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Abstract

We characterize the categories with 5nite limits whose exact completions are toposes and
discuss some examples and counter-examples.
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1. Introduction

Many categories of interest arise as exact completions of a left exact category. For
example, realizability toposes are exact completions [24] as well as the presheaf topos
SetsC

op

for every small left exact category C (see [5]). More recently, in computer
science there has been a lot of interest in the exact completion of the category of
topological spaces [3]. Although a simple construction of the exact completion of a
left exact category was given in [6], the resulting category will be usually more di@cult
to work with directly than the category giving rise to it. So it is interesting to be able
to deduce important properties of the former in terms of easily checkable properties
of the latter. For example, in [8] it was shown that the exact completion Cex of a
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category with 5nite limits C is locally cartesian closed if and only if C has weak
dependent products. This was used to prove that the exact completion of the category
of topological spaces is locally cartesian closed. In this paper, we provide necessary
and su@cient conditions on a category with 5nite limits for its exact completion to be
a topos. This characterization rests on the following de5nition.

De�nition 1.1. A generic proof is a map � :� → � such that for every map f :Y → X
there exists a �f :X → � such that f factors through �∗f� and �∗f� factors through f.

Y Y ′

f
X �

�

vf  

vf   

*  ��

The characterization can now be stated as follows.

Theorem 1.2. Cex is a topos if and only if C has weak dependent products and a
generic proof.

The proof will be given in Section 4 after reviewing the basic technical facts about
regular categories in Section 2 and about completions in Section 3. In the 5nal section
we discuss some examples and counter-examples.

2. Regular and exact categories

In this section we quickly review regular and exact categories [2,10,4]. A category
with 5nite limits is regular if every kernel pair has a coequalizer and regular epis are
stable under pullback. It follows that a regular category has stable regular-epi/mono
factorizations. A diagram as below is called an exact sequence if it is both a pullback
and a coequalizer. That is, if it is a coequalizer diagram and e0; e1 is the kernel pair
of e.

We now present as a lemma, two well-known facts about regular categories whose
proofs can be found in the references mentioned above. As usual, we denote by 
∗ the
operation of pulling back along the map 
.

Lemma 2.1. In a regular category

1. exact sequences are stable under pullback;
2. let the following diagram be such that both rows are exact and the two left
hand squares are pullbacks (so that e∗0f ∼= e∗1f). Then the right hand square
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is a pullback.

De�nition 2.2 (Equivalence relations and exact categories).

1. A (binary) relation on an object A is an object R together with a jointly monic pair
of arrows r1; r2 :R → A. For every object X we write RX ={(r1:f; r2:f)|f :X → R}
for the corresponding relation (in the usual sense) on the set Hom(X; A).

2. An equivalence relation on an object A is a relation on A in the sense above such
that for every X , RX is an equivalence relation in the usual sense. An equivalence
relation is e8ective if it is the kernel pair of some arrow.

3. A category is exact if it is regular and every equivalence relation is eMective.

When considering categories with 5nite limits (as we are doing), there is an equiv-
alent elementary de5nition of equivalence relation (see for example [4]). We use the
one above for convenience. Finally, recall that a functor between regular categories is
exact if it preserves 5nite limits and exact sequences.

3. Regular and exact completions

In this section we review some of the material in [6,5] concerning the regular and
exact completions of a left exact category. For any category with 5nite limits C, it
is possible to build a category Creg and an embedding C → Creg that induces an
equivalence of categories between the category of functors from C to D that preserve
5nite limits and the category of exact functors from Creg to D. The category Creg has
an easy description and it can be found in [5]. We will only need its characterization
which we recall below.

De�nition 3.1. An object X is (regular) projective if for every regular epi e :A � B
and map g :X → B there exists a map f :X → A such that e:f = g.

We say that a category has enough projectives if for every object A there exists a
projective X and a regular epi q :X � A. We say that q is a projective cover of A.

Proposition 3.2. A regular category D is a regular completion if and only if it has
enough projectives, projectives are closed under :nite limits and every object is a
subobject of a projective. Moreover, in this case, D is the regular completion of its
full subcategory of projectives.

As we mentioned, it is also possible to obtain the exact completion of a category with
5nite limits. For any category C with 5nite limits, there exists an exact category Cex

and an embedding C → Cex that induces for every exact category E, an equivalence
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between the category of functors from C to E that preserve 5nite limits and the category
of exact functors from Cex to E. There also exists a characterization of the categories
that arise as exact completions.

Proposition 3.3. An exact category E is an exact completion if and only if it has
enough projectives and projectives are closed under :nite limits in E. Moreover, in
this case E is the exact completion of its full subcategory of projectives.

The explicit description of Cex can be found [5]. It should also be mentioned that
5nite limits are not really needed to build regular and exact completions. As explained
in [9], it is enough to assume weak 5nite limits. Moreover, there are interesting toposes
that arise as exact completions of categories with only weak 5nite limits (see [9,23]).
In this paper we prove our results assuming 5nite limits. It is to be expected that these
results generalize to the case of weak 5nite limits.

A key ingredient in our characterization is the use of the locally cartesian closed
structure of toposes. The technical development that allowed this argument is the char-
acterization of the categories with weak 5nite limits whose exact completions are locally
cartesian closed [8]. This result is also reviewed in [3] where strong 5nite limits are
assumed.

De�nition 3.4. A weak dependent product of a map f :X → J along a map 
 : J → I
consists of maps � :Z → I and � : 
∗Z → X such that f:� = 
∗�. Moreover, the pair
�; � is weakly universal in the sense that for any other pair of maps �′ :Z ′ → I and
�′ : 
∗Z ′ → X such that f:�′ =
∗�′ there exists a not necessarily unique f′ : 
∗�′ → 
∗�
such that �:f′ = �′.

�*Z

�*�

X

J

f

�

As explained in [3], a weak dependent product of f along 
 can also be expressed
as a natural epi C=I( ; �) � C=J (
∗( ); f). See also Remark 3.2 in [8]. The result in
[8], specialized as in [3] to the setting where strong 5nite limits are assumed, is the
following.

Proposition 3.5. Cex is locally cartesian closed i8 C has weak dependent products.

We now restate some of the results in [24] where it is proved that in an exact
completion, it is enough to be able to classify subobjects of projectives in order to be
able to deduce the existence of an honest subobject classi5er.

De�nition 3.6. A classi:er of subobjects of projectives is a mono � :� � such
that for every projective X and subobject m :U X there exists a unique �m :X → �
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such that the square below is a pullback.

We say that � is a weak classi5er of subobjects of projectives if the �m is not
necessarily unique. Moreover, we say that the classi5er (weak or not) is projective if
� is.

Lemma 3.7. Cex has a subobject classi:er if and only if it has a classi:er of subob-
jects of projectives.

Proof. The “only if” direction is trivial as the subobject classi5er classi5es subobjects
of projectives in particular. For the converse, let y :C → Cex denote the left exact
embedding of the projectives in an exact completion. The existence of a classi5er of
subobjects of projectives � : P � in Cex induces an isomorphism Cex(yX;�) →
Sub(yX ) natural in X . That is, the functor Sub is representable “over projectives”. In
[24] (Lemma 5.1) it is proved that for certain suitable functors (of which Sub is an
example), representability is implied by representability over projectives.

Finally we recall the de5nition of a generic mono which is used in [16,21] to study
some examples and counter-examples, see also Section 5.1 below.

De�nition 3.8. A generic mono in a category D is a mono � :� � such that
every mono u :U A in D arises as a pullback of � along a not necessarily unique
map.

4. The characterization

In this section we prove Theorem 1.2.

Lemma 4.1. The following are equivalent.

1. C has a generic proof.
2. Cex has a projective weak classi:er of subobjects of projectives.
3. Cex has a weak classi:er of subobjects of projectives.
4. Creg has a generic mono.

Proof. It is easy to show that 4 implies 3. To prove that 3 implies 2 let �′ :� ′ → �′

be a weak classi5er of subobjects of projectives in Cex. Let ! :�� �′ be a projective
cover. Then de5ne � :� � to be the pullback of �′ along !. To prove that this � is
a weak classi5er, let X be projective and let m :U X . By hypothesis, there exists
a "m :X → �′ such that m is the pullback of �′ along "m. Now, as X is projective and
! is a regular epi, there exists a �m :X → � such that !:�m = "m. It follows that m is
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the pullback of � along �m as in the following diagram.

U

X � �′

′

�vm

� �′m

We now prove that 2 implies 1. So assume that Cex has a projective weak classi5er
of subobjects of projectives � :� → �. Let w :� → � be a projective cover. Now,
consider any f :Y → X between projectives and consider its regular-epi/mono factor-
ization f = m:e in Cex. By assumption, there exists a �m :X → � such that �∗m� ∼= m.
Now let e′ :Y ′ � U be the pullback of w along �∗�m as in the diagram below. As �m
and �:w are maps between projectives and projectives are closed under 5nite limits in
Cex; Y ′ is projective. Then, e and e′ factor through each other and hence, so do f
and m:e′ which is the pullback of �:w along �m. So �:w is a generic proof in C.

Y Y ′ �

e e′

U

X �
vm

m �

w

�*vm

To prove 1 implies 4, let � :� → � be a generic proof in C. Let �:w = � be the
regular-epi/mono factorization in Creg with � :� → �. We will prove that � is our
desired generic mono in Creg. Now let u :U A be an arbitrary mono in Creg. By
Proposition 3.2, there is a mono n :A X into a projective X . Let m :U X be
the subobject of the projective X given by n:u. Let e :Y � U a projective cover and
de5ne f = m:e. As � is a generic proof, there exists a map � :X → � such that f
factors through �∗�= (�∗�):((�∗�)∗w) and vice versa. Then, by Lemma 2.1, m and �∗f�
determine the same subobject. That is, m is a pullback of �. But then the following
diagram is also a pullback and this shows that � is a generic mono.

For any category C with 5nite limits let us denote by Prf the contravariant functor
that for every object X in C; Prf(X ) = C̃=X the poset reQection of the slice. It
operates on arrows by pullback. This functor is called the proof theoretic power set
functor in [15]. An application of Yoneda shows that C has a generic proof if and
only if there exists an object � and a natural epi C(X;�) � Prf(X ). That is, if Prf is
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weakly representable. By Lemma 4.1, this is equivalent to the fact that Sub : (Cex)op →
Sets is weakly representable over projectives. That is, that there exists a natural epi
Cex(yX; y�) � Sub(yX ). The strategy for the proof of Theorem 1.2 is to build an
honest classi5er of subobjects of projectives out of a weak one. In order to do this, we
are going to use the locally cartesian closed structure of the exact completion to build
an equivalence relation on �. The quotient of this equivalence relation will classify
subobjects of projectives. Then, using Lemma 3.7 we will be able to conclude that
there exists a subobject classi5er. The following lemma explains how to build the
equivalence relation.

Lemma 4.2. Let E be locally cartesian closed and let m :U X . Then there exists
an arrow m′ :U ′ X × X such that 〈f; g〉:Z → X × X factors through m′ if and
only if f and g pullback m to the same subobject (i.e. f∗m ∼= g∗m).

Proof. Consider &=m× idX : U×X X ×X and )= idX ×m :X ×U X ×X as
objects in the slice E=(X×X ). We can then build the mono m′=&)×)& :U ′ X×X
using the product and exponentiation in the slice. Let 〈f; g〉 :Z → X ×X factor through
m′. That is, we have an arrow 〈f; g〉 → m′ in the slice E=(X × X ). This is uniquely
determined by arrows 〈f; g〉 → &) and 〈f; g〉 → )&. Let us concentrate on the arrow
on the left. It is uniquely determined by an arrow 〈f; g〉× ) → &. Products in the slice
are just pullbacks in E, so we have an easy description of the domain of this arrow

g*U

g*m

Z
〈  f,g〉

X × X

idX × m

X × U
〈  f.(g*m),m*g〉

So, our arrow 〈f; g〉 × ) → & is just an arrow 〈h; h′〉 : g∗U → U × X such that
(m × idX ):〈h; h′〉 = 〈f; g〉:g∗m = (idX × m):〈f:(g∗m); m∗g〉. This implies m:h = f:g∗m
and then it follows that g∗m6f∗m.

g*U

g*m

h

∃

U

m

f
XZ

f *m

f *U
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Similarly, the arrow 〈f; g〉 → )& implies that f∗m6 g∗m. On the other hand, if we
start assuming that g∗m6f∗m, by following the proof above from bottom to top, it
is easy to prove that there is an arrow 〈f; g〉 → &). Using the same idea, starting from
f∗m6 g∗m it is easy to prove the existence of 〈f; g〉 → )&. So, if f and g pullback
m to the same subobject, then 〈f; g〉 factors through m′.

Clearly, “pulling back an arrow with codomain X to the same thing” determines
an equivalence relation on the hom-sets E( ; X ). It is not di@cult to see then that the
m′ = 〈m0; m1〉 built above determines an equivalence relation m0; m1 :U ′ → X on X .
Notice that U ′ can be de5ned by U ′ := x; x′ :X 	 (Ux → Ux′) ∧ (Ux′ → Ux) using
the internal logic.

Proposition 4.3. If Cex is locally cartesian closed then the following are equivalent:

1. Cex is a topos,
2. C has a generic proof.

Proof. By Lemma 4.1 it is enough to show that Cex is a topos if and only if Cex has
a weak classi5er of subobjects of projectives. To see that 1 implies 2, notice that the
subobject classi5er is trivially a weak classi5er of subobjects of projectives. To prove
that 2 implies 1, let � :� � be a weak classi5er of subobjects of projectives. By
hypothesis, the slice Cex=(�× �) is cartesian closed. So we can apply Lemma 4.2 to
obtain a mono �′ :� ′ �× � with the properties speci5ed. We can then take the
quotient:

Trivially, 〈�0; �1〉=�′ factors through �′. Then �∗0� ∼= �∗1� by Lemma 4.2. Also, � pulls
the equivalence relation �0; �1 back to another equivalence relation. As Cex is exact,
we can take its eMective quotient and obtain the top exact sequence in the diagram
below. Using the universal property of coequalizers we obtain the map � making the
right hand square commute. It follows by Lemma 2.1 that the right hand square is a
pullback. That is, !∗� = �.

�i 
∗

 ′
�0

�1

�

�

⊥

�
	

.

We now prove that , classi5es subobjects of projectives. It will then follow by
Lemma 3.7 that Cex is a topos. So let X be projective and let m :U X be an
arbitrary subobject. Then, as � is a weak classi5er, there exists a �m such that m =
�∗m�=�∗m(!∗�)=(!:�m)∗�. This means that � is also a weak classi5er of sub-objects of
projectives. We need to prove that there is only one arrow classifying each subobject.
So let f′; g′ : X → , pull � back to the same subobject. As X is projective, it follows
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that f′ and g′ factor through !, say via f and g. Then f and g pullback � to the
same subobject. So there exists an h such that 〈f; g〉 = �′:h by Lemma 4.2. But then
f = �0:h and g = �1:h. So !:f = !:�0:h = !:�1:h = !:g. That is, f′ = g′.

Together with Proposition 3.5 we obtain our main result.

Corollary 4.4 (Theorem 1.2). Cex is a topos if and only if C has weak dependent
products and a generic proof.

It is worth mentioning that every epi splits in the presence of a proof classi5er (i.e.
a generic proof for which the �f is required to be unique). The details of this can be
found in [20].

5. Examples

5.1. Realizability toposes

For any partial combinatory algebra A we de5ne PA to be the category whose
objects are pairs X = (|X |; ‖ ‖X ) with |X | a set and ‖ ‖X : |X | → A. We usually omit
subscripts. An arrow f :Y → X in this category is a function f : |Y | → |X | such that
there exists an a∈A such that for every y∈ |Y |; a‖y‖ is de5ned and a‖y‖ = ‖fy‖.
This is the well known category of partitioned assemblies. It is not di@cult to prove
that PA has 5nite limits and in [8] it is shown that PA has weak dependent products.
It is also well-known that realizability toposes [11] are the exact completions of the
categories of partitioned assemblies and it follows by our characterization that the
latter categories must have generic proofs. Let us present them explicitly. Let ˝A be
the object in PA with underlying set the set of subsets of A and associated function,
some chosen constant function. Let � have underlying set {(U; a)|U ⊆ A and a∈U}
and associated function the second projection. We have an obvious map � :� → ˝A
with 5rst projection as underlying function. We now prove that � is a generic proof.
Let f :Y → X be realized by af. Then de5ne � :X → ˝A by �x = {‖y‖ |fy = x}.
Let P be the pullback of � and �. It has underlying set |P| = {(x; �x; a)|a∈ �x} and
‖(x; U; a)‖=〈‖x‖; a〉. It is easy to see that f factors through 0 :P → X via the function
y �→ (fy; �fy; ‖y‖) which is realized by a �→ 〈afa; a〉. Now for each (x; U; a)∈ |P|
there exists a gx∈ |Y | such that fgx = x and ‖gx‖ = a. Using choice we obtain a
function g : |P| → |Y | that is realized by the projection (x; U; a) �→ a. It clearly holds
that f:g = 0. Notice that this 5rst example of a generic proof also provides a very
simple presentation of realizability toposes.

Consider now the category Ass of assemblies as described for example in [17]. This
category is equivalent to (PA)reg (see [5]). In [23], van Oosten introduces a topos using
tripos theory and then shows that its subcategory of projectives is the category Ass.
Using the same idea as in the case of partitioned assemblies it is easy to build directly
a generic proof in Ass which again provides an alternative presentation of the topos.
Moreover, in [21] it is shown that under certain hypotheses (valid in these realizability
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cases), the existence of a generic proof is equivalent to the existence of a generic
mono. Using this fact, a sequence of new examples can be obtained as follows. Let
Creg(0) =C and Creg(n+1) =(Creg(n))reg. Under the hypotheses mentioned above it follows
that if C has weak dependent products and a generic mono then, for each n the exact
completion of Creg(n) is a topos.

5.2. Presheaf toposes

It is well known that many presheaf toposes arise as exact completions. In this
section we review this fact (which can be proved without our characterization) and
give explicit constructions of the generic proofs involved. In order to present presheaf
toposes as exact completions it is useful to introduce another free construction, the
coproduct completion. For any category C there exists a unique (up to equivalence)
category C+ with small coproducts and such that for every category D with coproducts
there exists an equivalence of categories between the category of functors from C to
D and the category of coproduct-preserving functors from C+ to D. The objects of C+

are families of objects {Xi}i∈I in C indexed by a set I and maps between {Xi}i∈I and
{Yj}j∈J are families f = {fi :Xi → Y2i}i∈I with fi in C and 2 a function from I to
J . In coproduct completions, pullback along injections exist and coproducts are stable
and disjoint (see [7]).

De�nition 5.1. An object X is indecomposable if the corresponding covariant hom-
functor Hom(X; ) preserves coproducts.

It is worth mentioning that in the presence of stable and disjoint coproducts, an
object X is indecomposable if and only if X is not initial and cannot be decomposed
as a coproduct of non-initial objects. The following proposition appears as Lemma 4.2
in [9].

Proposition 5.2. A category E is the coproduct completion of a small category C
if and only if E is locally small with small coproducts and there exists a small
subcategory C of E consisting of indecomposable objects and such that every object
in E is isomorphic to a coproduct of objects in C.

The relation between coproduct completions and presheaf toposes is the following.

Proposition 5.3. Let C be a small category. If C+ has :nite limits then (C+)ex is
equivalent to SetsC

op

.

Proof. This is the argument used in the Corollary in p. 130 of [5]. See also Corollary
4.3 in [9].

(Notice that C need not have 5nite limits, as in the example of G-sets below.) It
follows from the previous proposition that such a C+ must have a generic proof. We
now give an explicit description of them. For any f :Y → X we write f̂ for the
corresponding element in Prf(X ).
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Lemma 5.4. If C is a small category then the functor Prf on the category C+ takes
values in Sets.

Proof. Let f :Y → X in C+. We can assume that Y is a small coproduct
∐

i∈I Ci of
objects in C. It follows that f is determined by a family of maps {fi :Ci → X }i∈I .
Reordering things a little bit it is easy to see that f̂ is determined by a family {UC}C∈C
where each UC is a subset (maybe empty) of C+(C; X ). That is f̂ is determined by a
subset of the small coproduct

∐
C∈C C+(C; X ). Hence, Prf(X ) is bounded by the set

Sub(
∐

C∈C C+(C; X )).

Notice that for any category with stable coproducts the functor Prf carries coproducts
to products. That is, there exists a natural isomorphism∏

i∈I

Prf(Xi) ∼= Prf

(∐
i∈I

Xi

)
:

We can now describe the generic proofs.

Lemma 5.5. If C is a small category then C+ has a generic proof.

Proof. Let P = {(p;C) |C ∈C; p∈Prf(C)}. It is a set because C is small and by
Lemma 5.4 so is each Prf(C). For each (p;C)∈P choose a map fp :Xp → C such
that f̂p = p. Now consider the following small coproduct of maps:∐

(p;C)∈P
fp:

∐
(p;C)∈P

Xp →
∐

(p;C)∈P
C:

Denote this map by � :� → �. We now prove that � is a generic proof. To do this,
consider 5rst an indecomposable object C. We can assume it is in C. Let g :Z → C
be any map and consider the following diagram.

Z Xg

fg

�

�P.B.
g

C �
in(g,C)

�

�

�

So � weakly classi5es proofs of indecomposable objects. Now for an arbitrary X .
Again, without loss of generality we can assume that X =

∐
i∈I Ci with I a set and for

each i∈ I; Ci in C. The following calculation shows that � weakly represents Prf.

Prf(X ) = Prf

(∐
i∈I

Ci

)
∼=
∏
i∈I

Prf(Ci) �
∏
i∈I

G(Ci; �)

∼=G

(∐
i∈I

Ci; �

)
=G(X;�):
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5.2.1. G-sets
For any group G it is possible to consider the presheaf topos SetsG of G-sets

[12,18,1]. It is well known that the indecomposable G-sets are the non-empty ones
with only one orbit and that every G-set is a small coproduct of these. Moreover,
every indecomposable is isomorphic to a G-set given by a coset space in G (see
Proposition 4 in Section 3 of Chapter 1 in [1]). By Proposition 5.2 we can conclude
that the presheaf topos of G-sets is the coproduct completion of its small full subcat-
egory Q of coset spaces of G. Notice that Q does not have 5nite limits in general.
In any case, we can conclude, using Proposition 5.3, that the exact completion of the
category of G-sets is a presheaf topos. Indeed, (SetsG)ex is equivalent to SetsQ

op

.
Due to its connection with LWauchli’s abstract notion of realizability and completeness

result [14], it may be of interest to pay special attention to the exact completion of
the topos of Z-sets. In [19] (see also [15]) the hyperdoctrine that assigns to each

object X of SetsZ the small Heyting algebra Prf(X ) = ](SetsZ=X ) is used to give an
abstract account of LWauchli’s completeness result. For every X in SetsZ, the lattice of
subobjects of X in (SetsZ)ex is isomorphic to the Prf(X ) above. It may be interesting
to look at LWauchli’s result from this perspective.

5.2.2. Presheaves on a frame
Let H be a frame in the sense of the theory of locales [13]. The coproduct completion

H+ has the following description. Its objects are pairs X = (|X |; ‖ ‖X ) with X a set
and ‖ ‖X : |X | → H a function valued on the frame. An arrow f :X → Y in H+ is
a function f : |X | → |Y | such that for every x in |X |; ‖x‖6 ‖fx‖. As H has 5nite
limits, it follows by results in [5] that H+ also has 5nite limits. In [22] it is proved
that this category is regular and cartesian closed. It is actually a quasi-topos, but in
any case, 5nite limits are enough to conclude that (H+)ex is the presheaf topos on H .
We introduce the explicit description of H here in order to present another example of
a generic proof. Let |�| be the set of subsets of H and for every U ∈ |�|; ‖U‖ = �.
This is the chaotic H -valued set of subsets of H . Let |�| = {(U; a) | a∈U ∈ |�|} and
‖(U; a)‖ = a. Using the same idea as for PA, it is not di@cult to prove that the 5rst
projection � → � is a generic proof in H+.

5.3. Smallness and weak representability

Let → be the category with only two objects ⊥ and � and a unique arrow ! : ⊥→ �.
It is small and has 5nite limits. It follows by Proposition 5.3 that (→+)ex is equivalent
to Sets→

op

which is equivalent to Sets→. In this section we prove that the exact
completion of Sets→ is not a topos. This shows that Cex a topos does not imply
that (Cex)ex also is. Notice 5rst that the indecomposable objects in Sets→ are those
functors whose value at � is a singleton and that every non-initial object is a small
coproduct of indecomposable objects. In fact, the indecomposable objects in this topos
behave as non-empty sets. In particular, every epi between indecomposable objects
splits. In contrast with the case of G-sets, there is a proper class of non-isomorphic
indecomposable objects.
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Lemma 5.6. For the topos Sets→; Prf is a functor to Sets.

Proof. This result seems to be folklore but we give a proof for completeness. We are
going to prove that for every X , Prf(X ) is bounded by the set of sets of subobjects
of X , that is, by Sub(Hom(X;,)). Let f :Y → X . We can assume that Y =

∐
i∈I Ci

is a small coproduct of indecomposable objects. Then f is the unique map given by
universality of the coproduct and a family {fi :Ci → X }i∈I . Now, each fi factors as
an epi ei :Ci � Di followed by a mono mi :Di X . Quotients of indecomposable
objects are indecomposable so every ei splits.

Y =

∏

Ci
i∈ I

∏

Di
i∈ I

f

X

[..., mi, ...]

This diagram shows that f is denotes the same element in Prf(X ) (via the split
epis) as the universal map given by a coproduct and a family of subobjects of X . In
turn, such a map denotes the same element as a map given in the same fashion but
where there are no repetitions of subobjects. It follows that Prf(X ) is bounded by
Sub(Sub(X )). As Sets→ is a topos, it is well powered so Sub(X ) is a set and hence
so is Prf(X ).

Proposition 5.7. Sets→ does not have a generic proof.

Proof. Assume that there is a generic proof � :� → �. Let I be an arbitrary set which
we think of as “size”. Let AI be the functor determined AI ⊥ =I and AI� = {∗} and
BI the one determined by BI ⊥ =I; BI ⊥ =I and BI != id. There is an obvious epi map
eI : BI � AI whose underlying function BI ⊥� AI ⊥ is the identity. By assumption,
there exists a map � :AI → � such that the following happens.

BI
BI

AI

p

q

eI

eI′

v �

�′

P.B. �

But AI� has only one element. Then, the construction of pullbacks in presheaf
categories gives that B′

I�={t | ��t=��∗} ��. In order to achieve a contradiction,
we will show that I B′

I� and hence that I �� for each I . As eI = e′I :p is
epi, e′I is also epi. We now show that e′I = eI :q epi implies that q is epi. Let q⊥ and
q� be the components of the natural transformation q. As the ⊥ component of eI is
an isomorphism (between the sets BI ⊥ and AI ⊥) it follows that for eI :q⊥ to be
epi, q⊥ must be epi. Now, BI !:q⊥ = q�:B′

I ! by naturality and hence as the left hand
side of the equation is epi, q� :B′

I� → BI� is also epi. Among sets, the surjection
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B′
I�� BI�=I has a section. Hence, among sets there is a monic function I ��.

But this is for every I ! So �� is not a set, a contradiction.

Notice that this also shows that even for the restricted class of presheaf toposes, the
condition that Prf takes values in Sets does not imply the existence of a generic proof.
Actually, in [20] it is shown that for any small category C, the presheaf topos SetsC

op

has a generic proof if and only if C is a groupoid. This extends the well-known
characterization of boolean presheaf toposes [12,10,18]. We still do not know of a
non-boolean topos with a generic proof.
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