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Abstract. We study theoretically the photoionization of water molecules by

monochromatic and linearly polarized radiation. The final state wavefunctions

are given by Coulomb continuum wavefunctions and the water molecule bound

states are represented using linear combinations of Slater type orbitals located on

the centers of the molecule. We obtain total and differential cross sections. We

compare them with more elaborated theoretical results and experiments obtaining

a very good agreement in particular at enough high energies where there is a

lack of predictions. We put in evidence three-center interference effects not only

in the total cross sections but also we show that these effects may be detected

in a direct way in the angular distributions of photoelectrons corresponding to

randomly oriented molecules. In particular, we find that the interference effects

under certain conditions may provoke a partial suppression of the emission of

photoelectrons in the classical direction given by the polarization vector.
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1. Introduction

Ionization of water molecules is of interest in many domains such as radiochemistry

and radiobiology as living cells are composed mostly by water. As a matter of

fact, ionization of water molecules by massive particles was studied in several

experimental and theoretical works as well as for photon impact (see for instance

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]).
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The theoretical treatment of these reactions is rather involved if the nuclear

degrees of freedom of the water molecule must be taken into account together with

the proper treatment of the continuum states in the final channel of the reaction.

Elaborated methods were developed to obtain cross sections for photoionization of

water. For instance, Stener et al [2] studied the reaction within the framework of

the Density Functional Theory (DFT) with different exchange-correlation potentials

having the correct asymptotic behaviour and they obtain cross sections up to

approximately 70 eV. However, theoretical cross sections at higher energies are

needed to contrast with experiments to back research for instance on matter

irradiation.

Considering the complexities of the problem, approximations are necessary to

obtain observables of the reaction especially at high photon impact energies. In

particular, at these energies one can simplify the problem by assuming that the

reaction occurs in a lapse much smaller than the typical vibrational, rotational and

relaxation times of the molecule. Taking into account that the absorption of a photon

of a definite frequency and the subsequent emission of a photoelectron is an (ultra)

fast process, then we may assume that photoionization is produced at a fixed-in-

space orientation of the molecule. As explained in previous works [12, 13], this fixed

nuclei approximation is reasonable if one is not interested in a vibrational analysis

of the residual molecular ion except very close to the threshold or in the vicinity of

resonance states. Therefore, the molecule can be taken as frozen at the equilibrium

configuration during the collision time as a well grounded approximation. Moreover,

the single active independent electron approximation can be applied. All these

assumptions were employed with success in previous works (see for instance [14, 15]

and references there in), rendering the problem tractable to obtain reliable cross

sections. In addition, bound states for the water molecule may be well described

by quantum chemistry methods. In particular, basis made of linear combinations of

Slater type orbitals (STO) or Gaussian type ones are commonly used and accessible

through available codes. In this way, bound states energies may be obtained with

a high degree of precision. Besides, approximations such as the CNDO (Complete

Neglected of Differential Overlap) [16] may bring reasonable autoenergies. In the

computations of energy eigenvalues of this approximation, the overlapping integrals

between the atomic orbitals are completely neglected. Even if the bound states are

accessible through a wide variety of standard methods, the continuum states of the

active electron in the final channel still remains a challenge to describe in a realistic

way the ionization of complex molecules. The multicenter nature of the residual

target introduces complications in the theoretical descriptions.

Then, approximations taking into account the screening provoked by the passive

electrons of the molecule may be employed. Gozem et al [1] employed final

continuum states represented by Coulomb waves describing the interaction between

the active electron and the residual target. The influence of the passive electrons

on the reaction is included through the use of different charges Zef for the Coulomb
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waves for many molecules.

Recently, we performed total cross sections calculations for several orbitals of the

water molecules [17]. We developed a first order model describing the bound states

by using monocentric Moccia’s wavefunctions. We employed a Coulomb Continuum

(CC) approximation in which the final state of the ejected electron is described

through a Coulomb wavefunction with a charge that describes the screening of the

nuclear charges of the molecule. We were able to obtain analytical expressions for the

matrix transition elements. We observed a very good agreement with the available

experiments especially at high impact energies where there is a lack of theoretical

results.

In this work, we go a step further. Our main objective is to analyze the effect

provoked by the three-center structure of the water molecule on the photoionization

process, especially those produced by the coherent emission from the molecular

centers. Therefore, we obtain differential and total cross sections within the dipole

approximation including in an approximate way the multicenter geometry of the

water molecule. The ground state of water is described by a linear combination of

Slater orbitals centered on each atom of the molecule whereas the continuum states

are described through Coulomb wavefunctions with different distorted charges. The

coherent emission was actively studied in the last years particularly for diatomic

molecules [21]. We explore here the case of water as a benchmark for the study

of interferences in the photoelectron spectra induced by coherent emission. In

previous works [10, 11], photoionization of water from the localized oxygen core was

studied and interferences produced by recollisions of the emitted electron with the

hydrogens of the molecule were analyzed. These processes include necessarily second

order terms to describe the emission and subsequent dispersion by the H centers.

On the contrary, we focus here in the valence electrons of water, especially those

occupying ligand orbitals in which the electrons are shared by the atoms composing

the molecule. We look for interference effects coming from the coherent emission

from these orbitals delocalized over the centers of the molecule for which recollisions

may be disregarded [18].

Otherwise stated atomic units are used.

2. Theory

2.1. Coulomb Continuum (CC) model

In the dipole approximation, the transition matrix amplitude for photoionization by

a photon of frequency ω within the velocity gauge reads,

Mph = −i〈ψf |e · ∇|ψb〉, (1)

where ψb denotes the initial target bound wavefunction of the electron in the

initial channel and ψf represents the electron continuum state in the final channel.

Moreover, e is the polarization vector of the incident radiation.
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Within a single active independent electron model in which the active electron

is ionized and the passive electrons remain in their initial electronic configurations,

the final continuum state of the active electron is chosen as,

ψf (r) = (2π)−3/2eike·rNkeG(r) , (2)

where r is the active electron coordinate, ke is the final electron momentum, and

Nke is the normalization factor given by,

Nke = eπν/2Γ(1 + iν) , (3)

with ν = Zef/ke the Sommerfeld parameter where Zef is the residual charge of the

target, and G is the hypergeometric confluent function,

G(r) =1F1(−iν; 1;−i (ker + ke · r)) . (4)

The final wavefunction of the CC model (2) takes into account the Coulomb

interaction of the electron with the residual target in the final channel of the

reaction. It was shown that this interaction must be included for to describe the

photoionization reaction with neutral targets in a proper way [1, 19, 20, 17]. The

choice Zef = 1 corresponds to the asymptotic value of the residual target charge at

sufficiently large distances from the target. Alternatively, distorted charges different

from unity may be taken to include in an approximate way the screening of the

passive electrons in the dynamics of the reaction [1, 21].

2.2. Ground state of water

In its ground state, the water molecule has the following electronic configuration,

(1a1)
2 (2a1)

2 (1b2)
2 (3a1)

2 (1b1)
2. (5)

In this work, we represent the initial bound orbitals (ψj) of the water molecule in

its ground state by means of linear combinations of STO centered on the oxygen

and hydrogen atoms,

ψj =
∑
i

N∑
µ

cjiµfµ (r′i) . (6)

In the last expression, cjiµ is a real coefficient and i identifies the centers of the

molecule (i =0, 1 and 2 for the O,Ha and Hb center respectively, see figure 1).

The position vector of an electron as measured from the center i is denoted by r′i,

fµ is the atomic orbital basis function where µ identifies the different elements of

the basis set (in this work, µ ≡ 1s, 2s, 2px, 2py, 2pz, 3dz2 , 3dxz, 3dyz, 3dx2−y2 and

3dxy) with total number of elements given by N. The fµ may be expressed as linear

combinations of STO which in turn are given by,

φn,l,m (r, θ, ϕ) =

[
(2ξ)2n+1

(2n)!

]1/2
rn−1e−ξrYl,m (θ, ϕ) , (7)
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ŕ
2

H
b

H
a

x

z

O

ŕ
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Figure 1: Geometry of the ground state of the water molecule. The origin of

coordinates is located at the O nuclei and the plane of the molecule coincides with

the xz plane with the H atoms pointing up. The vectors r′1 and r′2 point towards the

Ha and Hb nuclei respectively from the origin. The bond angle is θ = 104◦27′ and

the O −H distances are r1 = r2 = 1.811. The vectors r′0, r′1 and r′2 point towards

the active electron from the O, Ha and Hb nuclei, respectively.

Table 1: Orbital energies Eb for the basis sets employed in this work compared to

the experimental ones taken from [22].

1a1 2a1 1b2 3a1 1b1

Basis set I -20.5559 -1.2850 -0.6242 -0.4661 -0.4026

Basis set II -20.5421 -1.3534 -0.7099 -0.5638 -0.5077

Basis set III -20.5541 -1.3356 -0.7153 -0.5840 -0.5130

Basis set IV -20.5654 -1.3392 -0.7283 -0.5950 -0.5211

Experimental value -19.8419 -1.1838 -0.6765 -0.5404 -0.4632

where n, l,m are the usual quantum numbers, r, θ, ϕ represents the spherical

coordinates, and Yl,m (θ, ϕ) are the spherical harmonics.

We employ four basis sets [23]. The first one is given by the minimal basis,

i.e., a basis compound of seven (N = 7) fµ representing the occupied orbitals of

the hydrogen and oxygen atoms. In the second one, an additional 2p orbital for the

oxygen is added. In the third one, an additional 1s orbital for the hydrogen and

additional 2s, 2p and 3d orbitals for the oxygen are included. Finally, in the fourth

one, additional 2s and 2p orbitals for the hydrogen and additional 2s, 2p and 3d

orbitals for the oxygen are considered. The water orbital energies for each set as

well as the experimental ones [22] are given in table 1.
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2.3. Transition matrix elements

We obtain the matrix transition element for a definite initial orbital of water ψj

(given by (6)) within the framework of an effective center approximation [18]. In

this approximation we consider that the emission of the electron is produced mainly

in the neighborhoods of either molecular center.

Then, by taking ψb = ψj in (1) and applying the effective center approximation

(see Appendix A), we have the following expression,

M j
ph ∼M j,O

ph

(
Zj,O
ef

)
+ g1 M

j,Ha

ph

(
Zj,Ha

ef

)
+ g2 M

j,Hb

ph

(
Zj,Hb
ef

)
,

(8)

where

gi(ri) = e−ike·ri , (9)

with i = 1, 2 and where M j,i
ph

(
Zj,i
ef

)
is the matrix transition element for the center

labelled i given by (A.3),

M j,i
ph = − i〈ψf |e · ∇|

N∑
µ

cjiµfµ (r′i)〉

=
N∑
µ

cjiµ (−i〈ψf |e · ∇|fµ (r′i)〉) , (10)

where fµ (r′i) is a linear combination of STO. Then, M j,i
ph is expressed as a

linear combination of matrix transition elements for an individual STO. Analytical

expressions for these matrix transition elements are given in Appendix B. Moreover,

Zj,i
ef are the charges for the final continuum state. These charges are chosen according

to which center we assume the photoelectron is ionized.

In this way, the matrix transition element for a given initial bound orbital

of water given by equation (8) may be interpreted as the coherent sum of three

matrix elements (times an adequate factor) describing coherent emission from each

molecular center. The factors gi (i = 1, 2) may be considered then as traslational

factors that account for the internuclear displacements from the O center (origin of

coordinates) and the Ha or Hb center (see figure 1).

Then, disregarding recollisions between centers, the dominant physical

mechanisms involved in the photoemission will depend critically on the localization

degree of the orbital from which electrons are emitted. For instance, if ionization

takes place from an orbital located on only one center of the molecule, the sum will

not include terms from the remaining centers. This is the case for photoionization

from the 1b1 non-ligand orbital of water located on the oxygen atom.

On the contrary, if photoemission takes place from a ligand orbital where the

electrons are shared by and, consequently, delocalized between centers corresponding

to the oxygen and hydrogen atoms, then the matrix element will certainly include

terms from all centers leading to the phenomenon of coherent emission [18].
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2.4. Cross sections

Differential cross sections per electron for a definite orientation of the molecule as a

function of the photon energy and the solid angle of the ejected electron for a given

initial bound orbital ψb = ψj may be obtained as [24],

dσj(ω)

dΩedΩEuler

=
4π2αke
ω
|M j

ph|
2
, (11)

where M j
ph is the matrix transition element defined in the preceding subsection, α

is the fine structure constant, ω is the frequency of the incident photon, ke is the

magnitude of the ejected electron momentum, dΩEuler defines the orientation of the

molecule in terms of its Euler angles, and dΩe = sinθe dθe dϕe being Ωe the solid

angle of the ejection direction as measured in the coordinate system of figure 1.

Integrating over all directions of ejection, one obtains cross sections for a definite

orientation of the molecule as a function of the photon energy,

dσj(ω)

dΩEuler

=

∫
dΩe

(
dσj(ω)

dΩedΩEuler

)
. (12)

In many experiments, molecules are randomly oriented. Then, an average over the

Euler angles in (12) is needed to obtain averaged total cross sections as a function

of the photon energy,

σj(ω) =
1

8π2

∫
dΩEuler

(
dσj(ω)

dΩEuler

)
. (13)

Then, the total cross section corresponding to all bound orbitals of the ground state

of the water molecule may be obtained as,

σ(ω) =
∑
j

Nj σ
j(ω), (14)

where the occupation number for all orbitals is Nj = 2.

3. Results

3.1. Total cross sections

We present our total cross sections for the single photoionization of randomly

oriented water molecules by photons of frequency ω linearly polarized. We compare

our predictions with available theoretical and experimental results. To compare

with measurements, we average our cross sections over all orientations of the water

molecule, i.e., over all Euler angles of the molecule.

We have verified that results obtained within the length and velocity gauge

are almost the same in the present energy domain. In relation to the electronic

final continuum states, we have considered different charges Zj,O
ef and Z

j,Ha,b

ef for

the Coulomb function describing the photoelectron in the final channel. On one
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hand, we have considered the asymptotic charge value Zj,O
ef = Z

j,Ha,b

ef = 1. On the

other hand, we have considered distorted charges obtained with the Belkić’s rule

[21] Zj,i
ef =

√
2n2

j,i|E
j
b |, where nj,i is the predominant quantum number of the i-th

center of the j-th orbital and Ej
b is the experimental energy of the j-th orbital.

In figure 2(a), 2(c) and 2(e), we show our predictions with the different basis

sets and the different continuum charges together with experiments for the 1b1, 3a1
and 1b2 orbitals respectively. In all cases, the basis set IV with the Belkić’s rule

for the distorted charge value is the best choice. In figures 2(b), 2(d) and 2(f), we

compare our results for the basis set IV for the 1b1, 3a1 and 1b2 orbitals respectively

with previous theoretical curves and experiments.

From inspection of the figure 2(b), it can be seen that our model gives a

very good agreement with experiments. We can observe that our calculations with

ZO
ef = 1.9250 and Z

Ha,b

ef = 1.9250 (for the 1b1, Z
Ha,b

ef is only needed for the basis

set IV) agree qualitatively well with the ones by Stener et al [2] for photon energies

greater than 25 eV where they have almost the same slope. In particular, the best

quantitative agreement with our cross sections is observed for the VWN choice with

the GS configuration.

In addition, we can also see for the 1b1 orbital in figure 2(b) that our cross

sections are in very good accordance with the ones obtained with Dyson orbitals [1] in

the energy range [35,60] eV. At lower energies, there is some discrepancy. Moreover,

our results agree qualitatively with the ones by Hilton et al [25] in the energy range

[30,40] eV. They applied a simpler approach based on the superposition of atomic

processes by using the molecular form of the ground state inversion potential method

(GIPM). For the 1b1, their curves with and without estimation of interference effects

are almost the same. Our calculations agree better with the experiments given

by Brion et al [3] whereas the ones obtained with Dyson orbitals are in general

accordance with the ones reported by Truesdale [5]. We remark that our cross

sections give a proper continuation of the calculations by Gozem et al [1] at high

photon energies. In particular, our predictions agree well with the experiments at

high impact energies around 100 eV by Banna et al [6] where there is a lack of

theoretical results.

In figure 2(d), we show our results for the 3a1 orbital together with other

predictions and experiments. Our cross sections are computed with ZO
ef = 2.0792

and Z
Ha,b

ef = 1.0392, obtaining a very good agreement with the experiments. As can

be seen, the calculations by Gozem et al [1] employing the CC model with Dyson

orbitals and an Zef = 1 overestimate the measurements. In general, the results by

Hilton et al [25] present discrepancy with our curves and the experiments. On the

contrary, the cross sections by Stener et al [2] give a better description. The LB94

GS and TS calculations tend to underestimate the experimental results whereas the

VWN TS ones agree well with the measurements by Tan et al [4] up to approximately

50 eV. The VWN GS model agrees well with the experiments by Banna et al [6] at
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Figure 2: Total cross sections (σj) as a function of the photon energy for

photoionization of several water orbitals . Present results: basis set IV, Belkić’s

distorted charge ( ) and asymptotic charge ( ); basis set III, Belkić’s

distorted charge ( ) and asymptotic charge ( ); basis set II, Belkić’s

distorted charge ( ) and asymptotic charge ( ) ; basis set I, Belkić’s distorted

charge ( ) and asymptotic charge values ( ). In (b), (d) and (f) calculations

from [25] with ( ) and without ( ) estimation of interference effects, from

[1] ( ) and from [2] for LB94 GS ( ), LB94 TS ( ), VWN GS ( )

and VWN TS ( ). Experiments: [3] (�), [4] (4), [5] (♦) and [6] (©).



Interferences in the photoionization of water molecules 10

20 40 60 80 100 120
1

10

 

cr
os

s 
se

ct
io

n 
(M

b)

photon energy (eV)

H2O

Figure 3: Total cross sections (σ) as a function of the photon energy for

photoionization of water. Present results: basis set IV with Belkić’s distorted charge

( ) and asymptotic charge ( ). Calculations from [1] ( ). Experiments:

[4] (4), [7] (©), [8] (+) and [9] (5).

low energies and with the results by Tan et al [4] for energies greater than 45 eV

and about 40-50 eV are very close to our predictions that give the correct trend for

the results by Banna et al [6] where there exist a lack of theoretical results.

A similar situation is observed for the 1b2 orbital in figure 2(f), where we show

our results obtained with ZO
ef = 2.3264 and Z

Ha,b

ef = 1.1632 along with other theories

and experiments. Again, our cross sections reproduce very well the experimental

results by Banna et al [6] for photon energies greater than 70 eV where no theoretical

cross sections are available. The calculations by Gozem et al [1], that overestimate

the measurements, agree qualitatively well with our results presenting almost the

same slope. However, the calculations by Stener et al [2] and by Hilton et al [25]

present discrepancies.

Finally, in figure 3, we present our total cross sections for water obtained

summing the contribution of the previous relevant orbitals at the photon energies

considered. We observe that the present results computed with the basis set IV and

Belkić’s charges as well as the ones by Gozem et al [1] are in general agreement for

experiments at low photon energies. In addition, our predictions are in very good

agreement with the measurements of Haddad et al [7] and Reilhac et al [8] at high

photon energy.

3.1.1. Coherent emission and interference effects

After obtaining a very good agreement with our predictions using the more

elaborated basis set for the bound orbitals of water and distorted charges by using the

Belkic’s criterion for the continuum final states, we are in position to analyze if the

coherent emission plays a role in the total cross sections. As is well established [18],
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interferences effects coming from the coherent emission from the different centers of

the molecule are not easily detected in total cross sections as they decrease quickly

with increasing energy. In order to isolate the effect of the interferences, one can

rewrite the σj(ω) molecular total cross section averaged over all orientations and for

a definite water orbital given by (13) as,

σj(ω) = σjeff (ω) F j(ω), (15)

with

F j(ω) =
σj(ω)

σjeff (ω)
, (16)

where σjeff (ω) is an effective monocentric cross section corresponding to an

incoherent sum of the cross sections of the atomic components of the molecule

considered as incoherent emissors. In this way, the cross section of the molecule

is obtained as a product of an effective atomic cross section times an interference

factor F j. This factor isolates the interference effects and gives information on the

coherent emission from the different centers of the molecule [18]. In previous works,

the effective atomic cross section were obtained as a sum of effective atomic cross

sections with effective charges for the target bound states [18]. In this work, we

obtain these effective atomic cross sections for the different orbitals by using the

CNDO approximation [16]. The weights corresponding to the coefficients of the

linear combinations that account for the atomic character present in each molecular

orbital in this approximation are given in table C1 of Appendix C. Therefore, the

effective total cross sections for the different water molecule orbitals by using the

CNDO approximation are obtained as,

σjeff (ω) =
∑
i

aji σi
(
Zi
ef

)
, (17)

with i = H1s, O1s, O2s, O2p. The coefficients aji are specified in table C1 of Appendix

C and we have used, for calculations of the individual atomic orbitals total cross

sections σi, initial atomic i-states developed on a basis of STO (7) by a Roothaan-

Hartree-Fock method (RHF) [26]. Besides, we consider distorted charges for the

continuum obtained with the Belkić’s rule [21] Zi
ef =

√
2n2

i |Ei
b|, where ni is the

quantum number of the atomic orbital and Ei
b is the orbital energy from the RHF

method (ZH1s
ef = 1, ZO2s

ef = 3.1551, Z
O2p

ef = 2.2484).

In figures 4 and 5, we present results for the 3a1 and 1b2 orbitals, respectively,

that are expected to present three-centers interference effects considering their ligand

character. As a fact, we observe in figures 4(a) and 5(a) that the molecular cross

sections as a function of the energy present deviations from effective atomic ones

obtained with the CNDO approximation (17) as the photon energy increases. These

differences may be attributed to the coherent emission from the centers of the

molecule. This can be seen in the corresponding interference factors F j shown

in figures 4(b) and 5(b). The interference factor deviates considerably from unity



Interferences in the photoionization of water molecules 12

0 40 80 120 160 200 240 280

0.1

1

10

 

cr
os

s 
se

ct
io

n 
(M

b)

photon energy (eV)

3a1

(a)

0 40 80 120 160 200 240 280
0.5

1

1.5

 

ra
tio

photon energy (eV)

3a1

(b)

Figure 4: (a) Total cross sections as a function of the photon energy for

photoionization of the 3a1 water orbital (σj(ω)) with basis set IV for Belkić’s

distorted charge ( ), effective monocentric cross section averaged over the atomic

magnetic sub-levels (σjeff (ω)) ( ) and experiments from [4] (4), [5] (♦) and [6]

(©). (b) F j(ω) ratio ( ) and ratio between the experimental data and the

effective monocentric cross sections for [4] (N), [5] (u) and [6] ( ).
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Figure 5: Same as figure 4 for the 1b2 water orbital.

as a function of the photon energy showing a typical oscillatory behavior [18]. We

observe that our predictions for F j are in good qualitative agreement with the ratio

of the available experimental results to the effective atomic cross sections also shown

in the figures. The deviations from unity of F j for the 1b2 orbital are significantly

greater than the ones of the 3a1 orbital. This may be explained considering that the

electronic density of the 1b2 orbital is more delocalized over the three centers of the

molecule [27].

To have a complete contrast of our predictions for the F j factor, experiments at

higher energies are needed. However, we recall that the interference effects could be

detected also in the angular distributions (AD) [28, 18]. Consequently, we present

first in figure 6 AD for the 3a1 orbital at 50 eV photon impact energy for several

molecule orientations. The evolution of the AD exhibits an interesting behavior

especially in figure 6(c) where many lobes appear. However, the intensity of this
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Figure 6: Angular distributions for photoionization from the 3a1 water orbital at

different molecule orientations. Photon energy of 50 eV and Belkić’s distorted charge

charge. Polarization vector parallel to the z axis.
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Figure 7: Angular distributions for the 3a1 water orbital at different photon energies

with Belkić’s distorted charge. Results for fixed ( ) and randomly oriented

molecules ( ). CNDO calculations with and without average over the atomic

magnetic sub-levels ( ) and ( ), respectively.

arrangement is clearly less than the one observed in figure 6(a) where the polarization

vector bisects the HOH angle. Besides, the simultaneous obtention of the AD

and the determination of the molecule orientation, although in principle accesible

through COLTRIMS arrangements, is still a difficult experimental task. So, we show

in figure 7, AD averaged over all molecular orientations for the 3a1 orbital at 50,

200 and 300 eV photon energies. Comparing figure 6(a) with figure 7(a) (both at

50 eV photon energy), we can see that the averaged AD are similar in shape to the

ones corresponding to the molecular orientation shown in figure 6(a).

Then, this orientation seems to be the dominant one. Moreover, we show in the

figure AD averaged over all orientations obtained with the CNDO approximation. As

the CNDO is a monocentric approximation, the corresponding AD cannot exhibit
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Figure 8: Same as figure 6 for the 1b2 water orbital.
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Figure 9: Same as figure 7 for the 1b2 water orbital.

interference effects coming from the multicenter nature of the molecule. As the

energy increases, it is observed that the molecular AD present a clear decrease in

the classical emission direction given by the polarization vector that is not present in

the monocentric AD. This is a clear trace of the interference effects provoked by the

coherent emission from the centers of the molecule. A similar scenario is observed

for the 1b2 orbital. In figure 8 we show AD for several molecule orientations at

50 eV photon impact energy. In this case, the orientation depicted in figure 8(c)

appears as the dominant one. This can be checked in figure 9(a), where we show AD

averaged over all orientations at 50 eV photon energy. As can be seen, the shape

of the averaged AD are similar to the ones presented in figure 8(a). Then, in figure

9 we compare averaged molecular AD and monocentric ones at 50, 200 and 300 eV

photon energies. Again, we see that the averaged molecular AD at 200 eV present a

partial suppression of the photoelectron emission in the classical direction given by

the polarization vector.

Finally, we revisit in figure 10 the AD for the 1b2 orbital shown in figure 9(b)

where the interference effects are more evident than in the case of the 3a1 orbital.
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Figure 10: Same as figure 9(b). Model calculations: g1 = 1 ( ), g2 = 1 ( )

and g1 = g2 = 1 ( ) in (8) .

However, the following conclusion are analogous for this orbital. In figure 10, we

show additional model calculations of AD for a ficticious molecule where we replace

in (8) the gi traslational factors corresponding to either Ha,b center by unity. We

can observe that the AD of the molecule are considerably altered when the gi factor

of any Ha,b is omitted (i.e., when g1 = 1 or, alternatively, g2 = 1). If both factors

are omitted (i.e., when g1 = g2 = 1), no suppression at all of the emission in the

classical direction given by the polarization vector is observed. Then, this simple

calculations show unambiguously that the interferences detected in the AD are the

result of coherent emission coming from the three centers of the molecule acting all

together in a coherent way.

4. Conclusions

We have studied photoemission from water through a model with low computational

cost but able to take into account the three-center geometry of the molecule. We

have analyzed in detail the effect of the coherent emission from either center of the

molecule. We have computed photoionization total cross sections as a function of

the photon energy within the dipole approximation in the energy range [20,300]

eV. We obtain very good agreement with more elaborated previous results as well

as with experiments. In particular, our results agree very well with the available

experiments in the region of high enough photon energy where there is a lack of

theoretical predictions. In this sense, our work aims at fill a gap providing accurate

cross sections in this region. Moreover, we have revealed interference effects in

the total cross sections coming from the coherent emission from the centers of the

molecule. In addition, we have put in evidence that interferences coming from

the coherent emission phenomena may be observed in the ratios between total
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cross sections and effective monocentric cross sections. We have shown that these

interferences could be detected not only in the total cross sections but also in the

angular distributions of photoelectrons for randomly oriented molecules. Then, the

trace of the coherent emission may be inferred without need of any other adequate

observable (such as the effective cross sections used to obtain ratios). Besides, we

show that in certain situations, emission of photoeletrons in the classical direction

given by the polarization vector is partially forbidden. The basic physical mechanism

underlying this suppression is the (partial destructive) interference produced by

the coherent emission from the centers of the molecule. Then, this suppression

will depend critically on the photoelectron energy and the ejection direction. We

think that our results may be useful in several domains. On one hand, our cross

sections may be employed as the basic inputs to fed Monte Carlo codes to obtain the

energy deposition in the biological medium. On the other hand, new experimental

results are needed to check our predictions about interference effects in the angular

distributions. In this sense, our work may promote the design of new basic

experiments with high energy photons interacting with molecules employing the new

radiation sources such as the intense XUV pulsed lasers and XFEL installations [29].
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Appendix A

We obtain the matrix transition element for a definite initial orbital of water ψj

(given by (6)) within the framework of an effective center approximation [18].

By taking ψb = ψj in (1) we get,

M j
ph = −i〈ψf |e · ∇|

∑
i

N∑
µ

cjiµfµ (r′i)〉, (A.1)

that can be rewritten as,

M j
ph =

∑
i

M j,i
ph , (A.2)

where we define,

M j,i
ph = −i〈ψf |e · ∇|

N∑
µ

cjiµfµ (r′i)〉. (A.3)

In the last expression, the final wavefunction ψf describes the asymptotic final state

of the electron under the influence of the Coulomb field of the charged residual target.
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In order to simplify the calculations, we apply an effective center approximation [18].

Then, to evaluate each matrix element given by (A.3), the hypergeometric function

appearing in the final wavefunction is evaluated at the center labelled i.

Then, for the center i = O, we have,

M j,O
ph = −i

∫
dr′0 (2π)−3/2e−ike·r′0N∗keG

∗(r′0) (e · ∇)
N∑
µ

cjOµfµ (r′0) ,

(A.4)

and for the centers i = Ha, Hb we have, respectively,

M j,Ha

ph = −i

∫
dr′1 (2π)−3/2e−ike·r′0N∗keG

∗(r′1) (e · ∇)
N∑
µ

cjHaµ
fµ (r′1) ,

(A.5)

M j,Hb

ph = −i

∫
dr′2 (2π)−3/2e−ike·r′0N∗keG

∗(r′2) (e · ∇)
N∑
µ

cjHbµ
fµ (r′2) .

(A.6)

Now, taking into account that r ≡ r′0 = r1,2 + r′1,2, we obtain,

M j,Ha

ph ∼ −ie−ike·r1
∫
dr′1 (2π)−3/2e−ike·r′1N∗keG

∗(r′1) (e · ∇)×

×
N∑
µ

cjHaµ
fµ (r′1) , (A.7)

M j,Hb

ph ∼ −ie−ike·r2
∫
dr′2 (2π)−3/2e−ike·r′2N∗keG

∗(r′2) (e · ∇)×

×
N∑
µ

cjHbµ
fµ (r′2) . (A.8)

Finally,

M j
ph ∼M j,O

ph + e−ike·r1M j,Ha

ph + e−ike·r2M j,Hb

ph . (A.9)

Appendix B

We present the obtention of the analytical expressions for the matrix transition

elements for an initial state described by a unique STO.

Within the framework of the dipole approximation, the matrix element reads,

Mph = −i〈ψf |e · ∇|ψb〉, (B.10)

where ψb is the initial electronic bound state, ψf is the final electronic state given

by (2) and where e represent the polarization vector of the incident radiation.
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As an example, we show the calculations for the transition matrix amplitude of

the simplest Slater orbital, φ100 given by (7). In this case, the initial wavefunction

ψb for the transition matrix element (B.10) is given by,

ψφ100(r) =
ξ3/2√
π
e−ξr. (B.11)

Replacing (B.11) and (2) in (B.10), one obtains,

Mφ100 = −i (2π)−3/2N∗ke
ξ3/2√
π

∫
dr e−ike·r G∗(r) e · ∇

(
e−ξr

)
. (B.12)

Considering that ∇
(
e−ξr

)
= −ξe−ξr r

r
, one gets,

Mφ100 = i (2π)−3/2N∗ke
ξ5/2√
π

∫
dr

r
e−ξr−ike·r G∗(r) (e · r) . (B.13)

Now, if we consider the polarization versor e parallel to the z axis,

Mφ100 = i (2π)−3/2N∗ke
ξ5/2√
π
I1, (B.14)

where we have defined,

I1 =

∫
dr

r
e−ξr−ike·r G∗(r) rz, (B.15)

with rz the z-component of the position vector r.

To solve this integral, we introduce a vector v parallel to the z axis and we

define the integral,

I2 =

∫
dr

r
e−ξr−ike·r eiv·r G∗(r) =

∫
dr

r
e−ξr−ike·r eivrz G∗(r) , (B.16)

which satisfies,

I1 = −i
∂

∂v
(I2)v=0 . (B.17)

Therefore,

Mφ100 = (2π)−3/2N∗ke
ξ5/2√
π

∂

∂v
(I2)v=0 . (B.18)

Then, employing the Nordsieck’s method [30], it is possible to approximate the

integral I2 as,

J(λ,q,v) =

∫
dr

r
e−λr+i(q+v−p)·r G∗(r) = 4π f(λ,q,v) , (B.19)

where,

f(λ,q,v) =

[
(q + v)2 + (λ− ip)2

]−iν[
λ2 + (q + v− p)2

]1−iν . (B.20)

Consequently,

I2 = 4πf(ξ,0,v) , (B.21)
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with p = ke and the transition matrix element,

Mφ100 =

√
2

π
N∗keξ

5/2 ∂

∂v
f(ξ,0,v)v=0,p=ke

. (B.22)

Finally, calculating the derivative according to (B.22), we obtain the transition

matrix element corresponding to the 1s Slater orbital,

Mφ100 =
2
√

2

π
N∗keξ

5/2 (1− iν) (e · ke)
(ξ2 + p2)2

e−2ν arctg(ke/ξ). (B.23)

The matrix elements for other Slater orbitals can be computed in an analogous

way. Those corresponding to the Slater orbitals φ200 and φ210 are given by,

respectively,

Mφ200 = 2

√
2

3

1

π
N∗keξ

5/2 (1− iν) (e · ke)
(ξ2 + k2e)

2 ×

×
[

3ξ2 − k2e − 2νξke
(ξ2 + k2e)

]
e−2ν arctg(ke/ξ), (B.24)

and,

Mφ210 =
2
√

2

π
iN∗keξ

5/2

[
iνξ(ξ + ike)

2

(ξ2 + k2e)
3 −

2ξ (2− iν) (1− iν) (e · ke)2

(ξ2 + k2e)
3 +

+
νke − ξ

(ξ2 + k2e)
2 +

ξ (1− iν)

(ξ2 + k2e)
2

]
e−2ν arctg(ke/ξ). (B.25)

Appendix C

Table C1: Atomic percentages aji (normalized to unity) of the molecular orbitals of

water vapor obtained with the CNDO method.

i
j 1a1 2a1 1b2 3a1 1b1

O 2p - - 0.59 0.73 1.00

2s - 0.75 - 0.10 -

1s 1.00 - - - -

H 1s - 0.25 0.41 0.17 -
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