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Abstract
The differences in performance of a 1.9 kJ plasma-focus device PACO assembled with three
different cathode configurations are experimentally qualified. In particular, the current sheath
kinetics and the neutron yield operating with deuterium gas are systematically studied for the
whole range of neutron-producing pressures, and the measurements are analyzed searching for
relations between relevant physical magnitudes. The pinching time was found correlated with the
dimensionless driver parameter, and this feature was found statistically independent of the
cathode. The variation of the inductance jump associated with the radial collapse stage is used to
estimate the effective pinch length, ( )7.3 1.6 mm, and radius, ( )3.6 2.1 mm. The maximum
production in a single shot was registered for the smallest cathode radius, 41 mm, whereas the
intermediate cathode radius, 45 mm, scored better in average. In all configurations, the neutrons
per deuteron pair correlates fairly well with an estimation of the effective equilibrium
temperature of the pinch, which suggests a prevalence of thermonuclear neutrons measured
perpendicularly to the focus axis.
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1. Introduction

Plasma Focus (PF) devices are pulsed coaxial-discharge
configurations proposed in the 60s by Mather [1] and Filippov
[2] for producing transient dense magnetized plasma condi-
tions known as z-pinches. These devices can emit neutron and
x-ray pulses on demand, and therefore have been proposed as
ambient-friendly alternatives to isotopic sources. A valuable
feature of these devices is that they are relatively cheap and
portable, which makes them attractive in research laboratories
or for industrial applications [3–8]. In essence, a PF is a
coaxial gun composed of two cylindrical electrodes placed in

a chamber filled with a few mbar of gas. A bank of capacitors
stores an initial energy that is released into the chamber by
means of a high current switch (spark gap). When the spark
gap closes, an electrical discharge starts in the gap between
the electrodes forming an umbrella-like plasma layer. The
Lorentz force pushes that current sheath (CS) towards the
open end of the electrodes, collecting the particles of gas
ahead of it. Finally, the CS arrives at the electrodes end and
collapses radially, generating a plasma column, called pinch,
with ion densities in the range of 1019 particles per cubic
centimeter and temperatures up to some keV [3–6].
Depending on the filling gas, x-ray and neutron pulses are
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emitted from the pinch, which have been proposed for a
number of applications, ranging from introspection imaging
to substance detection, among others [7–19].

The objective of the present article is centered in the
neutronic production and its relation with the geometry of the
plasma gun. In order to expand the scope of applications, it is
important to find ways to improve the efficiency of the neu-
tronic emissions of plasma focus discharges. There is a growing
interest on this account, and considerable efforts and resources
has been spent to come up with better designs and operation
modes with diverse success. Much progress has been done in
contributing to the understanding of the physical mechanisms
involved in the kinematics of the plasma formation and sheath,
and its relation to the neutron emissions. An accepted fact is, for
example, that the neutron yield of a given plasma-focus device
varies depending on the pressure, the charging voltage and the
geometry of the electrodes. The physics of the pinches, which is
where the fusion reactions responsible for the emissions take
place, is still an open issue and, albeit there have been advances
in this matter [20–28], more experimental data is needed to get
better insight to feed the theory [29–34].

The geometric configuration of the coaxial gun of elec-
trodes has been studied in a wide range of charging energies,
from 1MJ [35–39] to 0.1 J [40–45]. Between these two
extremes, a variety of intermediate devices were studied, all of
them following the general scaling law of increasing neutron
yield as the energy of the discharge increases [46–54]. A
systematic study of the influence of the electrodes geometry in
the neutron production was reported by Beg et al [55], who
made a series of experiments with different anode lengths, and
found that there is an optimum anode length where the neutron
production peaks at an optimum filling pressure. Kashani et al
[56] investigated the performance of a 7 kJ plasma focus with
barred and solid cathode, finding that although the cathode
structure influences the energy dissipation in the run-down
phase, no substantial differences regarding the corresponding
neutron emissions could be recognized. Hill and Hubbs [57]
measured neutrons in a plasma focus using three different
cathode structures: cylindrical 4.75 cm diameter and 8 cm
length, hourglass shaped, and ‘choked’ cylindrical. The
highest neutron yield was measured with the ‘choked’
cylindrical cathode. Bruzzone et al [58] found that the neutron
emission decreases substantially when a solid cathode is used
instead of a barred cathode.

In the present work, the current sheath kinetics and the
neutron yield of the plasma focus PACO [59, 60] assembled
with three different cathode configurations, were measured
systematically for the whole range of neutron-producing
pressures. The measurements are analyzed searching for
characteristic magnitudes and relations between them to get
insight about the physics of the discharges and ultimately
optimize future designs.

2. Experimental method and device

The experiments were performed in the plasma-focus device
PACO, which is charged by a bank of four Maxwell 33519

capacitors (0.9 μF, 40 nH) in parallel assembly. The bank and
the anode of the coaxial gun are connected through the spark
gap by means of transmission lines made of flat copper strips
separated by a mylar film. The spark gap is triggered by a fast
HV pulsed power source controlled by the operator. The
anode is a massive cylinder, 40 mm diameter, 20 mm free
length, made of free-of-oxygen cooper. The front 10 mm
length of the anode is drilled with a 10 mm diameter
cylindrical hole. A tungsten cylinder (10 mm diameter, 5 mm
thick) is placed at the bottom of the anode cavity. The insu-
lator is a tube of borosilicate, 50.3 mm external diameter,
43.0 mm internal diameter, 12 mm long. In all the shots the
initial voltage of the capacitor bank was fixed at 31 kV (i.e.
1.9 kJ).

The purpose of the experiments is to study the influence
of the cathode geometry on the discharges, in particular on the
kinematics of the current sheath and the neutronic emissions.
Three different cathode structures were assembled to the gun,
namely:

(1) Twelve brass rods, 8 mm diameter and 40 mm length,
equally spaced around a circumference of 82 mm
diameter.

(2) Twelve brass rods, 8 mm diameter and 40 mm length,
equally spaced around a circumference of 90 mm
diameter circle.

(3) No surrounding barred structure, thus the chamber walls
acting as the sole cathode structure.

Vacuum is made in the discharge chamber first with a
mechanical pump and then with a diffusion pump (Edwards
Difftak 160/700). Then the chamber is filled with deuterium
gas within a range of pressures p between 0.6 and 3 mbar,
which is controlled with an electronic manometer (Edwards
Barocel 600AB). The electrical diagnostics consists of a
calibrated Rogowski coil that measures the evolution of the
current temporal derivative, and a resistive divisor to measure
the anode voltage. The signals are digitalized using a Tek-
tronix TDS5104B oscilloscope placed in a Faraday cage. The
stray inductance of the circuit external to the coaxial gun, was
calculated from the period of a discharge in short circuit
between the anode and the cathode, resulting Lo=55.1 nH.
The neutrons and x-rays emitted in each discharge are mea-
sured using a plastic scintillator type NE102A placed at
2.49 m from the pinch region perpendicular to the axis. The
neutron signal was calibrated using a silver-activation detec-
tor that was previously calibrated with a reference Am-Be
source, and this calibration was second tested against a 3He
detector calibrated with a reference Cf source. All instruments
were carefully synchronized following the method recom-
mended by Bruzzone et al [61].

For each cathode configuration the chamber was condi-
tioned performing a series of preliminary discharges at dif-
ferent deuterium pressures in order to release traces of gases
absorbed in the electrodes and walls. Then, shots at pressures
from 0.1 to 5 mbar were performed to determine the range
where neutrons and x rays are produced. Afterwards, a series
of systematic discharges were made keeping the pressure
constant in each run, covering the neutron-production range
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with a step of 0.1 mbar. In each discharge the synchronized
signals of current derivative, anode voltage and scintillator
output, were recorded.

3. Results

The complete set of experiments accounts to a total of 897
discharges, which were processed to glean information
regarding the correlation between the characteristic magni-
tudes of each event.

Figure 1 shows the typical set of signals obtained in
each shot. In particular, these correspond to a discharge

performed on 1.8 mbar with the barred cathode located at
45 mm from the axis. The current evolution (second from the
top) was calculated by numerically integrating the current
derivative (at the top) using the trapezoidal rule. Then, the
following graphic is the voltage between electrodes. The
fourth graphic from the top is the output signal of the
radiation detector, where two characteristic peaks can be
distinguished corresponding to the x-ray yield, Yx, and the
neutron yield, Yn.

The last plot is the CS inductance indirectly assessed
from the electrical signals following the method proposed
early by Mather [62] and revisited and tested by Bruzzone
et al [33, 61]. Accordingly, the temporal evolution of Lcs is

Figure 1. Typical signals of a single shot at 1.8 mbar utilizing the 45 mm radius barred cathode, showing the characteristic magnitudes
extracted for analysis.
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calculated as:
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where ¢Lo is the inductance due to connections between the
voltage divider and the initial CS, ( )I t is the electrical cur-
rent, ( )V t is the voltage of the anode, and to is the time
instant when the breakdown stage is completed. The graphic
at the bottom shows the evolution of ( )L t .CS The magnitude
ΔLp shown in the graphic is interpreted as the inductance
jump brought about by the radial run over of the CS at the
anode’s end and its following radial collapse towards
the axis.

Following the synchronization method recommended in
Bruzzone et al [63] the following characteristic times shown
in the graphics are determined:

to: zero reference time of the discharge, chosen so as to
ensure that the CS resistance is negligible compared to /L C .o o

tp: time of occurrence of the pinch, assumed to be
simultaneous with the first peak of the voltage.

tn: time of occurrence of the neutronic signal.
Finally, the magnitude Ip is the pinch current, i.e. ( )I t at

t=tp. In figure 2, the signals obtained in discharges over
each electrode configuration under the same conditions (1.8
mbar, 31 kV) are plotted together for visual comparison. In
what follows, the various characteristic magnitudes extracted
from the signals are analyzed searching for patterns in their
trends and relations between them.

3.1. Current sheath kinematics

Figure 3 shows the dependence of the pinch time, tp, with the
pressure for each cathode configuration. Every point

Figure 2. Comparison of typical signals of a single shot at 1.8 mbar utilizing the barred-cathode configuration of 45 mm radius (red) and
41 mm radius (blue), and without barred-cathode (black).
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corresponds to a discharge that produced emissions of x rays
and neutrons. As expected, there is a general trend of the
pinch time to increase with the filling pressure. For a given
pressure between 1 and 3 mbar, the pinch in discharges with
the barred cathodes occurs in average about 70 ns before
without barred cathode. Both trends are depicted by the two
view-guiding curves shown in figure 3. At pressures lower
than 1 mbar no pinches are observed without barred cathode,
whereas with the barred cathodes the pinch time departs from
its higher-pressure trend and rather appears to continue the
trend without barred cathode. On the other hand, the time of
the maximum circuit current was found statistically the same
for all pressures and all configurations, averaging 870 ns with
a general standard deviation of 20 ns.

Figure 4 shows the dependence of the pinch current, Ip,
with the pressure for each configuration. In all cases the pinch
current decreases with the filling pressure at an average rate of
30 kAmbar−1. Similarly to what is observed with the pinch
time, for a given pressure between 1 and 3 mbar, the pinch
current with either of the barred cathodes is in average about
20 kA higher than without barred cathode. Likewise, at lower
pressures the behavior of the pinch current with barred
cathodes also seems to approach the trend observed without
barred cathode. These two trends are depicted by the two
view-guiding curves in figure 4. The transition between trends
is about 1.1 mbar and 0.7 mbar, for the 90 mm and 82 mm
barred-cathode diameter, respectively.

The behavior of the pinch time and the pinch current
might be associated with different breakdown and lift-off
regimes as well as the kinematics of the current sheath [64].
The latter is expected to be particularly relevant in the present
device, because PACO’s anode length-to-diameter ratio is
close to unity, and thus the rundown, run over and pinch

stages are somehow overlapped in time. On this account,
correlating the pinch time with the pinch current may provide
further insight. Figure 5 relates the pinch time to the so called
dimensionless driver parameter, ( )/ /mI r p ,p a o where ra is
the external anode radius and mo is the permeability of
vacuum, which has been reported as a significant operational
magnitude in small plasma foci [34]. Interestingly, within the
experimental uncertainties all the data points can be cast in a
single correlation independent of the cathode configuration,
namely:

⎛
⎝⎜

⎞
⎠⎟( )b p

m
=

a

t L C
I

r p
2 .p o

p

a

o

The values of the coefficients obtained by least square
fitting are:

( )a = - 0.24 0.07 ,

b = 1.90 0.15.

3.2. Processing of the electrical signals

Processing the electrical signals it is possible to extract further
information relevant to the current sheath dynamics and the
pinch phase. The voltage drop on the CS is calculated by [33]:

( ) ( ) [ ( ) ]= - + ¢V t V t L t L
dI

dt
.CS CS o

The voltage over the pinch Vp is the maximum value of
V ,CS and it is of particular interest because it is associated to
the acceleration-driven fusion mechanisms. Figure 6 shows
the pinch voltage Vp as a function of the pinch current. The
data points without barred cathode follow an increasing trend

Figure 3. Pinch time dependence on the pressure. The data points
corresponding to the configurations without any barred cathode are
represented by empty circles (black), the data corresponding to
discharges using a cathode of 41 mm radius is represented by down
triangles (blue) and the discharges using the 45 mm radius cathode
are represented by up triangles (red). Every point corresponds to a
discharge that produced emissions of x-rays and neutrons.

Figure 4. Pinch current dependence on the pressure. The data points
corresponding to the configurations without any barred cathode are
represented by empty circles (black), the data corresponding to
discharges using a cathode of 41 mm radius is represented by down
triangles (blue) and the discharges using the 45 mm radius cathode
are represented by up triangles (red). Every point corresponds to a
discharge that produced emissions of x-rays and neutrons.
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about 130 V kA−1 spanning over a range of currents between
140 and 180 kA. On the other hand, the data corresponding to
discharges in barred-cathode configurations split up in three
sets, ranging currents between 180 and 215 kA. Most of the
points continue the trend followed by the data without barred
cathode. The rest of the shots with barred cathodes appear to
follow a similar increasing trend but at higher pinch voltages.
The latter suggests the occurrence of different regimes, which

might be chalk up to pinch-instability modes or breakdown
patterns brought about by the presence of the barred cathode.

Figure 7 shows the inductance jump DLp due to the
radial run-over and radial collapse of the CS at the end of the
anode (see figure 1). It can be seen thatDLp is independent of
the pressure, at least within the present statistics. SinceDLp is
basically determined by the radial collapse, it is possible to
infer some effective information about the pinch geometry.
Assuming a simplified cylindrical geometry as shown in
figure 8, the inductance jump during the radial collapse up to
the pinch start can be approximated by [21]:

⎛
⎝⎜

⎞
⎠⎟ ( )

m
p

D =L z
r

r2
ln 1p

o
p

c

p

rp and zp are effective values of the radius and length of the
pinch, rc is the cathode radius, and mo is the permeability of

Figure 5. Pinch time as function of the parameter ( )/ /mI r p .p a o The
data points corresponding to the configurations without any barred
cathode are represented by empty circles (black), the data corresp-
onding to discharges using a cathode of 41 mm radius is represented
by down triangles (blue) and the discharges using the 45 mm radius
cathode are represented by up triangles (red). Every point corresponds
to a discharge that produced emissions of x-rays and neutrons.

Figure 6. Voltage drop on the current sheath at the pinch time. The
data points corresponding to the configurations without any barred
cathode are represented by empty circles (black), the data corresp-
onding to discharges using a cathode of 41 mm radius is represented
by down triangles (blue) and the discharges using the 45 mm radius
cathode are represented by up triangles (red). Every point corresponds
to a discharge that produced emissions of x-rays and neutrons.

Figure 8. Simplified effective geometry of the radial collapse of the
current sheath.

Figure 7. Inductance jump during the CS radial collapse, ΔLp,
plotted against the filling pressure. The data points corresponding to
the configurations without any barred cathode are represented by
empty circles (black), the data corresponding to discharges using a
cathode of 41 mm radius is represented by down triangles (blue) and
the discharges using the 45 mm radius cathode are represented by up
triangles (red). Every point corresponds to a discharge that produced
emissions of x-rays and neutrons.
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vacuum. In the case without barred cathode the chamber wall
is taken as acting cathode. Figure 9 shows the fitting of
equation (1) by minimum square differences with the data.
The corresponding values of the parameters, with 67% con-
fidence, are:

( )= r 3.6 2.1 mm,p

( )= z 7.3 1.6 mm.p

According to Soto et al [45] and Lee and Serban [3], the
pinch size is proportional to the anode radius, with coeffi-
cients (0.1–0.2) and (0.8–1.0) for rp and zp respectively. The
problem is that in the present case the anode inner and outer
radii differ by a factor 2 (1 and 2 cm respectively). Taking this
into account, the value of rp is consistent with the scaling law
using the outer anode radius, whereas the value of zp is
consistent with the scaling law using the inner anode radius.

3.3. Neutrons

Figure 10 shows the dependence of the neutron production
with the deuterium filling pressure for each cathode config-
uration. Notwithstanding the great dispersion of the data,
which is common in fusion plasma-focus devices, an opti-
mum pressure for which the average neutron yield is max-
imum can be distinguished. The dashed curves shown in each
graphic correspond to parabolas obtained by nonlinear
regression, which gives the characteristic magnitudes shown

in table 1. The maximum production in a single shot was
registered for the cathode radius of 41 mm, whereas the
emissions measured in the shots with the cathode radius of
45 mm scored better in average. The range of optimum
pressures is much wider with the 41 mm cathode, where the
production is practically constant over the whole range of
operating pressures. In the other two cases the optimum
pressures are bounded within a range of 1 mbar.

Taking into account that the shape and trajectory of the
current sheath is essentially the same for all the shots, it is
usually assumed that the number of deuterons in the pinch is
proportional to the charging pressure [20, 27, 34]. This being
the case, the number of deuterons pairs is proportional to the

Figure 9. Inductance jump during the radial collapse, ΔLp, plotted as
function of the cathode radius. In the case without barred cathode the
chamber wall is taken as acting cathode.

Figure 10. Neutron yield dependence on the pressure without any
barred cathode (up), 41 mm radius barred cathode (middle) and
45 mm radius barred cathode (down).

Table 1. Characteristic magnitudes in each cathode configuration.

rc (mm) ΔLp (nH)
Optimum pres-
sure (mbar) Max <Yn>/109 <En> (MeV)

Skewness (neutron velocity
spectra)

41 3.4±0.5 1.6±1.1 2.8±1.4 2.35±0.31 −0.61
45 3.8±0.5 1.7±0.5 3.3±0.9 2.53±0.28 −0.93
100 (no barred cathode) 4.8±0.5 2.0±0.4 2.8±0.9 2.34±0.21 −1.38
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square of the pressure. Therefore, the quotient between the
neutron yield and the square of the pressure, /Y p ,n

2 can serve
as a score of the reactivity of the pinch, in the sense that /Y pn

2

is proportional to the reactive fraction of pairs of deuterons in
the focus. The left graphic in figure 11 shows the plot of
/Y pn

2 in relation with the voltage along the pinch, which can
be associated with reactions promoted by voltage-induced
acceleration, e.g. the so-called beam target mechanism. In
turn, in the right graphic of figure 11, /Y pn

2 is plotted against
the magnitude /I p,p

2 which is proportional to the effective
Bennett temperature of the pinch, and hence associated with
thermonuclear reactions. The plots suggest that in the present
device the pinch reactivity is better explained by a thermo-
nuclear scenario rather than with acceleration-driven
mechanisms. However, it should be noted that Vp and Ip are
interrelated because they shear common causes (see figure 6),
and so the present evidence should be taken as indicative but
not conclusive regarding the actual mechanism of neutron
production in the pinch.

The energy spectrum of the neutrons can be assessed by
time of flight. The time of arrival of the neutrons on direct
flight is calculated as the time of the rising ramp of the signal
(see figure 1). Specifically, it is defined as the time in the
ramp when the signal is half the value of the peak. Figure 12
shows the histograms of the neutrons velocity for each
cathode configuration. The means and standard deviations of
the neutrons’ energy is given in table 1, all consistent with the
tabulated value of 2.45MeV for a center of mass at rest. The
probability distribution of the velocity presents a negative
skewness in all cases, whose magnitude increases with the
cathode radius (see table 1).

Figure 11. Reactivity of the pinch, /Y p ,n
2 plotted against the voltage drop along the pinch Vp (left) and against /I pp

2 (right).

Figure 12. Histograms of the neutrons velocity measured perpendi-
cularly to the pinch axis.
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4. Conclusions

The differences in performance of the plasma focus PACO
operating with three different cathode configurations were
experimentally characterized. All the experiments were car-
ried out using deuterium gas, and the discharges produced
neutrons from D–D reactions in every configuration. In order
to be systematic, the charging voltage was kept the same for
all the discharges, and the gas pressure was used as the main
control parameter, within the neutron-production range
between 0.6 and 3 mbar. For a given pressure, increasing the
cathode radius decreases the pinch current, and associated
with this the inductance variation during the radial collapse
increases. The latter was indirectly estimated using the elec-
trical signals, and showed no statistically significant variation
with the pressure. The poorer performance of the unbarred
cathode configuration may be associated to instabilities of the
plasma sheath, which could be controlled by the confinement
of the barred cathodes.

An interesting correlation was found between the time of
the pinch and the dimensionless driver parameter. This
observation can be used to test and calibrate kinematic models
of current sheaths in PF devices.

The maximum production in a single shot was registered
for the lowest cathode radius, 41 mm, whereas the inter-
mediate cathode radius, 45 mm, scored better in average. In
all configurations, the neutrons per deuteron pair correlates
fairly well with an estimation of the effective equilibrium
temperature of the pinch, which suggests a prevalence of
thermonuclear reactions.

Acknowledgments

This research was supported by the grant PICT 2012-0926
from Fund for Scientific and Technological Research—
Argentina (FONCYT), grant PIP 2013-0391 from National
Scientific and Technical Research Council—Argentina
(CONICET) and by the National University of the Center of
the Buenos Aires Province—Argentina (UNCPBA). This
work was partially supported by the Interistitutional Dense
Plasmas Program (PIPAD).

ORCID iDs

M Barbaglia https://orcid.org/0000-0003-2134-7719

References

[1] Mather J W 1964 Investigation of the high-energy acceleration
mode in the coaxial gun Phys. Fluids 7 S28

[2] Filippov N V, Filippova T I and Vinogradov V P 1962 Dense
high-temperature plasma in a non-cylindrical Z-pinch
compression Nucl. Fusion 2 577

[3] Lee S and Serban A 1996 Dimensions and lifetime of the
plasma focus pinch IEEE Trans. Plasma Sci. 24 1101–5

[4] Zakaullah M, Alamgir K, Rasool A, Shafiq M, Murtaza G and
Waheed A 2001 Correlation of plasma electron temperature
with neutron emission in a low-energy plasma focus IEEE
Trans. Plasma Sci. 29 62–8

[5] Kubes P, Paduch M, Cikhardt J, Klir D, Kravarik J, Rezac K,
Cikhardtova B, Kortanek J and Zielinska E 2016 The
evolution of the plasmoidal structure in the pinched column
in plasma focus discharge Plasma Phys. Control. Fusion 58
045005

[6] Linhart J G 1970 Very-high-density plasmas for thermonuclear
fusion Nucl. Fusion 10 211

[7] Moreno C, Vénere M, Barbuzza R, Del Fresno M, Ramos R,
Bruzzone H, González F P J and Clausse A 2002 Industrial
applications of plasma focus radiation Braz. J. Phys. 32
20–5

[8] Aleksandrov V D, Bogolubov E P, Bochkarev O V,
Korytko L A, Nazarov V I, Polkanov Yu G,
Ryzhkov V I and Khasaev T O 2005 Application of neutron
generators for high explosives, toxic agents and fissile
material detection Appl. Radiat. Isot. 63 537–43

[9] Angeli E, Tartari A, Frignani M, Mostacci D, Rocchi F and
Sumini M 2005 Preliminary results on the production of
short-lived radioisotopes with a Plasma Focus device Appl.
Radiat. Isot. 63 545–51

[10] Jain J et al 2017 Hundred joules plasma focus device as a
potential pulsed source for in vitro cancer cell irradiation
AIP Adv. 7 085121

[11] Gribkov V and Malaquias A 2006 Dense magnetized plasma
and its applications: review of the 3-year activity of the
IAEA co-ordinated research programme Nukleonika 51
5–13

[12] Gribkov V A, Varandas C and Sliva C 2008 Current and
perspective applications of dense plasma focus devices AIP
Conf. Proc. vol 996 (New York) (AIP) 51–64

[13] García Molleja J, Milanese M, Gómez B J, Moroso R,
Piccoli M, Niedbalski J, Bürgi J, Bemporad E and Feugeas J
2015 Behavior of nitrided and carburized AISI 904 L
stainless steels under severe light ion beam irradiation with
plasma focus: nitrided/carburized 904 L SS behavior under
plasma focus irradiation Surf. Interface Anal. 47 728–37

[14] Milanese M, Niedbalski J, Moroso R, Barbaglia M, Mayer R,
Castillo F and Guichón S 2013 Small plasma focus as
neutron pulsed source for nuclides identification Rev. Sci.
Instrum. 84 103501

[15] Ivanov L, Pimenov V, Maslyaev S, Dyomina E, Gribkov V,
Mezzetti F and DeChiara P 2000 Influence of dense
deuterium plasma pulses on materials in plasma focus device
Nukleonika 45 203–7

[16] Hussain S and Zakaullah M 2007 Study of plasma focus as a
hard x-ray source for non-destructive testing Modern Phys.
Lett. B 21 1643–50

[17] Venere M, Moreno C H, Clausse A, Barbuzza R and
Del Fresno M 2001 Tomographic system based on plasma
focus x-rays Nukleonika 46 93–4

[18] Rawat R S 2015 Dense plasma focus—from alternative fusion
source to versatile high energy density plasma source for
plasma nanotechnology J. Phys.: Conf. Ser. 591 012021

[19] Kasperczuk A, Paduch M, Tomaszewski K, Zielinska E,
Miklaszewski R and Szymaszek A 2016 A plasma focus
device as a metallic plasma jet generator Laser Part. Beams
34 356–61

[20] Moreno C, Bruzzone H, Martínez J and Clausse A 2000
Conceptual engineering of plasma-focus thermonuclear
pulsors IEEE Trans. Plasma Sci. 28 1735–41

[21] Gonzalez J H, Clausse A, Bruzzone H and Florido P C 2004 A
lumped parameter model of plasma focus IEEE Trans.
Plasma Sci. 32 1383–91

[22] Lee S 2014 Plasma focus radiative model: review of the lee
model code J. Fusion Energy 33 319–35

9

Plasma Phys. Control. Fusion 62 (2020) 055002 M Barbaglia et al

https://orcid.org/0000-0003-2134-7719
https://orcid.org/0000-0003-2134-7719
https://orcid.org/0000-0003-2134-7719
https://orcid.org/0000-0003-2134-7719
https://doi.org/10.1063/1.1711086
https://doi.org/10.1109/27.533118
https://doi.org/10.1109/27.533118
https://doi.org/10.1109/27.533118
https://doi.org/10.1109/27.912943
https://doi.org/10.1109/27.912943
https://doi.org/10.1109/27.912943
https://doi.org/10.1088/0741-3335/58/4/045005
https://doi.org/10.1088/0741-3335/58/4/045005
https://doi.org/10.1088/0029-5515/10/3/001
https://doi.org/10.1590/S0103-97332002000100004
https://doi.org/10.1590/S0103-97332002000100004
https://doi.org/10.1590/S0103-97332002000100004
https://doi.org/10.1590/S0103-97332002000100004
https://doi.org/10.1016/j.apradiso.2005.05.002
https://doi.org/10.1016/j.apradiso.2005.05.002
https://doi.org/10.1016/j.apradiso.2005.05.002
https://doi.org/10.1016/j.apradiso.2005.05.003
https://doi.org/10.1016/j.apradiso.2005.05.003
https://doi.org/10.1016/j.apradiso.2005.05.003
https://doi.org/10.1063/1.4994655
https://doi.org/10.1002/sia.5770
https://doi.org/10.1002/sia.5770
https://doi.org/10.1002/sia.5770
https://doi.org/10.1063/1.4823522
https://doi.org/10.1142/S0217984907014073
https://doi.org/10.1142/S0217984907014073
https://doi.org/10.1142/S0217984907014073
https://doi.org/10.1088/1742-6596/591/1/012021
https://doi.org/10.1017/S0263034616000215
https://doi.org/10.1017/S0263034616000215
https://doi.org/10.1017/S0263034616000215
https://doi.org/10.1109/27.901261
https://doi.org/10.1109/27.901261
https://doi.org/10.1109/27.901261
https://doi.org/10.1109/TPS.2004.827573
https://doi.org/10.1109/TPS.2004.827573
https://doi.org/10.1109/TPS.2004.827573
https://doi.org/10.1007/s10894-014-9683-8
https://doi.org/10.1007/s10894-014-9683-8
https://doi.org/10.1007/s10894-014-9683-8


[23] Auluck S K H 2017 Design parameter space for a high pressure
optimized dense plasma focus operating with deuterium
J. Fusion Energy 36 218–29

[24] Scholz M 2006 Progress in numerical modeling of plasma-
focus discharge AIP Conf. Proc. PLASMA 2005: Int. Conf.
on Research and Applications of Plasmas; 3rd German-
Polish Conf. on Plasma Diagnostics for Fusion and
Applications; 5th French-Polish Seminar on Thermal
Plasma in Space and Laboratory vol 812 (Opole-Turawa,
Poland) (AIP) pp 57–63

[25] Asle-Zaeem A, Sadat kiai S M, Sedaghatizadeh M and
Talaei A 2010 Plasma focus device as a breeder of 14.66
MeV protons to produce short-lived radioisotopes J. Fusion
Energy 29 165–7

[26] Talaei A, Sadat Kiai S M and Zaeem A A 2010 Effects of
admixture gas on the production of 18F radioisotope in
plasma focus devices Appl. Radiat. Isot. 68 2218–22

[27] Gonzalez J H, Brollo F R and Clausse A 2009 Modeling of the
dynamic plasma pinch in plasma focus discharges based in
Von Karman approximations IEEE Trans. Plasma Sci. 37
2178–85

[28] Casanova F, Moreno C and Clausse A 2005 Finite-elements
numerical model of the current-sheet movement and shaping
in coaxial discharges Plasma Phys. Control. Fusion 47
1239–50

[29] Kubes P et al 2006 Time of neutron production on Z-pinch and
plasma focus devices 16th IAEA Technical Meeting on
Research Using Small Fusion Devices: AIP Conf. Proc. 875
15–8

[30] Klir D et al 2012 Search for thermonuclear neutrons in a mega-
ampere plasma focus Plasma Phys. Control. Fusion 54
015001

[31] Klir D et al 2011 Experimental evidence of thermonuclear
neutrons in a modified plasma focus Appl. Phys. Lett. 98
071501

[32] Schmidt A, Link A, Welch D, Meehan B T, Tang V,
Halvorson C, May M and Hagen E C 2014 Fully kinetic
simulations of megajoule-scale dense plasma focus Phys.
Plasmas 21 102703

[33] Bruzzone H, Acuña H and Clausse A 2008 Neutron
correlations with electrical measurements in a plasma focus
device Braz. J. Phys. 38 117–22

[34] Clausse A, Soto L and Tarifeno-Saldivia A 2015 influence of
the anode length on the neutron emission of a 50 J plasma
focus: modeling and experiment IEEE Trans. Plasma Sci. 43
629–36

[35] Scholtz M, Karpinski L, Paduch M, Tomaszewski K,
Miklaszewski R, Sadowski M and Szydlowski A 2007
Experiments with the F-1000 plasma-focus facility at the 1
MJ level current trends in Int. Fusion Research Proc. 4th
Symp. pp 23–5

[36] Kubes P, Kravarik J, Klir D, Barvir P, Scholz M, Paduch M,
Tomaszewski K, Ivanova-Stanik I, Karpinski L and Juha L
2004 Study of neutrons at PF-1000 Int. Conf. High-Power
Particle Beams (BEAMS 2004) pp 742–5

[37] Bruzzone H, Acuna H N, Barbaglia M O, Milanese M M,
Miklaszewski R, Paduch M, Zielinska E and Clausse A 2016
Time-varying inductance of the plasma sheet in the PF1000
plasma-focus device IEEE Trans. Plasma Sci. 44 968–72

[38] Gribkov V A, Bienkowska B, Borowiecki M, Dubrovsky A V,
Ivanova-Stanik I, Karpinski L, Miklaszewski R A,
Paduch M, Scholz M and Tomaszewski K 2007 Plasma
dynamics in PF-1000 device under full-scale energy storage:
I. Pinch dynamics, shock-wave diffraction, and inertial
electrode J. Phys. D: Appl. Phys. 40 1977–89

[39] Bienkowska B, Paduch M, Scholz M, Stepniewski W and
Tomaszewski K 2005 Study of the pinch structure in

PF1000 plasma-focus device by high-speed photography
and MHD numerical modeling IEEE Trans. Plasma Sci. 33
450–1

[40] Soto L, Pavéz C, Moreno J, Altamirano L, Huerta L,
Barbaglia M, Clausse A and Mayer R E 2017 Evidence of
nuclear fusion neutrons in an extremely small plasma
focus device operating at 0.1 Joules Phys. Plasmas 24
082703

[42] Inestrosa-Izurieta M J, Ramos-Moore E and Soto L 2015
Morphological and structural effects on tungsten targets
produced by fusion plasma pulses from a table top plasma
focus Nucl. Fusion 55 093011

[43] Silva P, Soto L, Moreno J, Sylvester G, Zambra M,
Altamirano L, Bruzzone H, Clausse A and Moreno C 2002
A plasma focus driven by a capacitor bank of tens of joules
Rev. Sci. Instrum. 73 2583

[44] Zanelli D, López E, Pavez C, Pedreros J, Jain J, Avaria G,
Moreno J, Bora B, Davis S and Soto L 2018 Analysis of
deterioration in a plasma focus device J. Phys.: Conf. Ser.
1043 012049

[45] Soto L, Pavéz C, Moreno J, Pedreros J and Altamirano L 2014
Non-radioactive source for field applications based in a
plasma focus of 2J: pinch evidence J. Phys.: Conf. Ser. 511
012032

[46] Soto L, Pavez C, Tarifeño A, Moreno J and Veloso F 2010
Studies on scalability and scaling laws for the plasma focus:
similarities and differences in devices from 1 MJ to 0.1 J
Plasma Sources Sci. Technol. 19 055017

[47] Baranowski J, Jakubowski L, Sadowski M and Zebrowski J
2001 Studies of plasma-focus discharges within the PF-360
facility equipped with needle D2O-ice target Nukleonika 46
69–71

[48] Barbaglia M, Soto L and Clausse A 2012 Dependence of hard
x-ray emissions with the charging pressure in a small plasma
focus J. Fusion Energy 31 105–8

[49] Castillo-Mejía F, Gamboa-de Buen I,
Herrera-Velázquez J J E and Rangel-Gutiérrez J 2014
Neutron emission characterisation at the FN-II dense plasma
focus J. Phys.: Conf. Ser. 511 012021

[50] Cicuttin A et al 2015 Experimental results on the irradiation of
nuclear fusion relevant materials at the dense plasma focus
‘Bora’ device Nucl. Fusion 55 063037

[51] Gribkov V, Dubrovsky A, Scholz M, Jednorog S, Karpiński L,
Tomaszewski K, Paduch M, Miklaszewski R,
Pimenov V and Ivanov L I 2006 PF-6 an effective plasma
focus as a source of ionizing radiation and plasma streams
for application in material technology, biology and medicine
Nukleonika 51 55–62

[52] Moreno C, Raspa V, Lorenzo F D, Lazarte A, Knoblauch P and
Clausse A 2006 0.2 Hz Plasma-Focus-based source of fast
neutrons and hard x rays for applications AIP Conf. Proc.:
16th IAEA Technical Meeting on Research using Small
Fusion Devices; XI Latin American Workshop on Plasma
Physics 875, 23–6

[53] Kies W, Lucas B, Rowekamp P, Schmitz F, Ziethen G and
Decker P 1998 Pinches and micropinches in the SPEED 2
plasma focus Plasma Sources Sci. Technol. 7 21–7

[54] Bostick W H, Kilic H, Nardi V and Powell C W 1993 Time
resolved energy spectrum of the axial ion beam generated in
plasma focus discharges Nucl. Fusion 33 413

[55] Beg F, Zakaullah M, Nisar M and Murtaza G 1992 Role of
anode length in a Mather-type plasma focus Modern Phys.
Lett. B6 593–7

[56] Kashani M, Sato K, Miyamoto T, Baba A, Horiuchi R,
Takasugi K, Sasaki S, Lu M and Vikhrev V 2001 Effects of
cathode electrode in plasma focus discharges APPC 2000
Proc. 8th Asia/Pacific Physics Conf. pp 244–6

10

Plasma Phys. Control. Fusion 62 (2020) 055002 M Barbaglia et al

https://doi.org/10.1007/s10894-017-0142-1
https://doi.org/10.1007/s10894-017-0142-1
https://doi.org/10.1007/s10894-017-0142-1
https://doi.org/10.1007/s10894-009-9251-9
https://doi.org/10.1007/s10894-009-9251-9
https://doi.org/10.1007/s10894-009-9251-9
https://doi.org/10.1016/j.apradiso.2010.06.012
https://doi.org/10.1016/j.apradiso.2010.06.012
https://doi.org/10.1016/j.apradiso.2010.06.012
https://doi.org/10.1109/TPS.2009.2030578
https://doi.org/10.1109/TPS.2009.2030578
https://doi.org/10.1109/TPS.2009.2030578
https://doi.org/10.1109/TPS.2009.2030578
https://doi.org/10.1088/0741-3335/47/8/007
https://doi.org/10.1088/0741-3335/47/8/007
https://doi.org/10.1088/0741-3335/47/8/007
https://doi.org/10.1088/0741-3335/47/8/007
https://doi.org/10.1088/0741-3335/54/1/015001
https://doi.org/10.1088/0741-3335/54/1/015001
https://doi.org/10.1063/1.3555447
https://doi.org/10.1063/1.3555447
https://doi.org/10.1063/1.4897192
https://doi.org/10.1590/S0103-97332008000100022
https://doi.org/10.1590/S0103-97332008000100022
https://doi.org/10.1590/S0103-97332008000100022
https://doi.org/10.1109/TPS.2014.2376412
https://doi.org/10.1109/TPS.2014.2376412
https://doi.org/10.1109/TPS.2014.2376412
https://doi.org/10.1109/TPS.2014.2376412
https://doi.org/10.1109/TPS.2016.2562038
https://doi.org/10.1109/TPS.2016.2562038
https://doi.org/10.1109/TPS.2016.2562038
https://doi.org/10.1088/0022-3727/40/7/021
https://doi.org/10.1088/0022-3727/40/7/021
https://doi.org/10.1088/0022-3727/40/7/021
https://doi.org/10.1109/TPS.2005.845265
https://doi.org/10.1109/TPS.2005.845265
https://doi.org/10.1109/TPS.2005.845265
https://doi.org/10.1109/TPS.2005.845265
https://doi.org/10.1063/1.4989845
https://doi.org/10.1063/1.4989845
https://doi.org/10.1088/0029-5515/55/9/093011
https://doi.org/10.1063/1.1487898
https://doi.org/10.1088/1742-6596/1043/1/012049
https://doi.org/10.1088/1742-6596/511/1/012032
https://doi.org/10.1088/1742-6596/511/1/012032
https://doi.org/10.1088/0963-0252/19/5/055017
https://doi.org/10.1007/s10894-011-9455-7
https://doi.org/10.1007/s10894-011-9455-7
https://doi.org/10.1007/s10894-011-9455-7
https://doi.org/10.1088/1742-6596/511/1/012021
https://doi.org/10.1088/0029-5515/55/6/063037
https://doi.org/10.1088/0963-0252/7/1/004
https://doi.org/10.1088/0963-0252/7/1/004
https://doi.org/10.1088/0963-0252/7/1/004
https://doi.org/10.1088/0029-5515/33/3/I04
https://doi.org/10.1142/S0217984992000685
https://doi.org/10.1142/S0217984992000685
https://doi.org/10.1142/S0217984992000685


[57] Hill R A and Hubbs J W 1983 A multi-shot dense plasma focus
with improved cathode design Phys. Lett. A 98 417–20

[58] Bruzzone H, Clausse A, Barbaglia M and Acuña H 2012 Effect
of the external outer electrode in plasma-focus discharges
Plasma Phys. Control. Fusion 54 012001

[59] Milanese M M, Cortazar O D, Barbaglia M O and Moroso R L
2014 Images of a plasma focus current sheath with a
continuous cylindrical outer electrode IEEE Trans. Plasma
Sci. 42 2606–7

[60] Mejia F C, Milanese M, Moroso R and Pouzo J 1997 Some
experimental research on anisotropic effects in the neutron
emission of dense plasma-focus devices J. Phys. D: Appl.
Phys. 30 1499–506

[61] Bruzzone H, Acuña H, Barbaglia M and Clausse A 2006 A
simple plasma diagnostic based on processing the electrical
signals from coaxial discharges Plasma Phys. Control.
Fusion 48 609–20

[62] Mather J W 1971 Dense Plasma Focus Methods of
Experimental Physics vol 9B ed R Lovberg and H Griem
(New York: Academic) p 187

[63] Bruzzone H et al 2018 Physical reasoning to synchronize
electrical signals and related diagnostics in plasma focus
devices J. Fusion Energy 37 45–50

[64] Bruzzone H, Acuña H and Clausse A 2007 The lift-off stage of
plasma focus discharges Plasma Phys. Control. Fusion 49
105–12

11

Plasma Phys. Control. Fusion 62 (2020) 055002 M Barbaglia et al

https://doi.org/10.1016/0375-9601(83)90252-9
https://doi.org/10.1016/0375-9601(83)90252-9
https://doi.org/10.1016/0375-9601(83)90252-9
https://doi.org/10.1088/0741-3335/54/1/012001
https://doi.org/10.1109/TPS.2014.2346693
https://doi.org/10.1109/TPS.2014.2346693
https://doi.org/10.1109/TPS.2014.2346693
https://doi.org/10.1088/0022-3727/30/10/017
https://doi.org/10.1088/0022-3727/30/10/017
https://doi.org/10.1088/0022-3727/30/10/017
https://doi.org/10.1088/0741-3335/48/5/008
https://doi.org/10.1088/0741-3335/48/5/008
https://doi.org/10.1088/0741-3335/48/5/008
https://doi.org/10.1007/s10894-018-0151-8
https://doi.org/10.1007/s10894-018-0151-8
https://doi.org/10.1007/s10894-018-0151-8
https://doi.org/10.1088/0741-3335/49/2/001
https://doi.org/10.1088/0741-3335/49/2/001
https://doi.org/10.1088/0741-3335/49/2/001
https://doi.org/10.1088/0741-3335/49/2/001

	1. Introduction
	2. Experimental method and device
	3. Results
	3.1. Current sheath kinematics
	3.2. Processing of the electrical signals
	3.3. Neutrons

	4. Conclusions
	Acknowledgments
	References



