(t)

∣
∣
∣
∣
β=β0

,

V̂(t) = ∂2

∂β∂βT
ĝβ(ti)

∣
∣
∣
∣
β=β̃

− ∂2

∂β∂βT
gβ(ti)

∣
∣
∣
∣
β=β0

.

Using N1 (a), (b) and (d), N6, the boundedness of ψ , ψ ′, ψ ′′, υ and Υ and the

fact that β̂
p−→ β0, it follows easily that A(j)

n
p−→ 0 for 3 ≤ j ≤ 6. From N6,

the consistency of β̃ and the continuity of ψ and ψ ′, we get easily that A(1)
n +

A(2)
n

p−→ A. �

Proof of Theorem 3.3 Let β̂ be a solution of H
(1)
n (β) = 0 defined in (4) and denote

ẑi (β) = xi + (∂ĝβ (ti)/∂β)|β . Using the Taylor expansion of order one, we get

0 =
n∑

i=1

δiψ

(
yi − xT

i β0 − ĝβ0(ti)

σ̂

)

υ(xi )̂zi (β0) − 1

σ̂
nAn(β̂ − β0),

where

An = − σ̂

n

n∑

i=1

δi

∂

∂β

{

ψ

(
yi − xT

i β − ĝβ(ti)

σ̂

)

ẑi (β)

}∣
∣
∣
∣
β=β̃

υ(xi )

= 1

n

n∑

i=1

(

ψ ′
(

yi − xT
i β̃ − ĝβ̃(ti)

σ̂

)

ẑi (β̃ )̂zi (β̃)T

− ψ

(
yi − xT

i β̃ − ĝβ̃(ti)

σ̂

)
∂2

∂β∂βT
ĝβ(ti)

∣
∣
∣
∣

T

β=β̃

)

δiυ(xi ),

with β̃ an intermediate point between β0 and β̂ . From Lemma 6.1 we have that

An
p−→ A, where A is defined in N3. Therefore, in order to obtain the asymp-

totic distribution of β̂ , it will be sufficient to derive the asymptotic behavior of
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L̂n = n−1/2 ∑n
i=1 δiψ((yi − xT

i β0 − ĝβ0(ti))/σ̂ )υ(xi )̂zi (β0). Let

Ln = n−1/2
n∑

i=1

δiψ

(
yi − xT

i β0 − gβ0(ti)

σ̂

)

υ(xi )zi (β0)

= n−1/2
n∑

i=1

δiψ

(
εiσ0

σ̂

)

υ(xi )zi (β0),

since gβ0 = g0. Using that ψ is odd and the errors have a symmetric distribution and
are independent of the carriers, we have that E[ψ(εiσ0/σ)|(xi , ti )] = Eψ(εiσ0/σ) =
0, for all σ . Then, the consistency of σ̂ and standard tightness arguments entail that
Ln is asymptotically normally distributed with covariance matrix �. Therefore, it

remains to show that Ln − L̂n
p−→ 0.

We have the following expansion: L̂n − Ln = −σ̂−2L1
n + σ̂−1L2

n − σ̂−1L3
n +

σ̂−2L4
n, with

L1
n = n−1/2σ̂

n∑

i=1

δiψ
′
(

yi − xT
i β0 − gβ0(ti)

σ̂

)

zi (β0)υ(xi )γ̂0(ti),

L2
n = n−1/2σ̂

n∑

i=1

δiψ

(
yi − xT

i β0 − gβ0(ti)

σ̂

)

υ(xi )̂v0(ti),

L3
n = n−1

n∑

i=1

δiψ
′
(

yi − xT
i β0 − gβ0(ti)

σ̂

)

υ(xi )
(
n1/4̂v0(ti)

)(
n1/4γ̂0(ti)

)
,

L4
n = (2n)−1

n∑

i=1

δiψ
′′
(

yi − xT
i β0 − ξi(ti)

σ̂

)

zi (β0)υ(xi )
(
n1/4γ̂0(ti)

)2
,

where γ̂0(τ ) = ĝβ0(τ )−g0(τ ), v̂0(τ ) = (̂v1,0(τ ), . . . , v̂p,0(τ ))T = ∂γ̂ (β, τ )/∂β |β=β0

is defined in (12), γ̂ is defined in (11) and ξ(ti) an intermediate point between ĝβ0(ti)

and g0(ti). It is easy to see that L3
n

p−→ 0 and L4
n

p−→ 0 follow from N1 (c) and N2.

To complete the proof, it remains show that L
j
n

p−→ 0 for j = 1,2 which follow
from N1 (c)–(e) and (13), using similar arguments to those considered in Bianco and
Boente (2004). Details can be seen in Bianco et al. (2010b). �

6.2 Proof of the weak consistency of the marginal estimators

Proof of Proposition 4.1 Let Γ (u) stand for either ψ2 or ρ2. Then, Γ is bounded and
continuously differentiable and Λ(u) = uΓ ′(u) is bounded. Therefore,

Cn(a, ς̂ , ς) = 1

n

n∑

i=1

δi

p(xi , ti )
Γ

(
yi − a

ς̂

)

− δi

p(xi , ti )
Γ

(
yi − a

ς

)
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= 1

n

n∑

i=1

δi

p(xi , ti )
Λ

(
yi − a

ξ̂

)

ξ̂

(
1

ς̂
− 1

ς

)

where ξ̂ is an intermediate point between ς̂ and ς . This implies that |Cn(a, ς̂ , ς)| ≤
‖Λ‖∞|̂ξ ||ς̂−1 − ς−1|Ln with Ln = (1/n)

∑n
i=1 δi/p(xi , ti ) and so, using that

ς̂
p−→ ς0, we get that supa |Cn(a, ς̂ , ς0| p−→ 0. Hence, Un(p,ς0, θ̂

(1)
ψ2

)
p−→ 0 and

Dn(p,ς0, θ̂
(1)
ρ2 ) − infa Dn(p,ς0, a)

p−→ 0.

(a) The consistency of θ̂
(1)
ψ2

follows now as in Theorem 10.5 from Maronna et al.
(2006) using the fact that ψ2 is increasing implies that θ is the unique solution of
Eψ2((y − a)/ς) = 0, for all ς .

(b) Using Theorem 2.2 in Huber (1981), we obtain that θ̂
(1)
ρ2

p−→ θ . Note that in this
case, assumption (A-5) in Huber (1981) is fulfilled with b(θ) = ‖ρ2‖∞.

�

Proof of Proposition 4.2 Using (i) and (ii) and the boundedness of ψ2 and ρ2, it

is easy to see that supa |Un(p, ς̂, a) − Un(pn, ς̂ , a)| p−→ 0 and supa |Dn(p, ς̂, a) −
Dn(pn, ς̂ , a)| p−→ 0. Therefore, θ̂ψ2 and θ̂ρ2 satisfy that Un(p, ς̂, θ̂ψ2)

p−→ 0 and

Dn(p, ς̂, θ̂ρ2)− infa Dn(p, ς̂, a)
p−→ 0 and the proof follows as in the proof of Propo-

sition 4.1 �

6.3 Proof of the asymptotic distribution of the marginal estimators

From now on, when estimating the marginal location, we will assume, without loss
of generality, that the marginal scale ς0 is known and so we will replace ς̂ by ς0.
Recall that u = (y − θ)/ς0 and denote ui = (yi − θ)/ς0. The following assumptions
are needed to obtain the asymptotic distribution of the weighted simplified marginal
M-estimator, under two of the scenarios to be considered, i.e., when the missing
probability is assumed to be known or when it is estimated parametrically.

NM1. The function ψ2 is twice continuously differentiable with bounded derivatives.
NM2. A(ψ2) = E[δψ ′

2(u)/p(x, t)] = Eψ ′
2(u) �= 0.

NM3. inf(x,t) p(x, t) = ι(p) > 0.
NM4. The missing probability p(x, t) = G(x, t,λ0), λ0 ∈ R

q , is such that:
(a) The family of functions G = {G(x, t,λ) : λ ∈ R

q} has finite entropy.
(b) G(x, t,λ) is twice continuously differentiable with respect to λ. We will

denote by G′(x, t,λ) and G′′(x, t,λ) the gradient and Hessian matrix of
G(x, t,λ) with respect to λ.

(c) E(|G′
j (x, t,λ0)|ψ ′

2(u)/p(x, t)) < ∞ for 1 ≤ j ≤ q .
(d) For some Λ > 0, E(sup‖λ−λ0|<Λ |G′′

j�(x, t,λ)ψ ′
2(u)|/p(x, t)) < ∞ for

1 ≤ j, � ≤ q .
NM5. λ̂ admits a Bahadur expansion given by

√
n(̂λ − λ0) = (1/

√
n) ×∑n

i=1 η(δi,xi , ti )+op(1) where Eη(δi,xi , ti ) = 0 and E‖η(δi,xi , ti )‖2 < ∞.
We will denote by � = Eη(δ,x, t)η(δ,x, t)T the asymptotic covariance ma-
trix of λ̂.
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Remark 6.5 NM1 and NM2 are standard conditions in robustness; in particular, NM2
is required in order to get root-n estimators. Assumption NM3 is a common assump-
tion in the literature meaning that at any value of the covariate, response variables are
observed. Assumption NM4 holds in most parametric situations such as the logis-
tic missing model. Maximum likelihood estimators usually fulfill NM5. Moreover,
many classes of robust estimators such as the weighted Bianco and Yohai estimators
considered by Croux and Haesbroeck (2003) for a logistic model admit a Bahadur ex-
pansion; in fact, their asymptotic normality is usually derived by showing that NM5
holds.

Proof of Theorem 4.1 Since NM1 holds, the Taylor expansion of order two leads to

0 = √
nUn

(
p,ς0, θ̂

(1)
) = 1√

n

n∑

i=1

δi

p(xi , ti )
ψ2(ui) − √

n
(
θ̂ (1) − θ

)
An(ψ2),

where

An(ψ2) = 1

n

n∑

i=1

δi

p(xi , ti )
ψ ′

2(ui) + 1

2

(
θ̂ (1) − θ

)1

n

n∑

i=1

δi

p(xi , ti )
ψ ′′

2

(
yi − ξn

ς0

)

and ξn is an intermediate point between θ̂ (1) and θ . Note that NM3 ensures that
γ (1) = E(δψ2

2 (u)/p(x, t)2) = Eψ2
2 (u)/p(x, t) < ∞ and so, the Central Limit The-

orem implies that
√

n Un(p,ς0, θ)
D−→ N(0, γ (1)). Using that An(ψ2)

p−→ A(ψ2)

and the fact that from NM2 A(ψ2) �= 0, the proof follows. �

Proof of Theorem 4.2 As in the proof of Theorem 4.1, using the Taylor expan-
sion of order two, we get that 0 = (1/

√
n)

∑n
i=1(δi/pn,̂λ(xi , ti ))ψ2(ui) − √

n(θ̂ (2) −
θ)A

(2)
n (ψ2), where

A(2)
n (ψ2) = 1

n

n∑

i=1

δi

pn,̂λ(xi , ti )
ψ ′

2(ui) + 1

2
(θ̂ (2) − θ)

1

n

n∑

i=1

δi

pn,̂λ(xi , ti )
ψ ′′

2

(
yi − ξn

ς0

)

and ξn is an intermediate point between θ̂ (2) and θ . Using NM3, it follows that

A
(2)
n (ψ2)

p−→ A(ψ2).

Therefore, it is sufficient to show that Bn = (1/
√

n)
∑n

i=1(δi/pn,̂λ(xi , ti ))ψ2(ui)
D−→

N(0, υ2). Note that

Bn = 1√
n

n∑

i=1

δi

p(xi , ti )
ψ2(ui) + 1√

n

n∑

i=1

(
p(xi , ti )

pn,̂λ(xi , ti )
− 1

)
δi

p(xi , ti )
ψ2(ui).

Denote

Rn(λ) = 1√
n

n∑

i=1

(
G(xi , ti ,λ0)

G(xi , ti ,λ)
− 1

)
δi

p(xi , ti )

[
ψ2(ui) − r(xi , ti )

]
,
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where r(x, t) = Eψ2(u)|(x, t). Then, using NM4(a), the fact that λ̂
p−→ λ0 and

standard empirical processes arguments, we get easily that Rn(̂λ)
p−→ 0 and so,

Bn = B1,n + B2,n + B3,n + op(1) where

B1,n = 1√
n

n∑

i=1

δi

p(xi , ti )
ψ2(ui),

B2,n = 1√
n

n∑

i=1

(λ0 − λ̂)T G′(xi , ti ,λ0)

G(xi , ti , λ̂)

δi

p(xi , ti )
r(xi , ti ),

B3,n = 1

2
(λ0 − λ̂)T 1

n

n∑

i=1

G′′(xi , ti , ξ)
1

G(xi , ti , λ̂)

δi

p(xi , ti )
r(xi , ti )

√
n(λ0 − λ̂).

The Bahadur expansion given in NM5 implies that
√

n(̂λ − λ0) = Op(1), thus,

using NM4(d) we obtain that B3,n
p−→ 0. Therefore, since B2,n = −√

n(̂λ −
λ0)

TE((G′(x, t,λ0)/G(x, t,λ0))r(x, t)) + op(1), to derive the asymptotic distribu-
tion of Bn it suffices to study the asymptotic behavior of

B1,n + B2,n + op(1)

= 1√
n

n∑

i=1

δi

p(xi , ti )
ψ2(ui) − √

n(̂λ − λ0)
TE

(
G′(x, t,λ0)

G(x, t,λ0)
r(x, t)

)

+ op(1)

= 1√
n

n∑

i=1

[
δi

p(xi , ti )
ψ2(ui) − η(δi,xi , ti )

TE

(
G′(x, t,λ0)

G(x, t,λ0)
r(x, t)

)]

+ op(1),

where the last equality follows from NM5. The proof follows now from the Central
Limit Theorem. �

To derive the asymptotic distribution of θ̂ (3), we will need the following additional
assumptions. For the sake of simplicity, we will denote w = (xT, t)T ∈ R

d1 , with d1 =
d + 1. We state the assumptions in terms of w and d since, in some situations, due to
prior knowledge, the researcher may use a kernel estimator depending on some and
not all the covariates; in this case, w plays the role of the covariates to be considered
and d1 may be lower than d + 1.

NM6. The missing probability p(w) is a smooth function of w, r th continuously
differentiable.

NM7. The bandwidth bn satisfies that ρ2
n = {nb2r

n + (nb
2d1
n )−1} → 0.

NM8. The kernel K1 : R
d1 → R is bounded, has compact support and

∫
K1(u) du >

0,
∫

um
j K1(u) du = 0, for 1 ≤ j ≤ d1, 1 ≤ m ≤ r − 1,

∫
ur

j K1(u) du > 0, for

1 ≤ j ≤ d1, and
∫

u2
jK1(u) du > 0.

For the sake of simplicity, we will assume that
∫

K1(u) du = 1.

Remark 6.6 Condition NM7 is related to the bias term appearing when replacing the
true missing probability by a kernel estimator and so, to the degree of smoothness



Asymptotic behavior of robust estimators in partially linear models 547

required to the missing probability, see the discussion in Wang et al. (1997, p. 514). It
states that more smoothness is needed as the dimension of the covariates w increases.
For instance, if bn = n−α , NM7 states that 1/(2r) < α < 1/(2d1) and so the missing
probability needs to be at least (d1 + 1)th continuously differentiable.

Condition NM8 is a standard condition for kernel estimators and was required
also in Wang et al. (1997, p. 514). The conditions

∫
um

j K1(u) du = 0, for 1 ≤ j ≤ d1,
1 ≤ m ≤ r − 1,

∫
ur

j K1(u) du > 0, for 1 ≤ j ≤ d1, state that K1 is an r th order
kernel and they allow to expand the bias term of the kernel estimator in terms of the
r th derivatives of the missing probability.

Proof of Theorem 4.3 As in the proof of Theorem 4.2, using the Taylor expan-
sion of order two, we get that 0 = (1/

√
n)

∑n
i=1(δi/pn,bn(xi , ti ))ψ2((yi − θ)/ς0) −√

n(θ̂ (3) − θ)A
(3)
n (ψ2), where

A(3)
n (ψ2) = 1

n

n∑

i=1

δi

pn,bn(xi , ti )
ψ ′

2(ui)+ 1

2
(θ̂ (3) −θ)

1

n

n∑

i=1

δi

pn,bn(xi , ti )
ψ ′′

2

(
yi − ξn

ς0

)

and ξn is an intermediate point between θ̂ (3) and θ . Using NM3, it is easy

to see that A
(3)
n (ψ2)

p−→ A(ψ2). Therefore, it is sufficient to show that Bn =
(1/

√
n)

∑n
i=1(δi/pn,bn(xi , ti ))ψ2(ui)

D−→ N(0, γ (3)). Note that

Bn = 1√
n

n∑

i=1

δi

p(wi )
ψ2(ui)+ 1√

n

n∑

i=1

(
p(wi )

pn,bn(wi )
−1

)
δi

p(wi )
ψ2(ui) = B(1)

n +B(2)
n ,

where pn,bn(w) is defined in (7).
Denote fn(w) = ∑n

i=1 K1((wi − w)/bn)/(nb
d1
n ). Arguing as in Wang et al. (1997)

and using standard U -statistics arguments, we get that B1,n = Op(ρn) and B2,n =
(1/

√
n)

∑n
j=1 r(wj )(δj − p(wj ))/p(wj ) + Op(ρn), where ρn is defined in NM7,

see Bianco et al. (2010b) for details. Hence, we obtain that

Bn = 1√
n

n∑

j=1

δj

p(wj )
ψ2

(
yj − θ

ς0

)

− (δj − p(wj ))

p(wj )
r(wj ) + Op(ρn)

and so, the Central Limit Theorem entails that Bn
D−→ N(0, γ (3)) concluding the

proof. �
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