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A B S T R A C T

Audio inpainting is a widely used technology in the real world since audio signals with
missing data are pervasive in many scenarios. The majority of existing works address the time
gaps in single-channel audio signals, while completing multi-channel audio signals is rarely
investigated.

In this work, we tackle this issue using four different tensor completion algorithms and
we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive
quantitative and qualitative experiments, the tensor completion algorithms generally achieve
a superior predictive performance, including when the gap duration of the signals reaches
values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied
tensor completion algorithms yield at least 56% improvement in signal restoration performance
compared with single-channel based methods. Therefore, the tensor based approaches can
capture the underlying latent structure over different channels to reconstruct incomplete
multi-channel data.

. Introduction

Audio signals are ubiquitous in the real world. Examples include speech, music and other acoustic types of sound. An originally
ormal audio signal is likely to be corrupted with missing or noisy data. The problem can occur during its acquisition, compression,
ransmission or decompression. Poor-quality audio can sound unnatural, distracting or even unintelligible to human ears. As a result,
estoring incomplete audio signals has drawn extensive attention in recent years. This task is termed as audio inpainting [1].

The most addressed research topic in the field is the single-channel signal restoration. For instance, Janssen et al. presented
n autoregressive interpolator method that interpolated missing audio samples in the time domain [2]. Kitic et al. proposed
sparse and cosparse decomposition approach [3] and SPAIN (SParse Audio INpainter) [4]. Nonnegative matrix factorization

NMF)-based approaches have also achieved great success in audio inpainting, including one of the state-of-the-art restoration
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methods developed in [5], which sought to solve time domain problems using a probabilistic Gaussian model. Recently, due to
the impressive achievements made in the field of deep learning, several graph convolutional frameworks have been investigated for
matrix completion in general [6,7] and some researchers have applied deep learning approaches for audio restoration tasks [8–10].

The most current approaches to audio inpainting were designed for single-channel audio signals. However, nowadays many
udio recordings are comprised of multi-channel signals. In this work, we consider different situations regarding multi-channel
udio signals, with gap ranges going from one millisecond to hundreds of milliseconds, with different missing ratios and number
f channels. Our goal is to recover the missing parts in the audio, and we resort to four multi-channel based tensor completion
lgorithms for this purpose.

The main contributions of this work are listed as follows: (i) Four characteristically different tensor completion algorithms are
pplied for audio inpainting in multi-channel audio signals. Previous studies have mostly considered single-channel audio arranged
nto a matrix, for which matrix completion methods have then been applied to. To the best of our knowledge, tensor completion
lgorithms have rarely been explored for audio inpainting tasks before. (ii) Tensor completion algorithms and matrix factorization
ased methods are compared under three different scenarios: different gap times, different masking ratios and different number
f channels. (iii) Extensive experiments have shown that tensor completion algorithms significantly outperform methods based on
atrix factorization, regardless of whether the evaluation of the reconstruction or the quality of the signal are considered.

The rest of this paper is organized as follows. The related works concerning tensor completion are reviewed in Section 2. In
ection 3, notations and the main ideas for the four tensor completion algorithms are introduced. Section 4 describes the datasets,
valuation methods, simulations of corrupted data and the extensive experimental results. Finally, conclusions are discussed in
ection 5.

. Related work

In real world contexts, sets of data often have multi-modal representations. Compared to matrices and vectors, tensors can
epresent multi-modal data with complex properties, such as videos, audio signals and images, in a more accurate way. During
he past fifteen years, researchers have been investigating the theory of tensor completion algorithms to capture the underlying
elationships between latent factors [11–13].

The task of tensor completion involves filling in missing entries in a partially observed tensor. A variety of tensor completion
pproaches are based on tensor decomposition, which can capture the structural properties of multidimensional data. Two popular
ensor factorizations are the Tucker model [14] and the CANDECOMP/PARAFAC (CP) model, also known as the Canonical polyadic
ecomposition (CPD) [15,16]. It is well-known that tensor factorization can be used to capture multiple latent factors from partially
nown data. For example, Zhao et al. formulated a fully Bayesian CP factorization, which could automatically determine the CP
ank by incorporating a sparsity-inducing prior over all unknown parameters [17]. Zheng et al. introduced a matrix factorization
ethod under smoothness constraints [18]. Cai et al. proposed a two-stage nonconvex algorithm based on CP [19].

Some of the completion methods presented above have been proven to be superior when compared to simple interpolation
ethods [20]. Considering this, we employ them to estimate the missing values in multi-channel audio signals. This is a newly
resented and more challenging learning task than the single-channel signal reconstruction.

. Materials and methods

.1. Notation and definitions

A tensor is a multiway array whose order is the number of dimensions. For example, vectors are first-order tensors and matrices
re second-order tensors. A third-order tensor is denoted as 𝑋 =

(

𝑥𝑖1𝑖2𝑖3
)

∈ R𝐼1×𝐼2×𝐼3 and its Frobenius norm is denoted as

‖𝑋‖𝐹 ∶= (
∑

𝑖1 ,𝑖2 ,𝑖3
|𝑥𝑖1𝑖2𝑖3 |

2)
1
2 .

The unfolded mode-1 matrix for the tensor 𝑋 is defined as 𝑋(1) ∈ R𝐼1×𝐼2𝐼3 , consisting of all the mode-1 vectors as columns.
The mode-1 vectors are obtained by fixing every index except for the one in mode 1. Likewise, the mode-2 and mode-3 vectors
are the columns of the unfolded mode-2 and mode-3 matrices, respectively. The operation of vectorizing the tensor 𝑋 is defined as
𝑣𝑒𝑐(𝑋) ∶= 𝑣𝑒𝑐(𝑋(1)) ∈ R𝐼1𝐼2𝐼3 , and is done by stacking all the mode-1 vectors.

Audio signals are stored as third-order tensors before tensor completion algorithms are performed. A corrupted audio segment
is represented by a third-order tensor 𝑋 ∈ R𝐼1×𝐼2×𝐼3 with 𝐼1 channels, 𝐼3 frames in each channel and 𝐼2 samples or representations
for each frame. The tensor 𝑋 has incomplete entries due to the missing audio samples in the audio clips. The data corruption
s represented by two collections of triplets 𝛺 and ∖𝛺 along with a tensor 𝑊 = (𝑤𝑖1𝑖2𝑖3 ) ∈ R𝐼1×𝐼2×𝐼3 . If 𝑥𝑖1𝑖2𝑖3 is known, then
(𝑖1, 𝑖2, 𝑖3) ∈ 𝛺 and 𝑤𝑖1𝑖2𝑖3 = 1; otherwise, if 𝑥𝑖1𝑖2𝑖3 is missing, then (𝑖1, 𝑖2, 𝑖3) ∈ ∖𝛺 and 𝑤𝑖1𝑖2𝑖3 = 0. The corrupted tensor 𝑋 and the
corruption tensor 𝑊 are fed to a tensor completion algorithm, whose goal is to recover the missing entries and get a complete tensor
𝑌 that satisfies 𝑦 = 𝑥 if (𝑖 , 𝑖 , 𝑖 ) ∈ 𝛺.
2

𝑖1𝑖2𝑖3 𝑖1𝑖2𝑖3 1 2 3
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Fig. 1. An 𝑅-component CP model for a third-order tensor 𝑌 .

3.2. Tensor completion algorithms

3.2.1. CANDECOMP/PARAFAC weighted optimization algorithm
CANDECOMP/PARAFAC (CP) is one of the most well-known tensor factorization technique that captures the multi-linear

structure of the tensor. The CP weighted optimization (CP-WOPT) algorithm [21] uses a first-order optimization approach to solve
the weighted least squares formulation of the CP problem.

Let 𝑌 = (𝑦𝑖1𝑖2𝑖3 ) ∈ R𝐼1×𝐼2×𝐼3 be a complete three-way tensor whose rank is 𝑅. For CP decomposition, 𝑌 can be written as

𝑦𝑖1𝑖2𝑖3 =
𝑅
∑

𝑟=1
𝑎𝑖1𝑟𝑏𝑖2𝑟𝑐𝑖3𝑟, (1)

where 𝑌 = (𝑦𝑖1𝑖2𝑖3 ) ∈ R𝐼1×𝐼2×𝐼3 is the complete tensor, 𝐴 = (𝑎𝑖1𝑟) ∈ R𝐼1×𝑅, 𝐵 = (𝑏𝑖2𝑟) ∈ R𝐼2×𝑅 and 𝐶 = (𝑐𝑖3𝑟) ∈ R𝐼3×𝑅 are factor matrices.
Considering the presence of missing entries, Eq. (1) cannot reach absolute equivalence for every triplet. Instead, CP decomposition
is formulated to minimize the error function:

𝑓 (𝐴,𝐵, 𝐶) = 1
2

𝐼1
∑

𝑖1=1

𝐼2
∑

𝑖2=1

𝐼3
∑

𝑖3=1

(

𝑦𝑖1𝑖2𝑖3 −
𝑅
∑

𝑟=1
𝑎𝑖1𝑟𝑏𝑖2𝑟𝑐𝑖3𝑟

)2
. (2)

Fig. 1 shows an intuitive illustration of this. As can be observed, the third-order tensor 𝑌 can be approximated by a sum of rank-1
tensors.

Nevertheless, CP-based algorithms face the risk of converging to a sub-optimal factorization solution with the increase of missing
data. CP-WOPT merely focuses on the known entries and uses a weighted error function to bypass the missing data. In this situation,
the goal of CP-WOPT is to find the factor matrices that minimize the weighted function as follows:

𝑓 (𝐴,𝐵, 𝐶) = 1
2

𝐼1
∑

𝑖1=1

𝐼2
∑

𝑖2=1

𝐼3
∑

𝑖3=1

[

𝑤𝑖1𝑖2𝑖3

(

𝑦𝑖1𝑖2𝑖3 −
𝑅
∑

𝑟=1
𝑎𝑖1𝑟𝑏𝑖2𝑟𝑐𝑖3𝑟

)

]2
, (3)

where 𝑤𝑖1𝑖2𝑖3 is defined as

𝑤𝑖1𝑖2𝑖3 =

{

1 if 𝑦𝑖1𝑖2𝑖3 is known
0 if 𝑦𝑖1𝑖2𝑖3 is missing.

Users need to pre-define the tensor rank parameter 𝑅. In Section 4, experiments carried out to find the best rank 𝑅 corresponding
to the weighted function will be described.

3.2.2. 3D patch-based tensor completion algorithm
A principle of the compressed sensing theory is that a sparse dictionary-based representation can be used to recover signals

from their incomplete observations. Though the sparse representation has proven to be helpful for recovering two-dimensional
signals with missing entries, its extension to three dimensional signals is more computationally demanding. To tackle this problem,
Caiafa et al. generalized the theory of sparse representations of vectors to tensors [22] and proposed a sparse Tucker decomposition
model. When applied to three-dimensional patches of an image, it is referred to as 3D patch-based tensor completion (3DPB-TC)
algorithm [23], aiming at approximating the tensor 𝑌 by using a large number of small overlapped 3D patches (subtensors): 𝑌1, 𝑌2,
. . . , 𝑌𝑁 . The Tucker model decomposes the 3-mode subtensor 𝑌 as follows (note that we abbreviate the subtensors 𝑌𝑛 to 𝑌 in the
following part for simplification, so all the mentioned 𝑌 below refer to subtensors rather than the full tensor):

𝑦𝑖1𝑖2𝑖3 =
𝑅1
∑

𝑟1=1

𝑅2
∑

𝑟2=1

𝑅3
∑

𝑟3=1
𝑦𝑟1𝑟2𝑟3𝑑

(1)
𝑖1𝑟1

𝑑(2)𝑖2𝑟2
𝑑(3)𝑖3𝑟3

, (4)

which can be written in the following form:

𝑌 = 𝑌 × 𝐷 × 𝐷 × 𝐷 . (5)
3

1 1 2 2 3 3
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Fig. 2. The 3DPB-TC algorithm: (left) A third-order tensor 𝑌 is covered by a large set of overlapped small subtensors (3D-patches). (right) Every 3D-patch 𝑌𝑛
is decomposed using a Sparse Tucker model in which 𝑌 𝑛 is a ‘‘larger’’ sparse core tensor than 𝑌𝑛. Finally, missing entries approximations given by different
subtensors are averaged to provide final reconstructions of said missing entries.

Fig. 3. Probabilistic graphical model of BCPF for a third-order tensor 𝑌 .

where 𝑌 = (𝑦𝑟1𝑟2𝑟3 ) ∈ R𝑅1×𝑅2×𝑅3 (𝑅1≥𝐼1, 𝑅2≥𝐼2 and 𝑅3≥𝐼3) is the sparse core tensor, and the factor matrices 𝐷1 =
(

𝑑(1)𝑖1𝑟1

)

∈ R𝐼1×𝑅1 ,

𝐷2 =
(

𝑑(2)𝑖2𝑟2

)

∈ R𝐼2×𝑅2 and 𝐷3 =
(

𝑑(3)𝑖3𝑟3

)

∈ R𝐼3×𝑅3 are dictionary matrices associated to each mode. We obtain the following
expression by vectorizing Eq. (5) as

𝑣𝑒𝑐(𝑌 ) = 𝐷𝑣𝑒𝑐(𝑌 ), 𝐷 = 𝐷3⊗𝐷2⊗𝐷1. (6)

where 𝑣𝑒𝑐(𝑌 ) is a long vector concatenating all the entries of a 3D-patch. The Kronecker product 𝐷∈R𝐼1𝐼2𝐼3×𝑅1𝑅2𝑅3 is a global
dictionary (matrix) containing ‘‘atoms’’ in its columns. 𝑣𝑒𝑐(𝑌 ) is vectorized from the sparse core tensor and the non-zero entries of
this vector indicate which ‘‘atom’’ is linearly combined to obtain an approximation of 𝑌 . In the standard Tucker model, the size of
the core tensor 𝑌 is much smaller than that of 𝑌 , while the 3DPB-TC algorithm uses a large and sparse core tensor, as shown in
Fig. 2. Once all sparse Tucker decomposition models have been fitted to all available subtensors (3D-patches), every missing entry is
reconstructed. Since every tensor decomposition provides an approximation to the overlapped 3D-patch entries, the final estimation
is obtained by just averaging all available approximations for every entry.

When dealing with tensors with missing entries, the dictionary 𝐷 is assumed to be known. This dictionary can be chosen from
classical sparsifying transforms, such as wavelets and the cosine transform, or can obtained by applying a dictionary learning
algorithm to a complete training dataset, which is what was done in this work. Following [23], an alternate least squares algorithm
was used to learn the optimal set of dictionaries from an available collection of 3D-patches. A large number of small 3D-patches
were obtained, vectorized and expressed as a sparse representation over a dictionary via Tucker decomposition, where the patch
size and the sparsity value needed to be pre-defined. The patch size is associated with the number of channels, and experiments
conducted to achieve the optimal sparsity will be described in Section 4. Please refer to [22] for more details on computing sparse
representation of signals on a known dictionary.

3.2.3. Bayesian CP factorization
The Bayesian CP factorization (BCPF) algorithm [17] combines a fully Bayesian treatment and CP factorization to infer the

rank of the true complete tensor and the underlying multilinear factors. This method can automatically infer all of its parameters
without the need for cross validations or likelihood maximization, which are computationally costly and imperative for other tensor
completion methods. Fig. 3 illustrates the procedure of BCPF.

The tensor 𝑌 can be represented by a CP model with the factor matrices 𝐴, 𝐵 and 𝐶. Given a factor matrix 𝐷 = [𝐷1, 𝐷2,… , 𝐷𝐼1 ]
𝑇

(𝐷 = 𝐴,𝐵, or 𝐶) and a noisy observation 𝑌 with i.i.d. noises following Gaussian distributions, the probability of 𝑌𝛺 is given as

𝑝(𝑌𝛺|𝐴,𝐵, 𝐶, 𝜏) =
𝐼1
∏

𝐼2
∏

𝐼3
∏

 (𝑦𝑖1𝑖2𝑖3 | < 𝐴𝑖1 , 𝐵𝑖2 , 𝐶𝑖3 >, 𝜏−1)𝑤𝑖1 𝑖2 𝑖3 , (7)
4
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where 𝛺 denotes a set of 3-tuple indices, (𝑖1, 𝑖2, 𝑖3) ∈ 𝛺 if 𝑦𝑖1𝑖2𝑖3 is observed, 𝑊 = (𝑤𝑖1𝑖2𝑖3 ) ∈ R𝐼1×𝐼2×𝐼3 is defined as in the previous
section and represents the observed entries, 𝜏 is the noise parameter, 𝐴𝑖1 , 𝐵𝑖2 and 𝐶𝑖3 are the row-wise vectors of the corresponding
matrices, < 𝐴𝑖1 , 𝐵𝑖2 , 𝐶𝑖3 >=

∑

𝑟 𝑎𝑖1𝑟𝑏𝑖2𝑟𝑐𝑖3𝑟 denotes a generalized inner-product of the three vectors, and finally  (𝑥|𝑥0, 𝜏−1) denotes
a Gaussian distribution with mean 𝑥0 and precision 𝜏. Given the hyperparameters 𝜆𝑖(𝑖 = 1, 2,… , 𝑅), the prior distribution over the
factor matrices is given as

𝑝(𝐷|𝛬) =
∏𝐼1

𝑖=1
 (𝐷𝑖|0, 𝑑𝑖𝑎𝑔(𝛬)

−1), (8)

where 𝛬 = [𝜆1, 𝜆2,… , 𝜆𝑅] and 𝐷 = 𝐴,𝐵, 𝐶. The prior distributions of 𝛬 and 𝜏 are given as

𝑝(𝛬) =
∏𝑅

𝑟=1
𝐺(𝜆𝑟|𝑐𝑟0, 𝑑

𝑟
0), 𝑝(𝜏) = 𝐺(𝜏|𝑎0, 𝑏0), (9)

where 𝐺(𝑥|𝑎, 𝑏) = 𝑏𝑎𝑥𝑎−1𝑒−𝑏𝑥

𝛤 (𝑎) is the Gamma distribution with the Gamma function 𝛤 (𝑎).
When all of the unknowns are denoted as 𝛩 = 𝐴,𝐵, 𝐶,𝛬, 𝜏, the joint distribution can be written as

𝑝(𝑌𝛺 , 𝛩) = 𝑝(𝑌𝛺|𝐴,𝐵, 𝐶, 𝜏)𝑝(𝐴|𝛬)𝑝(𝐵|𝛬)𝑝(𝐶|𝛬)𝑝(𝛬)𝑝(𝜏). (10)

Given the observed data, the probability distribution of 𝛩 is

𝑝(𝛩|𝑌𝛺) =
𝑝(𝑌𝛺 , 𝛩)

∫ 𝑝(𝑌𝛺 , 𝛩)𝑑𝛩
. (11)

Finally, the predictive distribution over missing entries 𝑌∖𝛺 is given as

𝑝(𝑌∖𝛺|𝑌𝛺) = ∫ 𝑝(𝑌∖𝛺|𝛩)𝑝(𝛩|𝑌𝛺)𝑑𝛩. (12)

3.2.4. High-accuracy low-rank tensor completion
The ranks of the matrices can be used to estimate the missing data. To calculate them, nonconvex optimization is often used.

This can be approximated by calculating the trace norm of the matrices, which is deemed to be the tightest convex approximation.
To extend this from matrices to higher-order tensors, Liu et al. defined the tensor trace norm and presented three low-rank tensor
completion algorithms, namely simple low-rank tensor completion (SiLRTC), fast low-rank tensor completion (FaLRTC) and high
accuracy low rank tensor completion (HaLRTC) [24].

The trace norm of the tensor 𝑌 is defined as

‖𝑌 ‖∗ ∶=
3
∑

𝑛=1
𝛼𝑛‖𝑌

(𝑛)
‖∗, (13)

where 𝑌 (𝑛) is the mode-𝑛 unfolded matrix, 𝑌 (1) ∈ R𝐼1×𝐼2𝐼3 , 𝑌 (2) ∈ R𝐼2×𝐼1𝐼3 , 𝑌 (3) ∈ R𝐼3×𝐼1𝐼2 , and 𝛼𝑛 satisfies 𝛼𝑛⩾0 and ∑3
𝑛=1 𝛼𝑛 = 1.

According to our pilot study, HaLRTC can typically achieve a faster and better performance for visual data completion than
SiLRTC. Thus, HaLRTC is employed in this study to solve the optimization problem:

𝑚𝑖𝑛𝑌 ∶ ‖𝑌 ‖∗, 𝑠.𝑡. 𝑌𝛺 = 𝑋𝛺 , (14)

where 𝑋, 𝑌 ∈ R𝐼1×𝐼2×𝐼3 . 𝛺 is a set containing the index of observed entries in 𝑋, which was defined in Section 3.1, and 𝑋𝛺 is a
tensor which has the same entries as 𝑋 when the index of 𝑋𝛺 is in 𝛺. 𝑌 is determined such that the trace norm of 𝑌 is minimized.
HaLRTC uses the alternating direction method of multipliers (ADMM) framework [25] by taking into account the efficiency issue
to solve large scale optimization problems.

4. Experiments

4.1. Datasets

The dataset was built from a corpus called voiceHome-2 (found in https://zenodo.org/record/1252143). The corpus consists of
audio recordings of speeches made by native French speakers. The recordings have a sample rate of 16 kHz and were done via an
8-microphone device. The eight microphones in the device correspond to eight audio channels among which there is a considerable
inherent redundancy and a high correlation, allowing for the recovery of the missing data.

Three 120s-long audio files were selected from the folder named ‘‘spontaneous’’. The files were recorded in the same home
(home 1), room (room 1) and the positions and orientation of the microphones were the same (arrayGeo 1 and arrayPos 1). On the
other hand, there were differences in the speakers, the speaker’s positions and the noises. The first file is a recording of spontaneous
speech by the speaker F1 at the speakerPos 2 in a noisy condition of noiseCond 2. The second file contains speech articulated by
the speaker M1 at the speakerPos 3 in a noisy condition of noiseCond 3. Finally, the third file contains speech articulated by the
speaker M2 at the speakerPos 4 in a noisy condition of noiseCond 4. Three 10-second audio segments are extracted from each file,
and therefore a total of nine audio segments are used for evaluation. Three additional 10-second audio segments are extracted from
5

each audio file for tuning the parameters. The original eight channels are reduced to six for simplification purposes.
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4.2. Performance evaluations

Given the recovered audio 𝑆̂ and the original audio 𝑆, the signal-to-noise ratio SNRf is defined as

𝑆𝑁𝑅𝑓 = 10 log
‖𝑆‖2𝐹

‖𝑆̂ − 𝑆‖2𝐹
, (15)

similarly, SNRm is defined as

𝑆𝑁𝑅𝑚 = 10 log
‖𝑆∖𝛺‖

2
𝐹

‖𝑆̂∖𝛺 − 𝑆∖𝛺‖
2
𝐹

. (16)

SNRf reflects the global restoration quality, while SNRm represents the average reconstruction performance for each sample over the
missing part of the audio. In fact, SNRf is the sum of SNRm with a bias that is irrelevant to the completion algorithm but indicates
the audio degradation rate [1].

The relative standard error (RSE) is a measure of the difference between the original signal 𝑆 and the reconstructed signal 𝑆̂,
and is defined as follows:

𝑅𝑆𝐸(𝑆̂∖𝛺 , 𝑆∖𝛺) =
‖𝑆̂∖𝛺 − 𝑆∖𝛺‖𝐹

‖𝑆∖𝛺‖𝐹
. (17)

Hence, SNRm can be expressed as

𝑆𝑁𝑅𝑚 = −20 log𝑅𝑆𝐸(𝑆̂∖𝛺 , 𝑆∖𝛺). (18)

The SNRm for each segment of the testing dataset is computed and the average is found. This average SNRm is then used to evaluate
the reconstruction performance of the algorithms (the term is abbreviated to SNR for simplification purposes from now on).

When it comes to audio quality assessment, it is well known that SNR does not perform well in audio analysis compared to mean
opinion score (MOS) assessments. Perceptual Objective Listening Quality Analysis (POLQA), Perceptual Evaluation of Speech Quality
(PESQ) or Perceptual Evaluation of Audio Quality (PEAQ) are examples of perceptual audio quality assessment measurements. To
assess speech quality in the experiments, PESQ will be used.

4.3. Simulation of corrupted data

The objective of this work is to evaluate the recovery ability of the tensor completion algorithms on audio signals with missing
data. In the parameter tuning part, the gap duration of the training data was fixed to 10 ms, the missing ratio was set to 10% and
all of the six channels were selected. The average SNR of the three training audio samples was calculated in order to select the
optimal parameters.

In order to comprehensively evaluate the four tensor-based methods, three types of missing data were artificially generated to
be used as the testing data in the following forms. For each experiment, we averaged the results across nine testing audio segments.
The detailed experimental configurations are set as follows:

∙ The gap duration was in the range from 1 ms to 200 ms. For each audio segment, the number of missing samples was fixed
to 10% with all of the six channels.

∙ The missing ratio of audio signals was in the range from 1% to 70%, and all of the six channels and a fixed 10 ms gap
duration for all samples were selected for the experiments.

∙ The number of channels was set to 1, 2, 3, and 6, respectively. The gap duration and missing ratio of each audio signal were
fixed to 10 ms and 10%, respectively.

Extensive quantitative and qualitative experiments were conducted on the three types of datasets using the four tensor completion
algorithms to evaluate their reconstructing performances of the lost time domain audio samples.

4.4. Results

In this section, we first test the CP-WOPT and 3DPB-TC algorithms on the training audio segments to find the optimal parameters
under the SNR. BCPF and HaLRTC are the parameter-free methods, and therefore this part is skipped. Then, these four tensor
completion algorithms are run on different gap times, missing ratios and number of channels and their predictive performance
is evaluated. In each of the evaluation stages, extensive experiments are carried out on the audio samples to compare the tensor
completion algorithms.

4.4.1. Parameters tuning
For the CP-WOPT tensor completion algorithm, users need to pre-define the tensor rank parameter 𝑅. The algorithm was tested

using the training audio segments with the rank 𝑅 being in the range of {10, 20, 50, 75, 100, 150, 200}. As shown in Fig. 4, CP-WOPT
is first enhanced when 𝑅 increases and obtains its best restoration results when 𝑅 is 75. However, its predictive performance begins
to decline when the rank 𝑅 exceeds 75.

The algorithm 3DPB-TC uses a global dictionary associated with a patch size and a sparsity value, both of which are user-defined.
6

As shown in Fig. 5, the best sparsity was found to be 𝜌 = 0.2.
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Fig. 4. SNR evaluation as a function of rank 𝑅 for the CP-WOPT algorithm. The algorithm is performed on the training audio segments with the gap duration
set at 10 ms, the missing ratio set at 10% and the number of channels set at 6. The CP-WOPT algorithm achieves its best performance when 𝑅 = 75.

Fig. 5. Determination of sparsity 𝜌 for the 3DPB-TC algorithm. The experiments were conducted on the training audio segments with the gap duration set at
10 ms, the missing ratio set at 10% and the number of channels set at 6. The 3DPB-TC algorithm achieves its maximum SNR when 𝜌 = 0.2.

4.4.2. Gap time evaluation
The restoration performance of the tensor completion algorithms was evaluated for a variable duration of missing intervals of

samples. The ratio of the missing samples was fixed to 10% for each audio segment and the number of channels was set to 6. The
results were obtained by averaging the predictive performance across the nine testing audio segments with a fixed missing ratio and
number of channels. The missing gap duration was in the range from 1 ms to 200 ms.

For an extensive comparison, we evaluated the performance of the four multi-channel based tensor completion algorithms
with four single-channel based methods: Janssen’s method [2], Analysis SParse Audio INpainter (A-SPAIN), Synthesis SParse
Audio INpainter with hard thresholding (S-SPAIN H) and Synthesis SParse Audio INpainter Orthogonal Matching Pursuit (S-SPAIN
OMP) [4]. Janssen’s method is an interpolation-based method, and A-SPAIN, S-SPAIN H and S-SPAIN OMP are matrix factorization
based methods. Note that these four methods used for comparison are applied frame-wise and are developed for single channel
audio. The reconstruction is executed frame by frame for each channel, and the SNR is calculated by concatenating every channel
to a tensor. The results are presented in Fig. 6, and the detailed information including SNR, PESQ and the running time is recorded
in Table 1.

Running the four tensor completion algorithms and the four competitor algorithms results in various SNR values for each different
gap time (see Fig. 6). In general, the tensor completion algorithms achieve better recovery results than the single-channel based
methods. Furthermore, all of the four tensor completion algorithms applied have the ability to recover the missing data even for gap
times of up to 200 ms, while the recovery performances of the single-channel based strategies generally get worse as the gap time
becomes larger, indicating that the single-channel based methods are not robust with regards to gap duration. As a result, the tensor
based (multi-channel based) methods outperform the single-channel based methods. The three matrix factorization based methods
(A-SPAIN, S-SPAIN H and S-SPAIN OMP) perform better than the interpolation-based method (Janssen’s method). Meanwhile, as can
be seen from Table 1, even though the tensor-based (multi-channel based) methods have a better reconstruction performance, they
also require more running time for convergence than the single-channel based strategies. To be more specific, the running times of
3DPB-TC and BCPF are more than 1000 s, but in turn they can obtain an excellent performance particularly when the gap duration
is in the 5 ms to 20 ms range. HaLRTC is a more time-friendly tensor completion method, but it only performs particularly well
when the gap time is 1 ms or 2 ms. CP-WOPT offers a balanced solution among the multi-channel based algorithms. To summarize,
7
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Fig. 6. Audio inpainting results with varying gap durations. Four tensor completion methods and their competitors are performed on the nine audio segments
with the gap duration set to 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, 50 ms, 100 ms and 200 ms. Only results with a positive SNR were visualized in the figure.

Table 1
The recovery performance SNR, PESQ and running time (seconds) for the eight methods with different gap times.

CP-WOPT 3DPB-TC BCPF HaLRTC Janssen A-SPAIN S-SPAIN H S-SPAIN OMP

1 ms
SNR 11.83 9.33 8.27 12.41 2.78 5.31 4.65 4.21
PESQ 3.91 3.86 3.79 3.88 2.96 3.15 3.23 3.31
Runtime 208.72 10318.46 1380.63 53.66 19.36 42.81 33.28 470.76

2 ms
SNR 11.56 9.77 10.22 11.74 2.57 4.25 3.58 3.24
PESQ 3.85 3.88 3.86 3.89 2.73 3.22 3.20 3.15
Runtime 203.21 9219.88 1022.56 49.01 15.28 44.38 34.41 490.55

5 ms
SNR 11.33 11.07 14.91 11.11 1.29 4.07 3.66 3.61
PESQ 3.90 3.91 3.95 3.84 2.41 3.07 3.14 3.22
Runtime 227.81 9237.68 1027.23 41.23 9.74 33.96 26.87 361.91

10 ms
SNR 10.83 10.45 12.92 10.58 −1.90 3.72 3.19 3.15
PESQ 3.86 3.75 3.87 3.71 2.08 2.95 3.05 3.00
Runtime 192.82 9663.41 1182.17 40.68 13.49 25.49 19.05 272.82

20 ms
SNR 10.77 11.16 13.81 10.62 −0.83 2.99 3.21 1.88
PESQ 3.83 3.73 3.81 3.78 1.64 3.11 2.98 3.02
Runtime 204.57 10394.81 1114.68 39.46 17.29 13.51 9.45 111.03

50 ms
SNR 10.96 10.43 8.33 10.27 −0.09 1.74 1.89 0.87
PESQ 3.79 3.82 3.62 3.77 1.76 2.88 2.74 2.91
Runtime 196.56 9141.71 1053.43 38.78 21.08 6.87 4.87 62.12

100 ms
SNR 10.84 11.25 8.56 9.77 −0.22 0.72 0.43 0.65
PESQ 3.81 3.80 3.69 3.82 1.55 2.91 2.82 2.75
Runtime 186.88 9953.36 1184.60 36.85 16.45 3.09 2.76 89.26

200 ms
SNR 10.74 10.29 9.01 9.93 −6.91 0.17 0.19 0.41
PESQ 3.74 3.77 3.71 3.80 Nan 2.44 2.63 2.69
Runtime 198.61 10147.09 1059.83 37.04 21.62 1.02 1.52 97.54

the single-channel based methods require less running time than the multi-channel based methods, except for S-SPAIN OMP, and
less running time is needed as the gap time becomes larger.

4.4.3. Masking ratios
In this experiment, the four tensor completion algorithms with different masking ratios of the audio signals are compared with

the four single-channel based methods acting as the baseline in order to measure the effects of the missing ratios in audio inpainting.
The number of missing samples of all the gaps is in the range from 1% to 70%. The gap time is fixed to 10 ms for each audio segment,
and the number of channels is set to 6.

As shown in Fig. 7, the tensor completion algorithms significantly outperform the single-channel based methods for all the
missing ratios of the audio signals. It can also be observed that all of the algorithms, including the comparison methods, perform
worse as the missing ratios increase. When the missing part of the audio signals reaches 70%, the matrix factorization based methods
perform competitively compared with the CP-WOPT, 3DPB-TC and HaLRTC tensor completion methods. This result illustrates that
the matrix factorization based methods offer a more stable performance as the missing ratio increases. The BCPF method achieves
the best performance out of all the other algorithms in most of the missing ratio cases. From Tables 1 and 2, we can conclude that
with an increase of the gap time, the running time of the matrix factorization based methods continues to decrease, while that of the
other methods remains essentially unchanged. As the missing ratio continues to increase, the running time of the Janssen, A-SPAIN
and S-SPAIN H algorithms increases while that of the other methods remains more stable.
8
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Fig. 7. Predictive performance with varying missing ratios. The algorithms are performed on the nine audio segments with missing ratios of 1%, 2%, 5%, 10%,
20%, 30%, 50% and 70%. Only results with a positive SNR were visualized in the figure.

Table 2
The recovery performance SNR, PESQ and running time (seconds) for the eight methods with different missing ratios. In the table, ‘‘Nan’’ means that the
algorithm did not converge.

CP-WOPT 3DPB-TC BCPF HaLRTC Janssen A-SPAIN S-SPAIN H S-SPAIN OMP

1%
SNR 11.71 9.95 15.12 12.48 −2.41 3.84 3.59 3.51
PESQ 3.95 3.87 4.02 3.74 2.56 3.12 3.37 3.26
Runtime 207.50 9532.11 1262.29 31.54 3.06 4.65 3.29 79.39

2%
SNR 11.45 10.25 11.64 11.38 −1.64 4.72 3.97 4.02
PESQ 3.89 3.92 3.98 3.81 2.35 3.16 3.25 3.18
Runtime 242.29 9689.54 1197.55 31.16 5.61 9.82 6.84 68.54

5%
SNR 11.31 9.78 13.90 11.20 −1.22 4.35 3.66 3.87
PESQ 3.83 3.80 3.91 3.62 2.16 3.09 3.13 3.04
Runtime 234.57 9040.87 1153.21 31.48 7.83 14.74 13.03 143.39

10%
SNR 10.83 10.45 12.92 10.58 −1.90 3.72 3.19 3.15
PESQ 3.86 3.75 3.87 3.71 2.08 2.95 3.05 3.00
Runtime 192.82 9663.41 1182.17 40.68 13.49 25.49 19.05 272.82

20%
SNR 10.38 8.54 10.34 9.36 −67.39 3.59 2.89 2.03
PESQ 3.72 3.64 3.81 3.73 Nan 2.99 2.96 2.92
Runtime 205.24 9054.78 1223.19 37.17 25.51 30.45 24.37 238.31

30%
SNR 9.54 7.98 8.80 8.15 Nan 3.10 2.64 1.66
PESQ 3.77 3.57 3.62 3.69 Nan 2.86 2.89 2.81
Runtime 239.99 9093.15 1036.63 39.99 65.16 29.86 21.39 225.11

50%
SNR 6.76 6.90 8.75 5.49 Nan 2.65 1.99 1.58
PESQ 3.23 3.16 3.64 3.41 Nan 2.75 2.86 2.74
Runtime 178.26 9669.04 1109.97 41.24 134.27 19.98 12.03 99.63

70%
SNR 3.11 4.28 8.07 3.17 Nan 1.78 1.25 1.02
PESQ 3.01 3.05 3.59 3.25 Nan 2.94 2.71 2.85
Runtime 159.14 10262.86 1298.65 39.92 186.35 19.87 15.87 76.84

4.4.4. Effects of the number of channels
In this section, the restoration abilities of the four tensor completion algorithms is evaluated when the number of channels is

1, 2, 3 and 6. These experiments can validate the capacity of the model for factorizing the incomplete dataset with the goal of
capturing the latent structure between different channels and possibly reconstructing missing values. The missing ratio is set to
10%, and the gap duration is in the range from 1 ms to 200 ms. Fig. 8 illustrates the performances of the different methods with
different numbers of channels.

As can be seen from Figs. 8a, 8b and 8d, which present the results for CP-WOPT, 3DPB-TC and HaLRTC, respectively, a larger
number of channels can lead to a higher reconstruction performance. Nevertheless, Fig. 8c shows some intersections between
different number of channels, although generally a larger number of channels is much more efficient for obtaining a higher SNR. For
the comparison methods, the last four subplots in Fig. 8 present varying results for each different number of channels, illustrating
that for these single-channel based methods, an increased number of channels does not necessarily lead to a larger SNR, unlike for
the multi-channel based methods. Note that when the number of channels is 1, the SNR of the tensor methods is in the range from
2 dB to 6 dB, which is also similar to the performance of the matrix factorization based methods, because when the number of
channels is 1, the multi-channel audio files are single-channel audio signals, and thus the tensor completion algorithms degenerate
into matrix factorization based methods. As the number of channels increases, the tensor completion methods outperform the matrix
9
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Fig. 8. Reconstruction performance for different gap durations and different number of channels. Only results with a positive SNR were visualized in the figure.
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factorization based strategies, which indicates that the four methods can capture the underlying structure between different channels
and therefore reconstruct the missing values.

The results from these figures indicate that the recovering abilities of the four tensor completion algorithms are superior when the
umber of channels is increased. We can conclude that the four tensor-based methods can effectively capture the hidden correlations
mong the different channels to estimate the missing values in the audio signals.

. Discussion and conclusions

In this paper, four characteristically different tensor completion algorithms (i.e., CP-WOPT, 3DPB-TC, BCPF, and HaLRTC)
ere used to estimate missing values in multi-channel audio signals. The experimental results have demonstrated that the tensor

ompletion methods can be used to perform audio inpainting of the signals with some missing data in the time domain. Specifically,
he tensor completion algorithms show an improved performance with different gap times and missing ratios when compared with
he single-channel based methods. Furthermore, the tensor completion algorithms perform better on multi-channel audio signals
han on single-channel audio signals, indicating that there are underlying structures between different channels and the tensor-based
ethods can capture these latent factors and reconstruct the missing values.
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