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a  b  s  t  r  a  c  t

The  plant-wide  control  problem  is a very  important  topic  in  process  control.  A  particular  control  structure
design will  define  (restrict)  the  future  operability  degree  for the  plant  under  study.  Classical  control  poli-
cies (decentralized  or  full)  are  not  always  the  best  solution.  In this  context  a systematic  and  generalized
strategy  to  solve  the  multivariable  plant-wide  control  problem  is  proposed  here.  The  methodology  called
minimum  square  deviation  (MSD)  considers  several  points  such  as  the  optimal  controlled  variables  (CVs)
selection  based  on  the  sum  of  square  deviation  (SSD)  and  controller  structure  design  supported  by net
load evaluation  (NLE)  analysis.  The  overall  problem  is  combinatorial  and is solved  by  accounting  sev-
eral  steady-state  tools  and  new  indexes  minimizing  the heuristic  load.  Four  well-known  case  studies  are
presented  and  other  approaches  taken  from  the  literature  are  accounted  for the sake  of  comparison.  A
robust stability  test,  �-tools,  is  also  performed  for concluding  about  the  control  policies.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The design strategies of industrial processes are generally
focused on maximizing profits, optimizing energy use and ensure
high standards on products. All these prerequisites normally pro-
duce highly coupled or interacting plants. Obviously, this is a good
scenario from the profitability point of view, but a very challeng-
ing one from the plant-wide control perspective. This complexity
increases with dimension, because large-scale processes could
involve hundreds or thousands of variables to be considered. Hence,
a control structure design (CSD) for guaranteeing the main process
objectives is not a trivial task. Moreover, some process designs have
serious problems to be solved because the lack of control informa-
tion and evaluation at this stage. Generally, the process synthesis
stage defines the connection between units, their sizing and the
best operating conditions. This stage generally uses only steady-
state (SS) information without considering issues such as optimal
controlled variables (CVs) selection and controller structure design.
It is crucial to identify some potential control problems at this phase
for achieving a controllable plant design. However, only partial
solutions exist to quantify these kinds of problems with SS tools
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only. Approaches having a good degree of both systematics and gen-
eralization are welcome, particularly when large-scale applications
are involved. In this work a rigorous and generalized treatment of
these aspects are proposed trying to avoid heuristic considerations
for determining the final plant-wide control configuration.

Plant-wide CSD tasks involve CVs and MVs  selection,
input–output pairing definition, and controller structure design.
Mainly the problem is solved by using process interaction meas-
ures. In some approaches a predefined CVs are used and the
CSD problem dimension is reduced heuristically through the
application of the engineering judgment (Buckley, 1964; Luyben,
Tyréus, & Luyben, 1998). In this context, the relative gain array
(RGA) approach, proposed by Bristol (1966),  has been the preferred
tool for decades and even today for developing more sophisti-
cated approaches in plant-wide control area. This perhaps occurs
because of its simplicity and effectiveness, although it is important
to note that some publications have reported problems with RGA.
In fact, several authors have been analyzed the RGA properties,
its implications on control performance, and its drawbacks when
the process is ill-conditioned or close to the singularity (Garcia
& Morari, 1985; Grosdidier, Morari, & Holt, 1985; Skogestad &
Postlethwaite, 2005; Skogetad & Morari, 1987). Other authors have
proposed modifications to handle non-square process (Chang & Yu,
1990; Khaki-Sedigh & Moaveni, 2009; Skogestad & Postlethwaite,
2005), disturbances (Chang & Yu, 1992, 1994; Lin, Jeng, & Huang,
2009) and dynamic information (He, Cai, Ni, & Xie, 2009; McAvoy,
Arkun, Chen, Robinson, & Schnelle, 2003). An excellent review
of these techniques and new tendencies are given in Skogestad
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Nomenclature

Acronyms
CC composition controller
CL Chiang and Luyben
CS control structure
CSD control structure design
CVs controlled variables
DVs disturbances variables
EIP error improvement percent
FOPD first order plus delay
GA genetic algorithms
GRDG generalized relative disturbance array
IAE integral absolute error
IMC  internal model control
LC level controller
MIMO  multi-input/multi-output
MSD minimum square deviation
MVs  manipulated variables
NRG non-square relative gain
OMS  optimal manipulated selection
OR Ogunnaike and Ray
PC pressure controller
RGA relative gain array
RNGA relative normalized gain array
RS robust stability
SS steady-state
SSD sum of squared deviations
SSV structured singular value
TC temperature controller
TFM transference function matrix
UVs uncontrolled variables

Variables
A(s) set point component – net load effect
B(s) disturbance component – net load effect
d*(s) disturbance vector
dp

∗(i) ith-entry unitary vector
D(s) disturbance TFM
Dr(s) disturbance TFM for UVs
Ds(s) disturbance TFM for CVs
F(s) diagonal low pass TFM filter
G(s) process TFM
Gc(s) controller TFM
Gr(s) process TFM for UVs
Gr(s) process TFM for CVs
G̃s(s) process model TFM for CVs
G̃

+
s (s) non-invertible TFM

G̃s�(s) Process model TFM for �

G̃
−
s�(s) invertible process model TFM for �

K output feedback controller
KN normalized process for RNGA
m total outputs
n total inputs
NLE� net load evaluation for �
p total disturbances
Ps(s) nominal process
s Laplace variable
SSD sum of squared deviations index
t time
T normalization matrix for RNGA
u(s) input vector
y(s) output vector
yr(s) UVs vector

ys(s) CVs vector
ynet

s (s) total net load effect
ysp

s (s) set point vector
yn

sp(i) ith-entry unitary vector

Greek symbols
�  condition number
� ij ij-component of �
� parametrization matrix
�CY parametrization matrix proposed by Chang and Yu

(1992)
�dS parametrization matrix proposed by Shen, Cai, and

Li (2010)
�f full parametrization matrix
�o optimal parametrization matrix
�oS parametrization matrix proposed by Shen et al.

(2010)
�i weight matrix, i = 1, 2
�i weight matrix, i = 1, 2
�i ith eigenvalue
�i weight matrix, i = 1, 2
�N RNGA
�� robust stability index
	i weight matrix, i = 1, 2

 minimum singular value

 maximum singular value
�fi ith filter time constant for F(s)
ω frequency

and Postlethwaite (2005) and Khaki-Sedigh and Moaveni (2009).
Anyway, the plant-wide control problem is still an open problem
and the continuous emergence of new strategies is a clear demon-
stration of this. In fact, a manipulated variables (MVs) selection
approach by analyzing controllability for chemical process was
presented in Yuan, Chen, and Zhao (2011).  On the other hand, a
new CVs selection approach based on both bidirectional branch
and bound and local average loss is proposed by Kariwala and
Cao (2010a). Moreover, a measurements selection criterion for
steady-state indirect and self-optimizing control are proposed in
Hori, Skogestad, and Alstad (2005) and Hori and Skogestad (2008).
A systematic approach to design PID-based MIMO controller
with different interaction levels (sparse controllers) is proposed
in Shen et al. (2010) by using the new relative normalized gain
array (RNGA) approach (He et al., 2009). An optimal control-based
approach is presented (Assali & McAvoy, 2010) to determine a
set of dominant measurements and MVs  for improving both the
production rate and product quality in the Tennessee Eastman (TE)
process. These works show the efforts made by the scientific com-
munity and industry to improve both the way  and the conditions
for performing plant-wide control strategies.

Basically, the MSD  procedure detailed here can be divided in
two sequential combinatorial problems addressing the optimal CVs
selection and the optimal controller structure design sequentially.
The optimal CVs selection is based on sum of square deviations
(SSD) index accounting both the operating point deviations of
uncontrolled variables (UVs) and assuming the other output vari-
ables under perfect control. The controller structure design defines
the input–output pairing and the controller interaction degree
(sparse degree) based on the net load evaluation (NLE) index
accounting references as well as disturbance effects on CVs. Note
that, the sparse concept refers to the amount of components into
the IMC  approach, and directly related to the process model used.
It is important to note that the SSD-based optimal CVs selection
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is directly related with both, the non-square relative gain (NRG)
array, suggested by Chang and Yu (1990) and perfect SS indirect
control, proposed by Hori et al. (2005).  But, in this work the NRG
is generalized by using a new SSD scalar index avoiding a matrix
analysis and including references effects. Moreover, the assump-
tion of perfect control at SS is considered here to quantify deviations
in UVs (not for inferential control or self-optimizing one). On the
other hand, the NLE-based controller structure design proposed
here is a generalization of the approach presented by Chang and
Yu (1994) for synthesis of typical controller structures for robust
load performance. Here, the new NLE scalar index allows to eval-
uate arbitrary controller structures (sparse) via internal model
control (IMC) theory, reference changes and disturbance effects.
The NLE-based controller design procedure also considers a stabil-
ity/robustness test at steady-state (Garcia & Morari, 1985) to lead
the search towards to feasible solutions set.

The MSD  approach was tested partially (Zumoffen & Basualdo,
2009) (only the optimal CVs selection subroutine) and globally
(Molina, Zumoffen, & Basualdo, 2011) (CV selection plus NLE) for a
particular case study, the emblematic Tennessee Eastman process.
This could be an isolated result closely related with this specific
case study. The aim of this work is to demonstrate through other
well-known benchmarks the real potentiality of the successful
MSD procedure. In fact, the work proposed here presents a gen-
eralization of this approach through the following case studies: 2
non-square process as the Shell oil fractionator (Maciejowski, 2002)
and the Newell and Lee evaporator (Govatsmark & Skogestad, 2001;
Maciejowski, 2002), and 2 square plants the Ogunnaike and Ray
(OR) (Luyben, 1986; Monica, Yu, & Luyben, 1988) and Chiang and
Luyben (CL) (Chang & Yu, 1994) systems. In addition, illustrative

examples are proposed to show some particular/additional matrix
properties in the MSD  procedure. All the controller structures pro-
posed here are dynamically simulated and compared with other
approaches available in the literature. Particularly, approaches pro-
posed by Chang and Yu (1994) and Shen et al. (2010).  Moreover,
the improvements obtained with the MSD  strategy are rigorously
quantified by using the integral absolute tracking error (IAE) index
for both, servo and regulator requirements. Finally, the robust
stability conditions for all control policies and case studies are ana-
lyzed here. It is done based on the structured singular value (SSV) or
� procedure, accounting both, parametric and unmodeled dynamic
uncertainties, for the closed-loop systems.

The main contributions of this work lie in: (A) generalize the SSD
index via Frobenius norm for set point and disturbances effects, (B)
give some mathematical insight about the SSD minimization tied to
the selected subprocess properties, (C) integrate the NLE index for
multivariable controller design with stability test, (D) NLE consid-
ering set point and disturbance effects, (E) MSD  like a systematic
and generalized tool for plant-wide control which minimizes the
heuristic load, and (F) comparison with other approaches. Conclu-
sions in Shen et al. (2010) are analyzed and compared.

2. The MSD  approach for plant-wide control

The systematic and generalized minimum square deviation
(MSD) procedure for performing plant-wide control proposed here
is schematically represented in Fig. 1. The method addresses two
important problems in control process in a unified framework: (1)
the optimal CVs selection, represented through light gray blocks
and (2) the controller structure design, dark gray blocks. Several

Fig. 1. MSD plant-wide control strategy.
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tools and techniques are used in each subproblem which will be
discussed below.

Assuming that the plant under study comes from the processes
synthesis stage, then the information about the control objectives
is not enough. So, the stability conditions of the plant must be ana-
lyzed. For unstable process, the minimum number of stabilizing
control loops must be decided. After performing the process sta-
bilization, a steady-state optimization analysis gives the optimum
operating point by considering profit and safety. At this step some
active constraints can be found which define some variables (mea-
surements and manipulated) to necessarily be controlled (fixed),
either by operating costs or stability issues. This first block still rep-
resents an open problem in plant-wide control (from generalized
and systematic point of view). Anyway, in this work only stable
processes or already stabilized plants are considered, so this block
is not considered in detail.

The lines and blocks in dashed style in Fig. 1 represent informa-
tion flow corresponding to partial control objectives into the MSD
strategy (left) or information interchange with process synthesis
stage (right). Note that partial control objectives refers to some a
priori requisites, i.e. production rate, product quality, safety vari-
ables, etc. Information feedback between control performance and
process synthesis is useful for improving both areas and obtain a
successful plant design. In fact, the above integration is other open
problem example in this field. Thus, information about product
requirements, typical set point and disturbance magnitudes, rel-
ative degree of importance between outputs, etc. can be handled
by assigning the corresponding weight matrices. The selection of
the weights is a trade-off between controllability and synthesis
proposals for a particular industrial process.

If there are no degrees of freedom, from the first block, then an
optimal CVs selection is not necessary. Hence, the following step
is the controller structure design procedure. On the other hand, if
there are remaining degrees of freedom, the optimal CVs selection
based on SSD index is proposed here. Basically, it is an optimization
problem (combinatorial) which selects the best rows of the pro-
cess by accounting the minimization of the SSD for uncontrolled
variables (UVs) from their operational working point. Moreover,
this approach also guarantees the well-conditioning of the selected
subprocess to be controlled. This approach is addressed in detail in
Section 2.1.

Once the above problem is solved, then the square subprocess
is already defined. In this context, the next problem to solve is the
input–output pairing and eventually the interaction degree of the
controller structure. Dark gray blocks in Fig. 1 allow to perform
these tasks in a generalized and systematic way. Specific details
about the controller interaction degree approach is given in Section
2.2. Basically, a diagonal (base case) control structure is initially
developed via the RGA or RNGA approaches. The selection between
these methodologies is performed by analyzing both the dynamic
information availability and the singularity degree of some matri-
ces. Thus, by using this decentralized control policy, the controller
interaction degree (sparse degree) is analyzed via minimization of
the net load evaluation (NLE) scalar index, the stability constraint,
and a suitable model parametrization. This can be done by a com-
plete generalization of the net load effect ideas. This methodology
is presented in detail in Section 2.2.

Finally, all control structures proposed by the MSD  approach and
classical ones (decentralized, full) can be compared via dynamic
simulation. Hence, the last two blocks define the tuning for the
controllers (IMC-based) and performing a rigorous robust stabil-
ity analysis, respectively. The latter, based on structured singular
value (SSV) theory or �-analysis (Skogestad & Postlethwaite,
2005). Both parametric and unmodeled dynamic (multiplicative
input) uncertainties were proposed for all delays and input gains
of the processes respectively, generating a more realistic test

Fig. 2. Generalized IMC  structure.

environment for all control structures. Mathematical insights about
the SSV approach are not presented here.

In the following both the optimal CVs selection and the CSD pro-
posals are detailed together with the application results obtained
through several illustrative and well-known examples.

2.1. Optimal CVs selection: SSD minimization

In this stage the remaining degrees of freedom, from the stabi-
lization/optimization stage, are used for optimal CVs selection via a
SSD philosophy. The aim is finding a subset of potential controlled
variables to keep the process as close as possible to its desired
operating point, i.e. uncontrolled variables (UVs) have minimal
deviations at steady-state.

Assuming that the potential CVs are m and the available MVs
are n with m > n, then m − n degrees of freedom exist. Considering
the process model in Laplace domain partitioned as

y(s) = G(s)u(s) + D(s)d∗(s) =
[

yr (s)

ys(s)

]
=

[
Gr (s)

Gs(s)

]
u(s) +

[
Dr (s)

Ds(s)

]
d∗(s) (1)

where, y(s) is the total output vector, ys(s) is the vector of selected
CVs and yr(s) is the UVs vector with dimensions m × 1, n × 1 and
(m − n) × 1 respectively. With u(s) corresponds to the available
MVs  vector of n × 1 and d*(s) the disturbances vector with p × 1,
being p the amount of considered disturbances. On the other hand,
Gs(s) is a n × n transfer functions matrix (TFM) representing the
input–output relationship for the CVs and Gr(s) is a (m − n) × n TFM
containing the UVs (remaining variables). Similarly, Ds(s) and Dr(s)
represent the disturbance models for each part of the process with
dimensions n × p and (m − n) × p respectively. In this context, both
the internal model control (IMC) theory and perfect SS indirect con-
trol approach are very useful to analyze which would be the best
configuration of Gs(s) (Chang & Yu, 1990, 1992; Hori et al., 2005;
Skogestad & Postlethwaite, 2005). From now on, the steady-state
(SS) behavior (s = 0) is represented without the Laplace variable s.

Then, considering the IMC  structure shown in Fig. 2, the optimal
CVs selection can be made by considering the SS deviation of the
UVs when perfect control (G̃s = Gs) is assumed and both, set point
and disturbance changes, are considered individually (Molina et al.,
2011; Molina, Zumoffen, & Basualdo, 2009; Zumoffen & Basualdo,

2009), being, Gc = G̃
−1
s . Thus, at steady-state, the UVs  of the process

can be represented as

yr = GrG−1
s ysp

s + (Dr − GrG−1
s Ds)d∗ = Sspysp

s + Sdd∗ (2)

with ysp
s and d* the set point and disturbance vectors and Ssp =

GrG−1
s and Sd = (Dr − GrG−1

s Ds). From Eq. (2) it can be observed that
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the UV deviations depend on the selected square subprocess Gs and
if the set point and disturbance effects are considered individually,
then, the SSD index can be stated as:

SSD =
n∑

i=1

‖�2Ssp�1yn
sp(i)‖2

2 +
p∑

j=1

‖�2Sd�1dp
∗(j)‖2

2

= ‖�2Ssp�1‖2
F + ‖�2Sd�1‖2

F (3)

where �2Ssp�1yn
sp(i) and �2Sd�1dp

∗(j) are the vector of devia-
tions corresponding to the yr outputs from their nominal operating
point values when an unitary change happens in the i set point
and j disturbance respectively. The vectors yn

sp(i) and dp
∗(j) have

an unitary entry at the location i and j, and zero for the rest of
the elements. The diagonal weighting matrices �1 (n × n) and �1
(p × p) allow to include the process control objectives such as set
point/disturbance magnitudes (this is important when the used
process model is not normalized), similarly, �2 ((m − n) × (m − n))
and �2 ((m − n) × (m − n)) take into account the relative degree of
importance among the overall outputs. In addition, || · ||2 represents
the 2-norm for vectors and || · ||F means the Frobenius norm for
matrices.

Using a suitable parametrization of Gs (and eventually Gr, Ds and
Dr) the optimal CVs selection problem can be stated using Eq. (3)
as

min
Gs

(SSD) , subjectto det(Gs) /= 0 (4)

this minimization is done by solving a combinatorial problem
whose dimension is m !/(n ! (m − n) !). The proposed methodology
selects n rows from Gm×n to build Gs that minimizes the SSD index.
The constraint, det(Gs) /= 0, avoids the selection of unfeasible solu-
tions when IMC  strategy is applied. Depending on the problem
size, the minimization given by Eq. (4) can be done by exhaustive
search or by implementing some mixed-integer optimization rou-
tine (deterministic or stochastic). In some previous works of the
authors (Molina et al., 2011; Zumoffen & Basualdo, 2010) the signal
selection methodology was performed based on genetic algorithms
(GA). This stochastic global search strategy represents a suitable
alternative solution to solve combinatorial problems.

2.1.1. Properties of the SSD minimization
In this section some mathematical insights are given for analyz-

ing how the matrix properties of the subprocess Gs evolve along
the solutions given by optimization in (4).  The conclusions stated
here are verified graphically in Section 3 in the context of several
dynamic simulations.

The main objective in the optimization problem stated in Eq.
(4) is to find the best set of output variables such that achieve
a multivariable gain minimization (at steady-state), i.e. minimum
deviations on UVs. This gain reduction is performed on the transfer
matrices Ssp (setpoint change effects) and Sd (disturbance change
effects) simultaneously, i.e. deviations of yr from its nominal oper-
ating point are minimized. It will be shown that the minimization of
Eq. (4) also drives to good controllable conditions of the selected Gs,
i.e. well-conditioned subprocess. Several pioneering works (Garcia
& Morari, 1985; Grosdidier et al., 1985; Skogestad & Postlethwaite,
2005; Skogetad & Morari, 1987) have been analyzed the effects of
ill-conditioned process in control structure design. Note that the
converse is not necessarily true; maximizing the minimum singu-
lar value of Gs does not necessarily guarantee minimum deviations
on UVs, i.e. minimum SSD.

Considering that Ssp = GrG−1
s and the Frobenius norm defini-

tion for matrices, some inequalities such as those given in Eqs. (5)
and (6),  can be useful (Golub & Van Loan, 1996; Horn & Johnson,
1990; Skogestad & Postlethwaite, 2005; Zumoffen, Molina, Nieto,

& Basualdo, 2011) for getting interesting conclusions about the
methodology presented here.


(Gr)

(Gs)

≤ 
(GrG−1
s ) ≤ ||GrG−1

s ||F (5)


(Gr)

(Gs)

≤ 
(GrG−1
s ) ≤ ||GrG−1

s ||F (6)

where 
(A) and 
(A) are the minimum and maximum singular val-
ues of the matrix A. These expressions show a clear link between
the functional cost, ‖Ssp ‖ F, and the matrix properties of both Gs and
Gr. Particularly, the conditions of the former are important because
it is the selected subprocess to be controlled.

In this context, and considering the submatrices or interlacing
property (Horn & Johnson, 1990) the following instances for Eq. (6)
can be stated,

0 ≤ 
(Gr)/
(Gs) ≤ 1 and 1 ≤ 
(Gr)/
(Gs) ≤ ||GrG−1
s ||F (7)

for n > m/2 and n < m/2 cases respectively. These relationships show
that the functional cost minimization almost has no effect on 
(Gs).
The inequality at the left of Eq. (7) can be seen that the ratio of the
maximum singular values is perfectly bounded regardless the func-
tional cost profile. The inequality at the right side shows that when
the functional cost is minimized the relationship between 
(Gs)
and 
(Gr) tends to one. In other words, 
(Gs) is bounded and with
minimal modifications, note that 
(G) ≥ 
(Gs) for any permutation.
This means that the real impact of the minimization is performed
on the ratio shown in Eq. (5).  This is true because changes in 
(Gs)
have stronger impact in the functional cost than those in 
(Gs).

Remark 1. Minimization of ||Ssp||2F (when m > n) leads to select
the best rows of G to construct Gs such that the steady-state multi-
variable gain of GrG−1

s is minimized (minimum UVs deviations due
to set point changes) and consequently the matrix conditioning of
Gs tends to be improved by increasing its minimum singular value

(Gs).

The other term that contributes in the SSD minimization is
||�2Sd�1||2F placed in the right side of Eq. (3).  For simplicity, the
term ||Sd||F is analyzed only. Since Sd = [Dr − GrG−1

s Ds] and fol-
lowing an analogous reasoning as given before, the inequality Eq.
(8) can be found (Golub & Van Loan, 1996; Horn & Johnson, 1990;
Skogestad & Postlethwaite, 2005; Zumoffen et al., 2011).

|
(Dr) − 
(GrG−1
s Ds)| ≤ 
(Dr − GrG−1

s Ds) ≤ ||Dr − GrG−1
s Ds||F (8)

again the submatrices property (Horn & Johnson, 1990; Skogestad
& Postlethwaite, 2005) is fulfilled for the perturbation model
max{
(Dr), 
(Ds)} ≤ 
(D). Note that, if ||Dr − GrG−1

s Ds||F → 0 then

(GrG−1

s Ds) → 
(Dr). Using the singular value properties the fol-
lowing inequality can be stated,


(GrG−1
s Ds) ≤ 
(GrG−1

s )
(Ds) ≤ 
(Gr)
(Ds)

(Gs)

(9)

the best scenario from the SSD minimization point of view is to
have ||Dr − GrG−1

s Ds||F = 0, and in this case is obtained Eq. (10),


(Gs) ≤ 
(Gr)
(Ds)

(Dr)

(10)

The functional cost minimization affects 
(Gs) because is the
only source of singularity, i.e. the matrix properties of Gs are modi-
fied. But Eq. (10) shows that 
(Gs) cannot be increased freely in this
case. In fact, it is upper bounded by the process and disturbance
transfer matrix characteristics.

Remark 2. Minimization of ‖Sd‖2
F (when m > n) leads to select the

best rows of G to construct Gs such that the steady-state multivari-
able gain of Dr − GrG−1

s Ds is minimized (minimum UVs deviations
due to disturbances) and consequently the conditioning of Gs tends
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to be improved by increasing its minimum singular value 
(Gs). But
in this case it is upper bounded by 
(Gr)
(Ds)/
(Dr). Note that, a
selection done based on min  ‖Sd‖2

F could drive to a different solution
than that obtained by min  ||Ssp||2F .

The complemented and weighted functional cost stated in Eq.
(3) was proposed for representing a trade-off solution between
servo and regulator behaviors. If the weighting matrices �1, �2, �1
and �2 are used, then the partial control objective from synthesis
stage, non normalized models and relative degree of importance
between outputs can be accounted. The previous analysis is still
valid in this case but now the new matrices become S∗

sp = �2Ssp�1
and S∗

d = �2Sd�1, and of course the new optimal solution may
differ from the unweighted case.

It should be noted that the inequalities in Eqs. (5)–(10) were all
tested numerically by several random matrices (G and D) with dif-
ferent sizes (m,  n, and p). This is a typical procedure for testing some
developments as it is shown in Chang and Yu (1990), Grosdidier
et al. (1985),  and Kariwala and Cao (2010b) for example.

2.2. Controller structure design: defining the interaction level

Accounting Fig. 1 and assuming that the optimal CVs selection
problem was solved efficiently (i.e. Gs(s) was selected), the problem
to be addressed now is the input–output pairing, i.e. the controller
structure design. The blocks with dark gray background in Fig. 1
allow to address this problem in a systematic and generalized way.
Basically, this work is focussed on showing how the net load evalu-
ation (NLE) approach allows to obtain the optimal control structure
complementing the optimal CVs selection methodology. Note that
the controller structure may  be diagonal (i.e. decentralized/without
interaction), full (i.e. centralized/full interaction) or sparse (i.e. par-
tial interaction).

In this context, a good starting point is a decentralized control
proposal as preliminary control structure (base case). Particularly
in this work two input–output pairing approaches are suggested:
the classical relative gain array (RGA) or its new version based on
dynamic information the relative normalized gain array (RNGA)
proposed by He et al. (2009).  The RNGA was defined analogously to
RGA as

�N = KN ⊗ (KN)−T , with KN = Gs � T (11)

where ⊗ is the element-by-element product, � is the element-by-
element division and T is a matrix containing information about the
time constants and delay of each component in Gs(s). The RNGA
effectively improves the pairing selection in some cases as it is
shown in He et al. (2009) and Molina et al. (2011).  Anyway, it is
important to note that normalization proposed by KN = Gs � T may
produce some conditioning problems in KN, and obviously gives an
erroneous pairing as is demonstrated in Zumoffen et al. (2011) for
Petlyuk distillation column.

Thus, these issues must be considered into the MSD  methodol-
ogy. In fact, the RGA approach is preferred if any of the following
conditions occur: (1) there is no available dynamic information, (2)
the RGA and RNGA propose the same pairing or (3) KN presents seri-
ous conditioning problems. In other cases, the RNGA is preferred.

Hence, the next step is to define the controller interaction level,
i.e. analyze which kind of structures in the controller could improve
the overall closed-loop response. In this work a controller structure
design based on NLE is proposed. Chang and Yu (1992) have pre-
sented the generalized relative disturbance gain (GRDG) where the
main concepts of net load effect first appear. GRDG method is a
matrix approach (like RGA) to define classical control structures
(diagonal, block diagonal, triangular, full) from disturbances rejec-
tion point of view. Here, this philosophy is extended/augmented
including set point effects and proposing a new scalar index called

net load evaluation (NLE) based on Frobenius norm. This aug-
mented form allows us to deal with large-scale complex process in
a generalized way  avoiding matrix testing (very suitable for opti-
mization routines). Moreover, the NLE strategy is augmented with a
stability test based on IMC  theory at steady-state. In fact, consider-
ing again Fig. 2, set points and disturbances, plant-model mismatch
and IMC, the controlled outputs can be expressed in Laplace domain
as,

ys(s) = G̃s(s)Gc(s)ysp
s (s) + (I − G̃s(s)Gc(s))ynet

s (s), (12)

where

ynet
s (s) = A(s)ysp

s (s) + B(s)d∗(s) (13)

A(s) = [I + (Gs(s) − G̃s(s))Gc(s)]−1(Gs(s) − G̃s(s))Gc(s) (14)

B(s) = [I + (Gs(s) − G̃(s))Gc(s)]−1Ds(s), (15)

with B(s)d*(s) the so called net load effect proposed for Chang
and Yu (1992) and ynet

s (s) the augmented form proposed here
accounting references and disturbances changes. Considering IMC

design, Gc(s) = G̃
−1
s (s)F(s) and F(s) a diagonal low-pass TFM, the

term (I − G̃s(s)Gc(s)) produces integral action rejecting the ynet
s (s)

effects at steady-state in Eq. (12). Anyway, the real contribution of
the net load is observed in the transient, when (I − G̃s(s)Gc(s)) ≈ I,
and it is directly proportional to its multivariable gain. In fact, Eq.
(12) can be written as

ys(s) = F(s)ysp
s (s) + (I − F(s)) ynet

s (s), (16)

from Eq. (16) two  components are clearly identified in the right
hand: (1) F(s)ysp

s (s) which is a filtered version of set point profiles,
and (2) (I − F(s))ynet

s (s) a perturbation component involving the set
point and disturbances changes. Obviously, the ideal situation is
ys(s) = F(s)ysp

s (s) all the time. But, the second component effectively
introduces undesired perturbations on ys(s).

There are two scenarios for avoiding the ynet
s (s) effects,

1. Adjust the controller tuning, F, for fast responses. This produces
that all components in (I − F(s)) tends to zero as quickly as pos-
sible, and ynet

s (s) does not affect the CVs. But, it is a problematic
solution since F cannot be adjusted freely due to stability issues,
i.e. due to process dead times.

2. Minimize the multivariable gain of ynet
s (s), i.e. minimize both the

A(s)ysp
s (s) and B(s)d*(s) effects simultaneously, according to Eq.

(13). This can be done by minimizing ynet
s (s) at steady-state in a

SSD sense. The tuning, in this case, is not modified.

In fact, the second approach presented above is selected here.

Analyzing the structure of ynet
s (s) at steady-state (F = I,Gc = G̃

−1
s ),

Eqs. 14 and 15 can be expressed as:

A = I − G̃sG−1
s (17)

B = G̃sG−1
s Ds (18)

note that from Section 2.1 a well-conditioning in Gs is guaranteed,
so there are no invertiability problems. Analyzing Eqs. (17) and (18)
when G̃s = Gs, i.e. a full IMC  controller is used, then A = 0 and B = Ds,
so changes in the references do not affect ynet

s (s) (and therefore the
CVs) but, in contrast, disturbances are not attenuated.

Remark 3. From Eqs. (12), (13), (17), and (18) it is observed that
a specific plant-model mismatch, Gs − G̃s, could produce both dis-
turbance and reference changes attenuation from the ynet

s (s) point
of view, and therefore minimize these effects on CVs (Eq. (16)).
On the other hand, when a full IMC  controller is used the best set
point tracking is obtained (A = 0). In practice, can occur that control
structure design is determined as a trade-off between servo and
regulator requirements.
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The statements given in Note 3 do not agree with those pre-
sented by Shen et al. (2010).  In fact, they conclude that some sparse
control structures are the best choice for rejecting the interaction
effects produced by set point changes. In the following sections it
will be demonstrated that this is not true.

For minimizing the multivariable gain of ynet
s (s) a model

parametrization for G̃s it is required. In this context, the approach
presented in Eq. (19) is suggested.

G̃s� = Gs ⊗ �, with � =

⎡⎢⎢⎣
�11 · · · �1n

...
. . .

...

�n1 · · · �nn

⎤⎥⎥⎦ (19)

where � ij belongs to a binary alphabet {0, 1} indicating the selection
(� ij = 1) or not (� ij = 0) of the ij process element. Using the param-
eterized model G̃s� a new scalar index called net load evaluation
(NLE) can be proposed in terms of a “sum square deviation” as it is
shown in Eq. (20). The NLE index allows to both evaluate and decide
about the best control structure (interaction level) that minimi-
zes the multivariable gain of ynet

s at steady-state, i.e. minimize the
deviations from their working point.

NLE� =
n∑

i=1

‖�2A��1yn
sp(i)‖2

2 +
p∑

j=1

‖	2B�	1dp
∗(j)‖2

2

= ‖�2A��1‖2
F + ‖	2B�	1‖2

F (20)

where �1, �2, 	1 and 	2 are diagonal weighting matrices which
allow to sort the process control objectives according to its rel-
ative importance in the system, specially when the used process
model is not normalized. The vectors yn

sp(i) and dp
∗(j) have an uni-

tary entry at the location i and j, and zero elsewhere. A� and B�

are the net load matrices shown in Eqs. (17) and (18) parame-
terized with the model selection displayed in Eq. (19). Hence, the
combinatorial problem shown in Eqs. (21) and (22) allows to find
the optimal model parametrization and gives a good guide for the
control structure selection via IMC.

min
�

NLE� = min
�

[
‖�2A��1‖2

F + ‖	2B�	1‖2
F

]
(21)

subject to

Re[�i(GsG̃
−1
s� )] > 0, with i = 1, . . . , n (22)

where Re[·] is the real part function, �i(·) is the ith eigenvalue, and
G̃s� the model parametrization/selection. Inequality in Eq. (22) is
the stability/robustness criterion developed by Garcia and Morari
(1985) for multivariable control structures based on IMC theory.
The optimization problem in Eq. (21) has 2(n×n) potential solutions.
According to the problem size, this minimization can be done by
exhaustive search or implementing some mixed-integer optimiza-
tion routine (deterministic or stochastic). In some previous works
of the authors (Molina et al., 2011; Zumoffen & Basualdo, 2010)
good solutions were found applying genetic algorithms (GA).

2.2.1. Decentralized structure as starting point
The MSD  approach suggests an initial input–output pairing

based on RGA or RNGA. So, the basic idea here is considering this
decentralized control structure as starting point in the combinato-
rial problem defined in Eq. (21). In other words, keep the diagonal
pairing as base case structure in the parametrization matrix dis-
played in Eq. (19) and evaluate only the off-diagonal elements
required to minimize de NLE. Thus, Gs must be configured as diag-
onal input–output pairing (i.e. row or column reordering) before

the evaluation. The parametrization matrix suggested in Eq. (19)
results in this case

� =

⎡⎢⎢⎢⎢⎣
1 �12 · · · �1n

�21 1 · · · �2n

...
...

. . .
...

�n1 · · · · · · 1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 ·  · · 0

0 1 · · · 0
...

...
. . .

...

0 · · · · · · 1

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
0 �12 · · · �1n

�21 0 · · · �2n

...
...

. . .
...

�n1 · · · · · · 0

⎤⎥⎥⎥⎥⎦ = �d + �od (23)

where �d = In represents the diagonal pairing (via RGA or RNGA)
and �od gives the off-diagonal parametrization matrix where the
searching is effectively performed. In this context the problem
dimension is reduced to 2(n×n−n). Thus, the Hadamard product in
Eq. 19 can be expressed as:

G̃s� = Gs ⊗ � = Gs ⊗ �d + Gs ⊗ �od = G̃s�d
+ G̃s�od

(24)

where G̃s�d
and G̃s�od

are the process model approximations by
accounting a decentralized/diagonal structure and an off-diagonal
parametrization respectively. The net load matrices in Eqs. (17) and
(18) become

A�=I − G̃s�G−1
s = I − (G̃s�d

+ G̃s�od
)G−1

s = (I − G̃s�d
G−1

s ) − G̃s�od
G−1

s

(25)

B� = G̃s�G−1
s Ds = (G̃s�d

+ G̃s�od
)G−1

s Ds = G̃s�d
G−1

s Ds + G̃s�od
G−1

s Ds

(26)

note that (I − G̃s�d
G−1

s ) and G̃s�d
G−1

s Ds are fixed, i.e. depend on
the process matrices and the diagonal pairing selected, �d. In con-
trast, components −G̃s�od

G−1
s and G̃s�od

G−1
s Ds are parameterized as

function of �od, i.e. where the searching is effectively performed.
Thus, the NLE approach defines the best controller interaction level
by selecting (or not) specific off-diagonal elements in the process
model, considering the decentralized structure as base case.

Note that, Eqs. (25) and (26) define the optimization problem
stated in Eq. (21), but the stability condition in Eq. (22) is evaluated
by accounting the complete parametrization, G̃s�, i.e. the overall
plant-model mismatch.

2.3. Controller tuning

Considering the TFM of the square process factorized as G̃s�(s) =
G̃

−
s�(s)G̃

+
s (s) (Garcia & Morari, 1985), with G̃

−
s�(s) and G̃

+
s (s) are the

invertible and non invertible parts respectively. Then a practical
IMC  implementation suggests the following controller to the Fig. 2,
Gc(s) = G̃

−
s�(s)−1F(s). Where F(s) = diag([1/(�f1s + 1) . . . 1/(�fns + 1)])

is the low-pass filter TFM for robustness to modeling errors pur-
poses. In this work an IMC  design based on models without delay
information are used, i.e. G̃

+
s (s) = I. Filter time constant, �fi, affect

the ith input channel of the process and due to G̃s� fulfills with Eq.
(22) a preliminary and conservative tuning is proposed such as:
�fi ≥ max

j
(
ji), with j = 1, . . .,  n.

2.4. Summary of the MSD approach

Considering the developments made in previous sections, the
layout displayed in Fig. 1, and a process already stabilized the fol-
lowing basic steps can be defined for the MSD  approach:
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1. Define the potential CVs and MVs  and evaluate its steady-state
gain (or dynamic model if it is feasible).

2. Evaluate the degrees of freedom (DF). If there are no DF go to
step no. 4.

3. Select the optimal CVs via SSD minimization in Eqs. (3) and (4),
i.e. define Gs. Incorporate here any a priori control objectives by
using the weighting matrices.

4. Perform the input–output pairing via RGA or RNGA, i.e. a decen-
tralized control structure is defined.

5. Analyze the potential improvements via NLE minimization
(sparse control) from Eqs. (20)–(22). Use the parametrization
given in Eq. (23). Incorporate here any a priori control objectives
by using the weighting matrices.

6. Compare dynamically the obtained control structures and per-
form a robust stability test.

7. Select the control structure with the minimum SSD and NLE
index and lowest � peak value.

The weighting matrices in Eq. (3) allow including some a pri-
ori information in the CVs selection procedure such as locations,
magnitudes, important variables, etc. Indeed, �1 and �1 have
information about the usual/required reference and disturbance
modifications. Moreover, not normalized models can be consid-
ered into the MSD  approach by setting these matrices with nominal
percentage modifications. For example, all the variables which
are required to modify its operating point (partial control req-
uisites from Process Engineering) will be CV indefectibly. Hence,
these variables will be fixed into the Gs and they will have ref-
erence changes in �1. On the other hand, matrices �2 and �2
have information about the relative degree of importance among
the uncontrolled outputs. In fact, these matrices allow defining if
all the UVs are equally weighted or any specific UV (or group of
them) is weighted particularly. The latter is useful for indirect con-
trol purposes. The entries values for these matrices are related to
the process model, i.e. if the model is normalized or not.

3. Simulation results

In this section several case studies are presented. The procedures
stated in Sections 2.1 and 2.2 are used here to develop plant-
wide control structures. Initially, the case studies are divided in
two classes: square and non-square process, because they require
different treatments. In fact, both the optimal CVs selection and
controller structure design approaches can be applied to the lat-
ter and only the controller design methodology can be tested in the
former cases. The controller tuning is shown in Appendix A. Finally,
the overall process layout and the selected control structure for
each case study are shown in Appendix B.

3.1. Non-square processes

3.1.1. Shell oil fractionator
The Shell oil fractionator process presented in Maciejowski

(2002) is considered here. The stabilized plant has 7 potential CVs, 3
MVs, and 2 DVs. The first order plus delay (FOPD) transfer functions
are displayed in Table 1, with Outputs: y1 and y2 top and side end
point compositions, y3 to y7 top, upper reflux, side draw, interme-
diate reflux and bottom temperatures, Inputs: u1 and u2 top and
side draw flows, u3 bottoms reflux duty, Disturbances: d1 and d2
intermediate and upper reflux duty (see Appendix B, Fig. 10(a)).

In this context, the optimal CVs selection approach based on SSD
is applied with m = 7, n = 3, p = 2, �1 = I3, �2 = I4, �1 = I2, and �2 = I4,
where Ii is the identity matrix of i × i. A combinatorial problem
with 7 !/(3 ! (7 − 3) !) =35 potential solutions can be stated accord-
ing to Eq. (4),  so an exhaustive search is feasible. Fig. 3 summarizes

Table 1
Shell oil fractionator model.

G(s) D(s)

u1 u2 u3 d1 d2

y1
4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1
1.20e−27s

45s+1
1.44e−27s

40s+1

y2
5.39e−18s

50s+1
5.72e−14s

60s+1
6.90e−15s

40s+1
1.52e−15s

25s+1
1.83e−15s

20s+1

y3
3.66e−2s

9s+1
1.65e−20s

30s+1
5.53e−2s

40s+1
1.16

11s+1
1.27
6s+1

y4
5.92e−11s

12s+1
2.54e−12s

27s+1
8.10e−2s

20s+1
1.73
5s+1

1.79
19s+1

y5
4.13e−5s

8s+1
2.38e−7s

19s+1
6.23e−2s

10s+1
1.31
2s+1

1.26
22s+1

y6
4.06e−8s

13s+1
4.18e−4s

33s+1
6.53e−s

9s+1
1.19

19s+1
1.17

24s+1

y7
4.38e−20s

33s+1
4.42e−22s

44s+1
7.20

19s+1
1.14

27s+1
1.26

32s+1

the most important matrix properties involved in the SSD minimi-
zation. The profiles of both functional cost and condition number
of Gs are shown in Fig. 3(a) with logarithmic scale (y-axes). On the
other hand, Fig. 3(b) displays the minimum and maximum singular
values of Gs along the solutions. Note that for both figures the solu-
tions have been sorted from the best (left) to the worst (right). It
is clear that the optimal solution represents a well conditioned Gs

which minimizes both the multivariable gain SSD and the condition
number.

The best first five solutions given by the search are shown in
Table 2 with their corresponding SSD indexes. Note that, si has a
direct correspondence to yi in Table 1, with i = 1, . . .,  7. The opti-
mal  solution, S1, selects y2, y4 and y7 as the best CVs selection. But
accounting the original control requisites stated by Maciejowski
(2002),  it is important to ensure the products quality (y1 and y2).
Hence, the best solution to this problem is, S3, which selects y1
(top composition), y2 (side composition) and y7 (bottom tempera-
ture), marked with (*) in the table. Thus, both the control requisites
and the SSD minimization are fulfilled. Note that �2 and �2 were
adjusted to perform a free searching, i.e. the same relative degree
of importance among variables.

Following the MSD  procedure (Fig. 1), the next step is a RGA
and RNGA testing. Considering Section 2.2 and the process model
in Table 1 both approaches suggest the same input–output pair-
ing: u1 − y1, u2 − y2 and u3 − y7 as a preliminary decentralized
control strategy. Anyway, it is important to note that RGA is
computed using Gs where det(Gs) = 20.8 and 
(Gs) = 0.6 and the
RNGA approach on KN with det(KN) = 6.2 × 10−4 and 
(KN) = 0.02.
It is a clear example of how the RNGA normalization can deterio-
rate the matrix properties. In this context, the following evaluation
is the NLE approach via Eq. (21) with the parametrization suggested
in Section 2.2.1, thus the combinatorial problem has 2(3×3−3) = 64
potential solutions and can be evaluated exhaustively. In this case
two set of weighting matrices are proposed: (1) equally weighting

Table 2
Best first five solutions - Shell process.

The gray background represents the selection suggested.
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Fig. 3. Optimal CVs selection via SSD – Shell process. (a) Condition number and functional cost. (b) Maximum and minimum singular values.
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Fig. 4. Shell process – Servo profiles. (a) Top composition-y1; (b) side composition-y2; and (c) bottom temperature-y7.
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Table  3
Shell process – IAE indexes.

The best performances are highlighted with gray background.

with �1 = I30.5, �2 = I3, 	1 = I20.5 and 	2 = I3, and (2) reference
relaxed weighting with �1 = I30.1, �2 = I3, 	1 = I20.5 and 	2 = I3.
Obviously, these settings give different model selections and con-
troller structures called �o1 and �o2 respectively. These proposals
are shown in Eq. (27), and compared via dynamic simulations in
Fig. 4.

�d =

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦ , �o1 =

⎡⎣ 1 1 1

1 1 1

1 1 1

⎤⎦ , �o2 =

⎡⎣ 1 1 1

0 1 0

0 0 1

⎤⎦
(27)

Fig. 4 summarizes the servo behavior of the process when the
controller structures suggested by Eq. (27) are implemented on the
Shell plant. In this case, step changes (0.1) are proposed sequen-
tially at t = 0, t = 1000, and t = 2000 min  for all set points. Clearly,
decentralized control based on �d presents the worst behavior. On
the other hand and consistent with conclusion stated in Section 2.2
(Note 3) the best servo performance corresponds to the full struc-
ture, �o1, and the second optimal one based on �o2 displays an
intermediate behavior between decentralized and full approaches.
Moreover, in Table 3 the total IAE (sum of IAE for each output)
between outputs and references are presented for servo and regu-
lator scenarios. The latter is computed by considering sequential
disturbances in d1 = 0.1 and d2 = 0.1 at t = 100 and t = 1100 min
respectively with a total simulation time of 2100 min.

In this case, an interacting control structure may  be the best
choice. From Table 3 controllers based on �o1 or �o2 have improve-
ments respect to the decentralized one about “≈87.3% and ≈53.2%”,
and “≈70.2% and ≈28.5%” respectively when servo and regulator
scenarios are considered.

3.1.2. Newell and Lee evaporator
In this case the Newell and Lee evaporator is used as a

non-square control problem. The process is presented as a non-
linear model and described in detail by Maciejowski (2002) and
Govatsmark and Skogestad (2001).  Here, the plant-wide control
problem is considered with: Outputs: y1 product composition, y2
operating pressure, y3 product temperature, y4 vapor separator
temperature, y5 vapor separator flow rate, y6 steam jacket duty,
y7 evaporator steam flow rate, and y8 separator level, Inputs: u1
steam pressure, u2 cooling water flow rate, u3 circulating flow rate,
and u4 product flow rate, Disturbances: d1 feed flow rate, d2 feed
concentration, d3 feed temperature, and d4 cooling water entry
temperature (see Appendix B, Fig. 10(b)).

The process is open-loop unstable due to y8. Early works
(Govatsmark & Skogestad, 2001; Maciejowski, 2002) suggest u4 as
the best selection to stabilize the plant. Moreover, u3 is not used
as MV  (Govatsmark & Skogestad, 2001). Thus, the overall control
problem becomes to 7 CVs (y1 to y7), 2 MVs (u1 and u2) and 4 DVs
(d1 to d4).

After stabilizing the plant and before the optimal CVs selec-
tion application, a simplified model of the non-linear process is
required. In this work a system identification (SI) experiment is
used based on sub-space methods (Ljung, 1999). In this case a dis-
crete linear model of eighth order was obtained, with a sample time
of 2 min, and based on historical (normalized) data.

With a simplified model already available the next step is the
optimal CVs selection approach via SSD minimization with m = 7,
n = 2 and p = 4, which represents a combinatorial problem with
7 !/(2 ! (7 − 2) !) =21 potential solutions and an exhaustive search
is feasible. To solve Eq. (4) in this case �1 = I2, �2 = I5, �1 = I4, and
�2 = I5 is used. Fig. (5) summarizes the most important matrix
properties involved in the SSD minimization. The profiles of both
functional cost and condition number of Gs are shown in Fig. (5)(a)
with logarithmic scale (y-axes). On the other hand, Fig. 5(b) dis-
plays the minimum and maximum singular values of Gs along the
solutions. Note that for both figures the solutions have been sorted
from the best (left) to the worst (right). It is clear that the optimal
solution represents a well conditioned Gs which minimizes both
the multivariable gain SSD and the condition number.

The best first five solutions and the SSD indexes given by the
search are shown in Table 4. Note that, si has a direct correspon-
dence to yi, with i = 1, . . .,  7. The first two solutions, S1 and S2, have
virtually the same SSD index, but the former suggests y1 and y4
as CVs, and the latter y1 and y2. A priori these two  solutions are
equally valid, but for safety it is preferable to control the operating
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Table 4
Best first five solutions - Evaporator process.

The gray background represents the selection suggested.

pressure (y2) instead of vapor separator temperature (y4). Hence,
the best solution to this problem is S2 marked with (*) in Table 4. It
is important to comment that the process, Gs(s), suggested by both
solutions (S1 and S2) were controlled with a decentralized structure
and both showed the same good dynamic performance.

The RGA and RNGA suggest the same input–output pairing:
u1 − y1 and u2 − y2 as a preliminary decentralized control strat-
egy. Again, for this example it can be detected that the RNGA
normalization deteriorates the matrix properties. In this context,
the following evaluation is the NLE approach via Eq. (21) with the
parametrization suggested in Section 2.2.1, thus the combinatorial
problem has 2(2×2−2) = 4 potential solutions and can be evaluated
exhaustively. In this case an equally weighting is suggested with
�1 = I2, �2 = I2, 	1 = I4 and 	2 = I2. The optimal solution is called
�o1 and represents a full parametrization as is shown in Eq. (28).
Moreover, two alternative model selections are displayed: �d for a
decentralized control structure and �o2 which is the second best
solution in the combinatorial problem and represents a sparse
controller structure. All these proposals are compared via non-
linear dynamic simulations in Fig. 6.

�d =
[

1 0

0 1

]
, �o1 =

[
1 1

1 1

]
, �o2 =

[
1 0

1 1

]
(28)

Fig. 6 summarizes the process servo behavior when the con-
troller structures suggested by the model selection displayed in Eq.
(28) are implemented on the non-linear evaporator. In this case,

Table 5
Evaporator process – IAE indexes.

The best performances are highlighted with gray background.

step changes of +5% respect to the operating point are proposed
sequentially at t = 200, t = 600 min  for all references. Clearly the full
control structure �o1, presents the best servo performance which
reinforces the statements given in Section 2.2 (Note 3). On the other
hand, decentralized and sparse control �d and �o2 respectively dis-
play a similar servo behavior. Moreover, in Table 5 the total IAE
(sum of IAE for each output) between outputs and references are
presented for servo and regulator scenarios. The latter is computed
by considering sequential disturbances in d1 = d2 = d3 = d4 =+5 % at
t = 200, 600, 1000, and 1400 min  respectively with a total simula-
tion time of 1800 min. In this case, an interacting control structure,
either based on �o1 or �o2, is preferred because both have improve-
ments respect to the decentralized case of about “≈37% and ≈2.5%”,
and “≈6% and ≈8.3%” respectively when servo and regulator sce-
narios are considered.

3.2. Square processes

In this section the basic idea is showing the MSD  procedure on
already square process control problems. In fact, the subroutine
called control structure design via NLE minimization can be applied
in these cases to evaluate several alternative controller structures.

3.2.1. Ogunnaike and Ray process
The Ogunnaike and Ray (OR) process (Luyben, 1986; Monica

et al., 1988) is a well-known distillation column for ethanol-water
separation. The open-loop reduced model is shown in Table 6 and
represents a 3 × 3 square process. Where y1 and y2 are the top
and side compositions respectively, y3 the tray 19 temperature, u1
the top reflux, u2 the side flow, u3 is the reboiler pressure and d1
represents disturbances in the feed flow (see Appendix B, Fig. 10(c)).
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Fig. 6. Evaporator process – Servo profiles. (a) Product composition – y1; and (b) operating pressure – y2.
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Table  6
OR process model.

Gs(s) Ds(s)

u1 u2 u3 d1

y1
0.66e−2.6s

(6.7s+1)
−0.61e−3.5s

(8.64s+1)
−0.0049e−s

(9.06s+1)
0.14e−12s

(19.2s+1)2

y2
1.11e−6.5s

(3.25s+1)
−2.36e−3s

(5s+1)
−0.01e−1.2s

(7.09s+1)
0.53e−10.5s

(6.9s+1)

y3
−34.68e−9.2s

(8.15s+1)
46.2e−9.4s

(10.9s+1)
0.87(11.61s+1)e−s

(3.89s+1)(18.8s+1)
−11.54e−0.6s

(7.01s+1)

Accounting the MSD  procedure in Fig. 1 and Section 2.2, the RGA
and RNGA testing suggest the same input–output pairing: u1 − y1,
u2 − y2, and u3 − y3 as a preliminary decentralized control strategy.
The following evaluation is the NLE approach via Eq. (21) with the
parametrization suggested in Section 2.2.1, thus the combinatorial
problem to be solved has 3(3×3−3) = 64 potential solutions and
can be evaluated exhaustively. In this case an equally weighting:
�1 = I3, �2 = I3, 	1 = 1 and 	2 = I3, and reference relaxed weight-
ing: �1 = I30.2, �2 = I3, 	1 = 1 and 	2 = I3 scenarios are proposed.
These settings generate the �o1 and �o2 optimal solutions for
model selection respectively, as it is shown in Eq. (29). Clearly,

both parameterizations give a full and a sparse control structures
respectively. Moreover, two alternative model selections are sug-
gested for comparison purposes: �dS and �oS which represent the
decentralized and sparse no.1 control structures proposed by Shen
et al. (2010) based on the equivalent transfer function approach.
All these proposals are compared via dynamic simulations in Fig. 7.

�o1 =

⎡⎣ 1 1 1

1 1 1

1 1 1

⎤⎦ �o2 =

⎡⎣ 1 1 1

1 1 0

0 0 1

⎤⎦ �dS =

⎡⎣ 1 0 0

0 1 0

0 0 1

⎤⎦ �oS

=

⎡⎣ 1 1 0

1 1 0

0 0 1

⎤⎦ (29)

Fig. 7 displays the regulator profiles of the closed-loop process
when the controller structure suggested by the model selections
shown in Eq. (29) are implemented. In this case, a unit step change
at t = 100 s. is proposed for the disturbance. Clearly, the full �o1 and
decentralized �dS based controller design present the best perfor-
mance. Moreover, accounting Table 7, the total IAE for the servo
scenario can be evaluated also. In fact, again the statement given in
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Table 7
OR process – IAE indexes.

The best performances are highlighted with gray background.

Section 2.2 (Note 3) can be demonstrated here since the best servo
performance corresponds to the full structure. The servo scenario
is simulated with sequential unitary step changes in references
at t = 0, 200, and 400 s for y1, y2 and y3 respectively with a total
simulation time of 600 s.

In this case, the full control structure has the best performance
in both servo and regulator scenarios. In fact, �o1 improves the
�oS-based strategy with ≈28% and ≈44% respectively.

Table 8
CL process model.

Gs(s) Ds(s)

u1 u2 u3 u4 d1

y1
4.45

(14s+1)(4s+1)
−7.4

(16s+1)(4s+1) 0 0.35
(25.7s+1)(2s+1)

1.02e−4.5s

(25s+1)(2s+1)2

y2
17.3e−0.9s

(17s+1)(0.5s+1)
−41

(21s+1)(s+1) 0 9.2
(20s+1)

19.7e−0.3s

(25s+1)(s+1)

y3
0.22e−1.2s

(17.5s+1)(4s+1)
−4.66

(13s+1)(4s+1)
3.6

(13s+1)(4s+1)
0.042(78.7s+1)

(21s+1)(11.6s+1)(3s+1)
0.75e−5s

(15.6s+1)(2s+1)2

y4
1.82e−s

(21s+1)(s+1)
−34.5

(20s+1)(s+1)
12.2e−0.9s

(18.5s+1)(s+1)
−6.92e−0.6

(20s+1)
16.1e−0.6s

(25s+1)(2s+1)

3.2.2. Chiang and Luyben process
This case study, also called CL process (Chang & Yu, 1994),

represents two  feed-split heat-integrated distillation columns for
methanol-water separation. The simplified open-loop model of the
plant represents a 4 × 4 square control problem as it is shown in
Table 8, and has the following description: y1 and y2 top and bottom
composition in the high pressure column, y3 and y4 top and bottom
composition in the low pressure column, u1 and u2 reflux flow and
heat input in the high pressure column, u3 reflux flow in the low
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Fig. 9. Robust stability (�-analysis). (a) Shell process; (b) Evaporator process; (c) OR process; and (d) CL process.

pressure column, and u4 the feed split. The feed composition is the
disturbance, d1 (see Appendix B, Fig. 10(d)).

The pairings suggested by RGA and RNGA approaches are the
same: u1 − y1, u2 − y2, u3 − y3, and u4 − y4 as preliminary decen-
tralized control strategy. So, the following evaluation is the NLE
approach via Eq. (21) with the parametrization suggested in
Section 2.2.1, thus the combinatorial problem to be solved has
4(4×4−4) = 4096 potential solutions and can be evaluated exhaus-
tively. In this case an equally weighting with �1 = I4, �2 = I4,
	1 = 1 and 	2 = I4, is proposed. This setting generates the opti-
mal  model selection called �o as it is shown in Eq. (30). Clearly,
this parametrization gives a sparse control structure. Moreover,
three alternative model selections are suggested for comparison
purposes: �d representing a decentralized control policy, �f which

Table 9
CL process – IAE indexes.

The best performances are highlighted with gray background.

represents a controller with full interaction, and the optimal sparse
control structure (almost triangular) opportunely proposed by
Chang and Yu (1990) and called here �CY. All these proposals are
compared via dynamic simulations in Fig. 8.

�o =

⎡⎢⎢⎣
1 1 0 0

1 1 0 0

1 1 1 0

0 0 0 1

⎤⎥⎥⎦ �d =

⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎦ �f

=

⎡⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎦ �CY =

⎡⎢⎢⎣
1 1 0 0

1 1 0 0

1 1 1 0

1 1 1 1

⎤⎥⎥⎦ (30)

Fig. 8 shows the CL process behavior in closed-loop when the
controllers suggested by Eq. (30) are implemented. A regulator sce-
nario is proposed with an unit step change at t = 25 min  for d1(s). In
this context, the optimal solution (�o) given by the NLE-based CSD
approach has the best performance and the structure suggested by
Chang and Yu (1990) (�CY) the second best, as is shown in Table 9. In
addition, the full and decentralized (�f and �d) controller structures
have the worst regulator performances in this scenario. Moreover,
accounting again Table 9, the total IAE for the servo behavior can
be evaluated. In this case, unitary step changes in each reference
are proposed at t = 0, 100, 200, and 300 min  for y1, y2, y3 and y4
respectively with a total simulation time of 400 min. Again here
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and consistent with conclusion stated in Section 2.2 (Note 3) the
best servo performance corresponds to the full structure (�f).

In this case, CL process, the full control structure improves both
the servo and regulator performance about ≈52% and ≈32% respect
to the decentralized case respectively. Similarly, the optimal solu-
tion proposed here (�o-based controller) suggests an improvement
of ≈22% and ≈63% for the same scenarios. In conclusion, all con-
trol structures with some degree of interaction (presented here)
significantly improves the dynamic behavior.

3.3. Robust stability test: �-analysis

Control structures proposed in Sections 3.1 and 3.2 for each case
study are evaluated and tested here by using the robust stability
concepts. Particularly, the SSV or �-analysis is used to quantify
the robustness degree. Both parametric and unmodeled dynamic
(multiplicative input) uncertainties were proposed for all delays
and input gains of the process respectively. It is important to note
that conclusions obtained from �-analysis are directly tied to the
considered perturbation structure.

Fig. 9 summarizes the � indexes for robust stability (RS) anal-
ysis for all process and control structures suggested opportunely.
A 20% of parametric uncertainty was selected for each dead time
component in all TFMs. A complex perturbation was  proposed as
multiplicative input uncertainty. This approach is useful for consid-
ering gain perturbations generated by actuators, normally tied to
the frequency. Thus, a complex perturbation with gain variations
between 10% at steady-state to 200% at high frequency is proposed
for the Shell, Evaporator and CL processes. The remaining case, OR,
is more sensitive to this uncertainty and was analyzed with 1% at
steady-state to 5% at high frequency as a complex gain perturbation.

Fig. 9(a) shows the closed-loop behavior of the Shell process
when different control structures are used. In fact, optimal solu-
tion �o1 does not guarantee RS (max(�) > 1) with the proposed
perturbation structure. On the other hand, decentralized (�d) and
sparse controller (�o2) have similar good behaviors ensuring RS.
Fig. 9(b) displays the evaporator � profiles when several control
structures are used. In this case, decentralized (�d) approach
does not guarantee RS, instead optimal proposals called �o1 (full)
and �o2 (sparse) ensure a good RS degree. In fact, full structure
presents the lowest peak value in �. The OR process is analyzed
in Fig. 9(c). Although the multiplicative uncertainty has been
reduced in magnitude, the closed-loop process still having serious
problems to ensure RS, regardless of control structure. In fact, all
closed loop systems present peaks in � greater than 1. The worst
case is given by the decentralized approach tuned by Shen et al.
(2010) recommendation, �dS. Fig. 9(d) summarizes the � profiles
for CL process and their corresponding control structures. It is clear

that decentralized approach, �d, does not guarantee RS and sparse
structure suggested by Chang and Yu (1992),  �CY, is very close
to the RS limit. On the other hand, the sparse control approach
suggested here and the full case present a good RS limits, and
particularly �f has the best performance, lowest max(�).

4. Conclusions and future work

In this work the MSD  approach was  applied successfully in sev-
eral well-tested case studies and compared with other approaches
for plant-wide control design. It was demonstrated through this
procedure that decentralized and full control policies are not
always the best solution, either from performance and/or robust
stability point of view. Moreover, relevant conclusions have been
obtained about the best control structure for servo behavior. In fact,
the full control structure is the best choice for that goal (in all cases
gave the lowest IAE magnitude). On the other hand, for a specific
sparse controller structure the regulator behavior can be signifi-
cantly improved at the expense of the servo behavior. It is caused
by the trade-off between servo and regulator requirements. Even
though the MSD  approach tries to reduce the use of heuristic con-
siderations, the best CVs selection and controller structure must be
analyzed in the context of each particular process and their needs
(original control requisites). In this first stage the MSD  strategy was
developed to address the non-square process with more outputs
than inputs (Optimal CVs selection), but in future works an optimal
manipulated variables selection (OMS) approach will be included
to the MSD  for complementing the procedure. Moreover, future
developments also consider the integration of the MSD  approach to
process synthesis stage and fault-tolerant control design, for exam-
ple. Finally, an important challenger is to test this approach on a
larger case, such as the pulp mill process (Castro & Doyle, 2004) to
achieve a realistic perception of its potentiality.
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Appendix A. Tuning: all case studies

The controller tuning information used for each control policy is
summarized here. Accounting the tuning rules stated in Section 2.3,
considering km

ij
/(1 + �m

ij
s) as the ij component of G̃

−
s�, 
ij is the dead

time for the ij component in the FOPD approximation of the process,

Table 10
Filter time constants – all case studies.

Process Structures �f1 �f2 �f3 �f4

Shell
�d 
max

1 + 15 
max
2 + 15 
max

3 + 7 –
�o1 
11 + 10 
22 + 10 �m

33/2 –
�o2 
11 + 10 
22 + 10 �m

33/2 –

Evaporator
�d 5
11 5
22 – –
�o1 5
11 5
22 – –
�o2 5
11 5
22 – –

OR

�o1 3.8
11 3
22 1.5
33 –
�o2 3.8
11 3
22 1.5
33 –
�dS Suggested by Shen et al. (2010) –
�oS Suggested by Shen et al. (2010) –

CL

�o 
max
1 + 1 
max

2 + 2 
max
3 + 1.5 
max

4 + 1.1
�d 
max

1 + 1 
max
2 + 2 
max

3 + 1.5 
max
4 + 1.1

�f 
max
1 + 1 
max

2 + 2 
max
3 + 1.5 
max

4 + 1.1
�CY Suggested by Chang and Yu (1990)
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and the stability/robustness condition at Eq. (22), so, a conservative
tuning is proposed such as: �fi ≥ max

j
(
ji) = 
max

i
, with j = 1, . . .,  n. In

all cases presented here the G̃
−
s� component was selected from the

FOPD process model without consider the corresponding delays.
The filter time constants, for all case studies, are displayed

in Table 10.  In the following paragraphs, some comments are
given about the tuning methodology. For the Shell oil fractionator
case G̃

−
s� was extracted from Table 1, which is a FOPD represen-

tation, by selecting first, second and seventh output. So, 
max
1 =

27, 
max
2 = 28, 
max

3 = 27, 
11 = 27, 
22 = 14, and 
33 = 0. Note that
decentralized control policy was tuned conservatively because its

inherent robustness problems. The tuning parameters for the Evap-
orator process were obtained considering the invertible part from
a FOPD model (not given here) and 
max

1 = 5, 
max
2 = 15, 
11 = 5,

and 
22 = 1. Note that �f2 does not require a conservative tun-
ing. The control policies for the Ogunnaike and Ray (OR) process
were tuned accounting a FOPD approximation of the model in
Table 6 and considering 
max

1 = 9.2, 
max
2 = 9.4, 
max

3 = 1.2, 
11 = 2.6,

22 = 3, and 
33 = 1. The next case is the Chiang and Luyben (CL)
process. It is also considered a FOPD approximation of the model
in Table 8 to develop the invertible part. Moreover, 
max

1 = 2.5,

max

2 = 0.3, 
max
3 = 1.5, 
max

4 = 1.5, 
11 = 1.5, 
22 = 0.3, 
33 = 1, and

44 = 0.6.

(a) Sh ell proce ss and CS Γo2 (b) Evaporator proce ss and CS Γo1

(c) OR proce ss and CS Γo2 (d) CL proce ss and CS Γo

Fig. 10. Case studies and control structures. (a) Shell process and CS �o2; (b) Evaporator process and CS �o1; (c) OR process and CS �o2; and (d) CL process and CS �o .
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Appendix B. Selected control structures

In this section, the process layout and its corresponding con-
trol structure (CS) is given for the case studies considered. In fact,
Fig. 10(a)–(d) displays the Shell oil fractionator, the Newell and Lee
evaporator, the OR process, and the CL integrated columns schemes.
The final plant-wide control policies were derived from the analy-
sis performed in Sections 3 and 3.3. The selected control structures
are: �o2 from Eq. (27), �o1 from Eq. (28), �o2 from Eq. (29), and �o

from Eq. (30), respectively. Note that, the dash–dot lines refer to
level controllers, the red-dashed lines and circles represent diago-
nal control loops, and the blue-dashed lines and squares summarize
the optimal interaction given by the NLE approach.

References

Assali, W.,  & McAvoy, T. (2010). Optimal selection of dominant measurements and
manipulated variables for production control. Industrial & Engineering Chemistry
Research,  49,  7832–7842.

Bristol, E. (1966). On a new measure of interaction for multivariable process control.
IEEE Transactions on Automatic Control, 11(1), 133–134.

Buckley, P. (1964). Techniques of process control. New York, USA: Willey.
Castro, J., & Doyle, F. (2004). A pulp mill benchmark problem for control: Problem

description. Journal of Process Control, 14,  17–29.
Chang, J., & Yu, C. (1990). The relative gain for non-square multivariable systems.

Chemical Engineering Science, 45,  1309–1323.
Chang, J., & Yu, C. (1992). Relative disturbance gain array. AIChE Journal, 38,  521–534.
Chang, J., & Yu, C. (1994). Synthesis of controller structures for robust load perfor-

mance. International Journal of Control, 60,  1353–1369.
Garcia, C., & Morari, M.  (1985). Internal model control. 2. Design procedure for

multivariable systems. Industrial & Engineering Chemistry Process Design and
Development,  24,  472–484.

Golub, G., & Van Loan, C. (1996). Matrix computations. (3rd ed.). Baltimore, Maryland,
USA: Johns Hopkins University Press.

Govatsmark, M.,  & Skogestad, S. (2001). Control structure selection for an evapo-
ration process. European Symposium on Computer Aided Process Engineering, 11,
657–662.

Grosdidier, P., Morari, M.,  & Holt, B. (1985). Closed-loop properties from steady-state
gain information. Industrial & Engineering Chemistry Fundamentals,  24,  221–235.

He, M.,  Cai, W.,  Ni, W.,  & Xie, L. (2009). RNGA based control system configuration for
multivariable processes. Journal of Process Control, 19,  1036–1042.

Hori, E., & Skogestad, S. (2008). Selection of controlled variables: Maximum gain rule
and combination of measurements. Industrial & Engineering Chemistry Research,
47,  9465–9471.

Hori, E., Skogestad, S., & Alstad, V. (2005). Perfect steady-state indirect control.
Industrial & Engineering Chemistry Research, 44,  863–867.

Horn, R., & Johnson, C. (1990). Matrix analysis. Cambridge University Press.
Kariwala, V., & Cao, Y. (2010a). Bidirectional branch and bound for controlled variable

selection. Part III: Local average loss minimization. IEEE Transactions on Industrial
Informatics,  6, 54–61.

Kariwala, V., & Cao, Y. (2010b). Branch and bound method for multiobjective pairing
selection. Automatica, 5, 932–936.

Khaki-Sedigh, A., & Moaveni, B. (2009). Control configuration selection for multivari-
able  plants.  Berlin, Heidelberg: Springer-Verlag.

Lin, F., Jeng, J., & Huang, H. (2009). Multivariable control with generalized decou-
pling for disturbance rejection. Industrial & Engineering Chemistry Research, 48,
9175–9185.

Ljung,  L. (1999). System identification: Theory for the user (2nd ed.). New Jersey, USA:
Prentice Hall.

Luyben, W.  (1986). Simple method for tuning SISO controllers in multivariable sys-
tems. Industrial & Engineering Chemistry Process Design and Development, 25,
654–660.

Luyben, W.,  Tyréus, B., & Luyben, M.  (1998). Plant-wide process control. New York,
USA: McGraw-Hill.

Maciejowski, J. (2002). Predictive control with constraints. Harlow, Essex, England:
Prentice Hall.

McAvoy, T., Arkun, Y., Chen, R., Robinson, D., & Schnelle, P. (2003). A new
approach to defining a dynamic relative gain. Control Engineering Practice, 11,
907–914.

Molina, G., Zumoffen, D., & Basualdo, M.  (2009). A new systematic approach to
find plantwide control structures. Computer Aided Chemical Engineering, 27,
1599–1604.

Molina, G., Zumoffen, D., & Basualdo, M.  (2011). Plant-wide control strategy applied
to the Tennessee Eastman process at two operating points. Computers & Chemical
Engineering,  35,  2081–2097.

Monica, T., Yu, C., & Luyben, W.  (1988). Improved multiloop single-input/single-
output (SISO) controllers for multivariable processes. Industrial & Engineering
Chemistry Research, 27,  969–973.

Shen, Y., Cai, W.,  & Li, S. (2010). Multivariable process control: Decentralized, decou-
pling or sparse? Industrial & Engineering Chemistry Research, 49,  761–771.

Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control. Analysis and
Design.  Chichester, West Sussex, England: John Wiley & Sons.

Skogetad, S., & Morari, M.  (1987). Implications of large RGA elements on control
performance. Industrial & Engineering Chemistry Research, 26,  2323–2330.

Yuan, Z., Chen, B., & Zhao, J. (2011). Effect of manipulated variables selection on
the controllability of chemical processes. Industrial & Engineering Chemistry
Research,  http://dx.doi.org/10.1021/ie2001132

Zumoffen, D., & Basualdo, M.  (2009). Optimal sensor location for chemical process
accounting the best control configuration. Computer Aided Chemical Engineering,
27,  1593–1598.

Zumoffen, D., & Basualdo, M. (2010). A systematic approach for the design of optimal
monitoring systems for large scale processes. Industrial & Engineering Chemistry
Research, 49,  1749–1761.

Zumoffen, D., Molina, G., Nieto, L., & Basualdo, M.  (2011). Systematic con-
trol approach for the Petlyuk distillation column. 18th IFAC World Congress,
8552–8557.


